Abdel-Karim, A.A.M., El-Shafei, S.A. and Azer, M.K., 2025. Listvenitization of Ophiolitic Serpentinites and Related Gold Mineralization in the Neoproterozoic Nubian Shield of Egypt. In: Z. Hamimi, R.J. Goldfarb, B. Pradhan, Y. Abd El-Rahman, A.R. Fowler, A. Abdelnasser and M.A. El Monsef (Editors), Gold Deposits in Egypt: Geology, Settings, Types, Genesis and Spatiotemporal Distribution. Springer Nature Switzerland, pp. 323–352.
https://doi.org/10.1016/j.chemgeo.2007.08.008
Agranier, A., Lee, C.T.A., Li, Z.X.A. and Leeman, W.P., 2007. Fluid mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chemical Geology, 245(3–4): 230–241. https://doi.org/10.1016/j.chemgeo.2007.08.008
Akbulut, M., Pişkin, Ö. and kArAyiğit, A.i., 2006. The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihaliççik region (Eskişehir), NW Turkey. Geological Journal, 41(5): 557–580. https://doi.org/10.1002/gj.1058
Alavi, M., 1991. Tectonic map of the Middle East, Scale 1:5000000. Tehran: Geological Survey of Iran.
Allen, D.E. and Seyfried, W.E., 2003. Compositional controls on vent fluids from ultramafichosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochimica et Cosmochimica Acta, 67(8): 1531–1542. https://doi.org/10.1016/S0016-7037(02)01173-0
Aydal, D., 1990. Gold-bearing listwaenites in the Araç Massif, Kastamonu, Turkey. Terra Nova, 2(1): 43–52. https://doi.org/10.1111/j.1365-3121.1990.tb00035.x
Bach, W., Garrido, C.J., Harvey, J., Paulick, H. and Rosner, M., 2004. Variable seawater–peridotite interactions-first insights from ODP Leg 209, MAR 115°N: Geochemistry Geophysics Geosystems, 5(9). https://doi.org/10.1029/2004GC000744
Bagheri, S., 2007. The exotic Paleo-tethys terrane in Central Iran: new geological data from Anarak, Jandaq and Posht-e-Badam areas. Ph.D. Thesis, University of Lausanne, Switzerland, 208 pp.
Bagheri, S. and Stampfli, G.M., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in Central Iran: new geological data, relationships, and tectonic implications. Tectonophysics, 451(1-4): 123–55. https://doi.org/10.1016/j.tecto.2007.11.047
Balini, M., Nicora, A., Berra, F., Garzanti, E., Levera, M., Mattei, M., Muttoni, G., Zanchi, A., Bollati, I., Larghi, C., Zanchetta, S., Salamati, R. and Mossavvari, F., 2009. The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin. In: M.F. Brunet, J.W. Granath and M. Wilmsen (Editors), South Caspian to Central Iran Basins, Geological Society of London, Special Publications no. 312. pp. 287–321. https://doi.org/10.1144/SP312.14
Barnes, I., O’Neil, J.R., Rapp, J.V. and White, D.E., 1973. Silica-carbonate alteration of serpentine: Wall rock alteration in mercury deposits of the California Coast Ranges. Economic Geology, 68(3): 388–398. https://doi.org/10.2113/gsecongeo.68.3.388
Beinlich, A., Plümper, O., Boter, E., Müller, I.A., Kourim, F., Ziegler, M., Harigane, Y., Lafay, R. and Kelemen, P.B., 2020. Ultramafic Rock Carbonation: Constraints from Listvenite Core BT1B, Oman Drilling Project. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019060. https://doi.org/10.1029/2019JB019060
Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B., 2012. Massive Serpentinite Carbonation at Linnajavri, N–Norway. Terra Nova, 24(6): 446–455. https://doi.org/10.1111/j.1365-3121.2012.01083.x
Blanco-Quintero, I., Proenza, J.A., Garcia-Casco, A., Tauler, E. and Gali, S., 2011. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, Eastern Cuba. Geologica Acta 9(3-4): 389–405. https://doi.org/10.1344/105.000001662
Boillot, G., Grimaud, S., Mauffret, A., Mougenot, D., Kornprobst, J., Mergoil-Daniel, J. and Torrent, G., 1980. Ocean–continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank. Earth and Planetary Science Letters, 48(1): 23–34. https://doi.org/10.1016/0012-821X(80)90166-1
Boskabadi, A., Pitcairn, I.K., Broman, C., Boyce, A., Teagle, D.A.H., Cooper, M.J., Azer, M.K., Stern, R.J., Mohamed, F.H. and Majka, J., 2017. Carbonate Alteration of Ophiolitic Rocks in the Arabian–Nubian Shield of Egypt: Sources and Compositions of the Carbonating Fluid and Implications for the Formation of Au Deposits. International Geology Review, 59(4): 391–419. https://doi.org/10.1080/00206814.2016.1227281
Bostock, M.G., Hyndman, R.D., Rondenay, S. and Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417: 536–538. https://doi.org/10.1038/417536a
Buchs, D.M., Bagheri, S., Martin, L., Hermann, J. and Arculus, R., 2013. Paleozoic to Triassic ocean opening and closure preserved in Central Iran: constraints from the geochemistry of meta-igneous rocks of the Anarak area. Lithos, 172–173: 267–287. https://doi.org/10.1016/j.lithos.2013.02.009
Buckman, S. and Ashley P.M., 2010. Silica-carbonate (listwanites) related gold mineralisation associated with epithermal alteration of serpentinite bodies. University of Wollongong. Conference contribution. Retrived October 13, 2025 from https://hdl.handle.net/10779/uow.27692145.v1
Buisson, G. and Leblanc, M., 1987. Gold in mantle peridotites from Upper Proterozoic ophiolites in Arabia, Mali, and Morocco. Economic Geology, 82(8): 2091–2097. https://doi.org/10.2113/gsecongeo.82.8.2091
Coleman, R., 1977. Ophiolites: Ancient Oceanic Lithosphere? Springer-Verlag, New York, 229 pp. https://doi.org/10.1007/978-3-642-66673-5
Collins, N.C., Bebout, G.E., Angiboust, S., Agard, P., Scambelluri, M., Crispini, L. and John, T., 2015. Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chemical Geology, 412: 132–150. https://doi.org/10.1016/j.chemgeo.2015.06.012
Contreras-Reyes, E., Grevemeyer, I., Flueh, E.R. and Scherwath, M., 2007. Alteration of the subducting oceanic lithosphere at the southern central Chile trench/outer rise. Geochemistry, Geophysics, Geosystems, 8(7). http://dx.doi.org/10.1029/2007GC001632
De Hoog, J.C.M., Janák, M., Vrabec, M. and Froitzheim, N., 2009. Serpentinised peridotites from an ultrahigh-pressure terranes in the Pohorje Mts. (Eastern Alps, Slovenia): geochemical constraints on petrogenesis and tectonic setting. Lithos, 109(3-4): 209–222. https://doi.org/10.1016/j.lithos.2008.05.006
Deer, W.A., Howie, R.A. and Zussman, J., 1992. An Introduction to the Rock-forming Minerals, 2nd edition. Longman Scientific & Technical, Harlow, 712 PP. https://doi.org/10.1180/DHZ
Deschamps, F., 2010. Caractérisation in situ des serpentines en contexte de subduction: De la nature à l'expérience. Ph.D. Thesis, Université Joseph Fourier-Grenoble-1, Grenoble, France, 402 pp.
Deschamps, F., Godard, M., Guillot, S. and Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96–127. https://doi.org/10.1016/j.lithos.2013.05.019
Deschamps, F., Guillot, S., Godard, M., Andreani, M. and Hattori, K., 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23(3): 171–178. https://doi.org/10.1111/j.1365-3121.2011.00995.x
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M. and Hattori, K., 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3–4): 262–277. https://doi.org/10.1016/j.chemgeo.2009.10.002
DeShon, H.R. and Schwartz, S.Y., 2004. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula. Geophysical Research Letters, 31(21). http://dx.doi.org/10.1029/2004GL021179
Drouin, M., Godard, M., Ildefonse, B., Bruguier, O. and Garrido, C., 2009. In situ geochemistry of olivine-rich troctolites (IODP Hole U1309D, Atlantis Massif, Mid-Atlantic Ridge, 30°N): a record of magmatic impregnation in the lower oceanic lithosphere. Chemical Geology, 264(1–4): 71–88. https://doi.org/10.1016/j.chemgeo.2009.02.013
Dzemua, G.L. and Gleeson, S.A., 2012. Petrography, mineralogy, and geochemistry of the Nkamouna serpentinite: implications for the formation of the cobalt-manganese laterite deposit, Southeast Cameroon. Economic Geology, 107(1): 25–41. https://doi.org/10.2113/econgeo.107.1.25
Emam, A. and Zoheir, B., 2013. Au and Cr mobilization through metasomatism: Microchemical evidence from ore-bearing listvenite, South Eastern Desert of Egypt. Journal of Geochemical Exploration, 125: 34–45. https://doi.org/10.1016/j.gexplo.2012.11.004
Escartin, J., Hirth, G. and Evans, B., 1997. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth and Planetary Science Letters, 151(3–4): 181–189. https://doi.org/10.1016/S0012-821X(97)81847-X
Eslami, A., Arai, S., Miura, M. and Mackizadeh, M.A., 2018. Metallogeny of the peridotite-hosted magnetite ores of the Nain ophiolite, Central Iran: Implications for Fe concentration processes during multi-episodic serpentinization. Ore Geology Reviews, 95: 680–694. https://doi.org/10.1016/j.oregeorev.2018.03.020
Evans, B.W., 2004. The serpentinite multisystem revisited: Chrysotile is metastable. International Geology Review, 46(6): 479–506.
Evans, B.W., Johannes, W., Oterdoom, H. and Trommsdorf, V., 1976. Stability of chrysotile and antigorite in the serpentine multisystem. Schweizerische Mineralogische und Petrographische Mitteilungen, 56: 79–93. Retrived October 13, 2025 from https://www.e-periodica.ch/digbib/view?pid=smp-001%3A1976%3A56%3A%3A87
Gahlan, H.A., Azer, M.K., Asimow, P.D. and Al-Kahtany, K.M., 2022. Formation of gold-bearing listvenite in the mantle section of the Neoproterozoic Bir Umq ophiolite, Western Arabian Shield, Saudi Arabia. Journal of African Earth Sciences, 190: 104517. https://doi.org/10.1016/j.jafrearsci.2022.104517
Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W. and Kress, III, V.C., 2002. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5): 1–35. https://doi.org/10.1029/2001GC000217
Gleeson, S.A., Butt, C.R.M. and Elias, M., 2003. Nickel laterites: A review: SEG Discovery, 54: 1–18. https://doi.org/10.5382/SEGnews.2003-54.fea
González-Jiménez, J.M., Piña R., Saunders J.E., Plissart G., Marchesi C., Padrón-Navarta J.A., Ramón-Fernandez, M., Garrido, L.N.F. and Gervilla, F., 2021: Trace element fingerprints of Ni–Fe–S–As minerals in subduction channel serpentinites. Lithos, 400–401: 106432. https://doi.org/10.1016/j.lithos.2021.106432
Gorczyk, W., Guillot, S., Gerya, T.V. and Hattori, K.H., 2007. Asthenospheric upwelling, oceanic slab retreat and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34(21). http://dx.doi.org/10.1029/2007GL031059
Hajjar, Z., Gervilla, F., Fanlo, I., Jiménez, J.M.G. and Ilmen, S., 2021. Formation of serpentinite-hosted, Fe-rich arsenide ores at the latest stage of mineralization of the Bou-Azzer mining district (Morocco). Ore Geology Reviews, 128: 103926. https://doi.org/10.1016/j.oregeorev.2020.103926
Hansen, L.D., Dipple, G.M., Gordon, T.M. and Kellett, D.A., 2005. Carbonated Serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. The Canadian Mineralogist, 43(1): 225–239. https://doi.org/10.2113/gscanmin.43.1.225
Hart, S.R. and Zindler, A., 1986. In search of a bulkEarth composition. Chemical Geology, 57(3–4): 247–267. https://doi.org/10.1016/0009-2541(86)90053-7
Ishimaru, S. and Arai, S., 2008. Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. American Mineralogist, 93(7): 1061–1065. https://doi.org/10.2138/am.2008.2746
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. and Vanke, H., 1979. The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In: R.B. Merrill, D.D. Bogard, F. Hoerz, D.S. McKay and P.C. Robertson (Editors), Proceedings of the Lunar and Planetary Science Conference. Pergamon, New York. United States of America, pp. 2031–2050. Retrived October 13, 2025 from https://adsabs.harvard.edu/full/1979LPSC...10.2031J
Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B. and Blusztajn, J., 2011. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences, 39: 545–576. https://doi.org/10.1146/annurev-earth-092010-152509
Kiefer, S., Ivan, P., Kaufmann, A.B., Vd’aˇcný, M. and Majzlan, J., 2023. Remobilization of Ni–Co–As and Platinum-Group Elements by Carbonate Metasomatic Alteration (Listvenitization) of Metaultramafic Rocks from Dobšiná, Slovakia. Geologica Carpathica, 74(2): 139–153. https://doi.org/10.31577/GeolCarp.2023.10
Klein, F., Bach, W. and McCollom, T.M., 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, 178: 55–69. https://doi.org/10.1016/j.lithos.2013.03.008
Klein, F. and Garrido, C.J., 2011. Thermodynamic Constraints on Mineral Carbonation of Serpentinized Peridotite. Lithos, 126(3–4): 147–160. https://doi.org/10.1016/j.lithos.2011.07.020
Kluza, K., Pršek, J. and Mederski, S., 2024. Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis-A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo). Minerals, 14(10): 1008. https://doi.org/10.3390/min14101008
Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S. and Gméling, K., 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2): 235–270. https://doi.org/10.1093/petrology/egr058
Lafay, R., Deschamps, F., Schwartz, S., Guillot, S., Godard, M., Debret, B. and Nicollet, C., 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38–54. https://doi.org/10.1016/j.chemgeo.2013.02.008
Leblanc, M. and Billaud, P., 1982. Cobalt arsenide orebodies related to an Upper Proterozoic ophiolite: Bou Azzer (Morocco). Economic Geology, 77(1): 162–175. https://doi.org/10.2113/gsecongeo.77.1.162
Lensch, G., Davoudzadeh, M., 1982. Ophiolites in Iran. Neues Jahrbuch für Geologie und Palàontologie Mh. Heft: 306–320. https://doi.org/10.1127/njgpm/1982/1982/306
Li, XP.R.M. and Bucher, K., 2004. Serpentinization of the Zermatt- Sas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22 (3): 159–177. https://doi.org/10.1111/j.1525-1314.2004.00503.x
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Mederski, S., Pršek, J. and Dimitrova, D., 2024. Distribution of In, Sn, Ga, Ge, and Other Critical Metals in Sulfide Ores from Epithermal Listvenite-Associated Badovc Pb–Zn–Sb–Ni Deposit (Kosovo): Insights from Mineralogy and Geochemistry. Ore Geology Reviews, 164: 105824. https://doi.org/10.1016/j.oregeorev.2023.105824
Menzel, M.D., Garrido, C.J., López Sánchez-Vizcaíno, V., Marchesi, C., Hidas, K., Escayola, M.P. and Delgado Huertas, A., 2018. Carbonation of Mantle Peridotite by CO2-Rich Fluids: The Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos, 323: 238–261. https://doi.org/10.1016/j.lithos.2018.06.001
Menzel, M.D., Sieber, M.J. and Godard, M., 2024. From peridotite to listvenite–perspectives on the processes, mechanisms and settings of ultramafic mineral carbonation to quartz-magnesite rocks. Earth-Science Reviews, 255: 104828. https://doi.org/10.1016/j.earscirev.2024.104828
Mohammadiha, K., Moazzen, M., Altenberger, U. and Hajialioghli, R., 2017. The geochemical nature of serpentinites from the Mashhad mafic-ultramafic complex as an evidence for Palaeotethys oceanic crust subduction in NE Iran, Scientific Quarterly Journal of Geosciences, 26(102): 15–26. https://doi.org/10.22071/gsj.2017.44064
Mokhtarzadeh Mohammadi, B. and Bagheri, H., 2011. Geochemical, mineralogical and fluid inclusion studies of Cu, Ni, Co and U of Meskani ore deposit, Anarak (Central Iran). Petrological Journal, 2(5): 1–18. Retrived October 13, 2025 from https://ijp.ui.ac.ir/article_16061.html?lang=en
Moll, M., Paulick, H., Suhr, G. and Bach, W., 2007. Data report: microprobe analyses of primary phases (olivine, pyroxene, and spinel) and alteraction products (serpentine, iowaite, talc, magnetite, and sulfides) in Holes 1268A, 1272A, and 1274A. In: J. Kelemen, E. Kikawa and D.J. Miller (Editors), Proceedings of the Ocean Drilling Program, Scientific Results, 209: 1–13. http://dx.doi.org/10.2973/odp.proc.sr.209.003.2007
Moody, J.B., 1976. Serpentinization; a review. Lithos, 9(2): 125–138. https://doi.org/10.1016/0024-4937(76)90030-X
Naderi, F., Torabi, G. and Shirdashtzadeh, N., 2024. Seawater-originated fluids interactions with oceanic lithospheric mantle peridotites and formation of hornblendite dykes, as well as spadaite and dolomite veins in the Naein ophiolite (Isfahan Province, Iran). Journal of Economic Geology, 16(4): 75–99. (in Persian with English abstract) https://doi.org/10.22067/econg.2024.1128
Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423–2458. https://doi.org/10.1093/petrology/egh068
O'Hanley, D.S., 1996. Serpentinites: records of tectonic and petrological history. Oxford monographs on Geology and Geophysics, 34. Oxford University Press, New York, 277 pp. Retrived October 13, 2025 from https://rruff.geo.arizona.edu/doclib/MinMag/Volume_61/61-408-742.pdf
Pelletier, L., Müntener, O., Kalt, A., Vennemann, T.W. and Belgya, T., 2008. Emplacement of ultramafic rocks into the continental crust monitored by light and other trace elements: an example from the Geisspfad body (Swiss-Italian Alps). Chemical Geology, 255(1–2): 143–159. https://doi.org/10.1016/j.chemgeo.2008.06.024
Peltonen, P., Kontinen, A., Huhma, H. and Kuronen, U., 2008. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits. Ore Geology Reviews, 33(3–4): 559–617. https://doi.org/10.1016/j.oregeorev.2007.07.002
Peters, D., Bretscher, A., John, T., Scambelluri, M. and Pettke, T., 2017. Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466: 654–666. https://doi.org/10.1016/j.chemgeo.2017.07.017
Peters, D., Pettke, T., John, T. and Scambelluri, M., 2020. The role of brucite in water and element cycling during serpentinite subduction—insights from Erro Tobbio (Liguria, Italy). Lithos, 360–361: 105431. https://doi.org/10.1016/j.lithos.2020.105431
Pirnia, T., Saccani, E., Torabi, G., Chiari, M., Goričan, Š. and Barbero, E., 2020. Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geoscience Frontiers, 11(1): 57–81. https://doi.org/10.1016/j.gsf.2019.02.008
PlissArt, G., féMéniAs, O., Maruntiu, M., diot, H. and deMAiffe, D., 2009. Mineralogy and geothermometry of gabbroderived listvenites in the Tisovita-Iuti ophiolite, southwestern Romania. The Canadian Mineralogist, 47(1): 81–105. https://doi.org/10.3749/canmin.47.1.81
Radosavljević, S.A., Stojanović, J.N., Vuković, N.S., Radosavljević Mihajlović, A.S. and Kašić, V.D., 2015. Low-Temperature Ni-As-SbS Mineralization of the Pb (Ag)-Zn Deposits within the Rogozna Ore Field, Serbo-Macedonian Metallogenic Province: Ore Mineralogy, Crystal Chemistry and Paragenetic Relationships. Ore Geology Reviews, 65(Part 1): 213–227. https://doi.org/10.1016/j.oregeorev.2014.09.029
Raia, N.H., Whitney, D.L., Teyssier, C. and Lesimple, S., 2022. Serpentinites of different tectonic origin in an exhumed subduction complex (New Caledonia, SW Pacific). Geochemistry, Geophysics, Geosystems, 23(8): e2022GC010395. https://doi.org/10.1029/2022GC010395
Ranero, C., Morgan, J.P., McIntosh, K. and Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425: 367–373. Retrived October 13, 2025 from https://www.nature.com/articles/nature01961
Salters, V.J.M. and Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). http://dx.doi.org/10.1029/2003GC000597
Scambelluri, M., Fiebig, J., Malaspina, N., Muntener, O. and Pettke, T., 2004. Serpentinite subduction: implications for fluid processes and trace-element recycling. International Geology Review, 46(7): 595–613. https://doi.org/10.2747/0020-6814.46.7.595
Schandl, E.S. and Gorton, M.P., 2012. Hydrothermal alteration and CO2 metasomatism (natural carbon sequestration) of komatiites in the south-western Abitibi greenstone belt. The Canadian Mineralogist, 50(1): 129–146. https://doi.org/10.3749/canmin.50.1.129
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L.M. and Seifert, R., 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chemical Geology, 242(1–2): 1–21. https://doi.org/10.1016/j.chemgeo.2007.01.023
Schwartz, S., Allemand, P. and Guillot, S., 2001. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics, 42(1–2): 193–206. https://doi.org/10.1016/S0040-1951(01)00162-7
Schwartz, S., Gautheron, C., Ketcham, R. A., Brunet, F., Corre, M., Agranier, A., et al., 2020. Unraveling the exhumation history of high-pressure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth and Planetary Science Letters, 543: 116359. https://doi.org/10.1016/j.epsl.2020.116359
Sharkovski, M., Susov, M., Krivyakin, B., Morozov, L., Kiristaev, V. and Romanko, E., 1984. Geology of the Anarak area (Central Iran). Geological Survey of Iran, Tehran, Report Technoexport 19, 143 pp.
Shayanfar, M., Ghorashi, M., Ahmadi, S., Saeedi, A. and Shahidi, A., 2016. Geology and structural pattern of Anarak-Talmessi sedimentary basin. Scientific Quarterly Journal of Geosciences, 25(98): 315–320. https://doi.org/10.22071/gsj.2016.41231
Sideridis, A., Koutsovitis, P., Tsikouras, B., Karkalis, C., Hauzenberger, C., Zaccarini, F., Tsitsanis, P., Lazaratou, C.V., Skliros, V., Panagiotaras, D., et al. 2022. Pervasive Listwaenitization: The Role of Subducted Sediments within Mantle Wedge, W. Chalkidiki Ophiolites, N. Greece. Minerals, 12(8): 1000. https://doi.org/10.3390/min12081000
Sieber, M.J., Hermann, J. and Yaxley, G.M., 2018. An Experimental Investigation of C–O–H Fluid-Driven Carbonation of Serpentinites under Forearc Conditions. Earth and Planetary Science Letters, 496: 178–188. https://doi.org/10.1016/j.epsl.2018.05.027
Skelton, A.D.L. and Valley, J.W., 2000. The relative timing of serpentinisation and mantle exhumation at the ocean–continent transition, Iberia: constraints from oxygen isotopes. Earth and Planetary Sciences, 179(3–4): 327–338. https://doi.org/10.1016/S0012-821X(00)00087-X
Snow, J.E. and Dick, H.J.B., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimca et Cosmochimca Acta, 59(20): 4219–4235. https://doi.org/10.1016/0016-7037(95)00239-V
Spandler, C., Hermann, J., Faure, K., Mavrogenes, J.A. and Arculus, R.J., 2008. The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contributions to Mineralogy and Petrology, 155(2): 181–198. https://doi.org/10.1007/s00410-007-0236-2
Stampfli, G.M. and Borel, G.D., 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: W. Cavazza, F. Roure, W. Spakman, G.M. Stampfli and P.A. Ziegler (Editors), The TRANSMED Atlas. The Mediterranean region from crust to mantle: Geological and geophysical framework of the Mediterranean and the surrounding areas. Heidelberg: Springer Berlin Heidelberg, Berlin, pp. 53–80. Retrived October 13, 2025 https://link.springer.com/chapter/10.1007/978-3-642-18919-7_3
Stanger, G., 1985. Silicified serpentinite in the Semail nappe of Oman. Lithos, 18: 13–22, https://doi.org/10.1016/0024-4937(85)90003-9
Steinthorsdottir, K., Dipple, G.M., Cutts, J.A., Turvey, C.C., Milidragovic, D. and Peacock, S.M., 2022. Formation and preservation of brucite and awaruite in serpentinized and tectonized mantle in central British Columbia: implications for carbon mineralization and nickel mining. Journal of Petrology, 63(11): egac100. https://doi.org/10.1093/petrology/egac100
Torabi, G., 2004. Petrology of Anarak area ophiolites (Central Iran, NE of Isfahan Province): Tarbiat Modarres University, Iran, Ph.D. Thesis in petrology, Isfahan, 233 pp.
Torabi, G., 2009. Chromitite potential in mantle peridotites of the Jandaq ophiolite (central Iran) Les péridotites de l’ophiolite de Jandaq (Iran central) peuvent-elles renfermer des gisements de chromite? Comptes Rendus Geoscience, 341(12): 982–992. https://doi.org/10.1016/j.crte.2009.07.014
Torabi, G., 2014. Late Permian blueschist from Anarak ophiolite (Central Iran, Isfahan province), a mark of multi-suture closure of the Paleo-Tethys ocean. Revista Mexicana De Ciencias Geológicas, 28(3). Retrieved October 13, 2025 from https://rmcg.geociencias.unam.mx/index.php/rmcg/article/view/190
Tuysuz, N. and Erler, A., 1993. Geochemistry and evolution of listwaenites in the Kagizman region (Kars, NE—Turkey). Chemie Der Erde-Geochemistry, 1(53): 315–329. Retrived October 13, 2025 from https://avesis.ktu.edu.tr/yayin/70302c7e-98a4-4129-9f2e-d421459e700c/geochemistry-and-evolution-of-listwaenites-in-the-kagizman-region-kars-ne-turkey
Ucurum, A., 2000. Listwaenites in Turkey: perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia. Ofioliti, 25(1): 15–29. Retrived October 13, 2025 from https://ofioliti.it/index.php/ofioliti/article/view/110/110
Visalli, R., Navarro, R., Buccione, R., Indelicato, V., Rizzo, G., Cirrincione, R. and Punturo, R., 2025. Multi-Analytical Characterization of Serpentinite Rocks Employed as Stone Material: An Example from Andalusia (Southern Spain), Basilicata, and Calabria (Southern Italy). Minerals, 15(5): 522. https://doi.org/10.3390/min15050522
Wenner, D.B. and Taylor, H.P., 1973. oxygen and Hydrogen isotopic studies of serpentinization of ultramafic rocks in oceanic environments and continental ophiolite complexes. American Journal of science, 273(3): 207–239. https://doi.org/10.2475/ajs.273.3.207
Wilde, S.A., Zhao, G. and Sun, M., 2002. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85–94. https://doi.org/10.1016/S1342-937X(05)70892-3
Xiaomei, W., Zhigang, Z. and Junbing, C., 2009. Serpentinization of peridotites from the southern Mariana forearc. Progress in Natural Science, 19(10): 1287–1295. https://doi.org/10.1016/j.pnsc.2009.04.004
Zanchi, A., Malaspina, N., Zanchetta, S., Berra, F., Benciolini, L., Bergomi, M., Cavallo, A., Javadi, H.R. and Kouhpeyma, M., 2015. The Cimmerian accretionary wedge of Anarak, Central Iran. Journal of Asian Earth Sciences, 102: 45–72. https://doi.org/10.1016/j.jseaes.2014.08.030
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M. and Muttoni, G., 2009. The Cimmerian evolution of the Nakhlak–Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. In: M.F. Brunet, J.W. Granath, and M. Wilmsen (Editors), South Caspian to Central Iran Basins, Geological Society, London, Special Publications, 312, pp. 261–286. https://doi.org/10.1144/SP312.13
Zarei, E., Sharifi, M. and Tadayon, M., 2021. Evolution history of north Anarak, Central Iran ophiolitic olistoliths using petrographical and mineral chemistry studies. Petrological Journal, 12(2): 125–148. https://doi.org/10.22108/ijp.2021.127663.1225
Zhang, L., Sun, W.D. and Chen, R.X., 2019. Evolution of serpentinite from seafloor hydration to subduction zone metamorphism: Petrology and geochemistry of serpentinite from the ultrahigh pressure North Qaidam orogen in northern Tibet. Lithos, 346–347: 105158. https://doi.org/10.1016/j.lithos.2019.105158
Zoheir, B., Holzheid, A., Zeh, A., McAleer, R., El-Behairy, M., Schwarz-Schampera, U., Graupner, T.R., Lentz, D. and Xiong, F., 2023. The Sukari Gold Deposit, Egypt: Geochemical and Geochronological Constraints on the Ore Genesis and Implications for Regional Exploration. Economic Geology, 118(4): 719–744. https://doi.org/10.5382/econgeo.4990