Al-Taei, A. I., Alesheikh, A. A., & Darvishi Boloorani, A. (2023). Land use/land cover change analysis using multi-temporal remote sensing data: a case study of Tigris and Euphrates Rivers Basin. Land, 12(5), 1101. https://doi.org/10.3390/land12051101
Asghari Sarsakanroud, S., & Saeedi Seta, A. (2023). Investigating the effect of land use changes on the runoff of the Qara chai River Basin using the SWAT model. Geography and Environmental Planning, 34(3), 95-118. [In Persian] https://doi.org/10.22108/gep.2023.134432.1535
Baajzadeh, Z., Shah-Hosseini, M., & Shayan, S. (2025). Evaluating the Effects of Anthropogenic and Tectonic Factors on Landform Changes with the Aim of Improving the Environment (Case Study: Shour River and Eshtehard Plain). Environmental Erosion Research Journal, 15(1), 1-24. https://doi.org/10.61186/jeer.15.1.1
Church, M., Kellerhals, R., & Day, T. J. (1989). Regional clastic sediment yield in British Columbia. Canadian Journal of Earth Sciences, 26(1), 31-45. https://doi.org/10.1139/e89-004
Clerici, A., Perego, S., Chelli, A., & Tellini, C. (2015). Morphological changes of the floodplain reach of the Taro River (Northern Italy) in the last two centuries. Journal of Hydrology, 527, 1106-1122. https://doi.org/10.1016/j.jhydrol.2015.05.063
Du, Z., Linghu, B., Ling, F., Li, W., Tian, W., Wang, H., ... & Zhang, X. (2012). Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. Journal of Applied Remote Sensing, 6(1), 063609-063609. https://doi.org/10.1117/1.JRS.6.063609.
Esfandiyari Darabadi, F., Rafiei Mahmoodjagh, H., & Farzaneh, R. (2022). Investigation of land use changes in Zarrineh Rud catchment and its effect on soil erosion using WLC model. Journal of Hydrogeomorphology, 8(29), 68-45. [In Persian] https://doi.org/10.22034/hyd.2021.47572.1600
Fashae, O. A., & Olusola, A. O. (2017). Landuse types within channel corridor and river channel morphology of River Ona, Ibadan, Nigeria. Indonesian Journal of Geography, 49(2), 111-117. https://doi.org/10.22146/ijg.12738
Field, J., Tambunan, B., & Floch, P. (2014). Pyanj river morphology and flood protection. https://www.adb.org/sites/default/files/publication/42682/cwa-wp-06-pyanj-river-morphology.pdf
Fortugno, D., Boix‐Fayos, C., Bombino, G., Denisi, P., Quiñonero Rubio, J. M., Tamburino, V., & Zema, D. A. (2017). Adjustments in channel morphology due to land‐use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surface Processes and Landforms, 42(14), 2469-2483. https://doi.org/10.1002/esp.4197
Giardino, J. R., & Lee, A. A. (2011). Rates of channel migration on the Brazos River. Yangling: Department of Geology & Geophysics, Texas A & M University. https://texashistory.unt.edu/ark:/67531/metapth415066/m2/1/high_res_d/txca-0835.pdf
Hohensinner, S., Hauer, C., & Muhar, S. (2018). River morphology, channelization, and habitat restoration. In Riverine ecosystem management: science for governing towards a sustainable future (pp. 41-65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73250-3_3
Ibitoye, M. O. (2021). A remote sensing-based evaluation of channel morphological characteristics of part of lower river Niger, Nigeria. SN Applied Sciences, 3(3), 340. https://doi.org/10.1007/s42452-021-04215-1
Khaleghi, S., Roustaei, S., Khorshiddoust, A. M., Rezaei-Moghadam, M. H., & Ghorbani, M. A. (2016). Investigation of human role on morphological channel changes of Lighvan Chai River. Geographic Space, 16(55), 111–135. [In Persian] http://geographical-space.iau-ahar.ac.ir/article-1-944-fa.html
Liu, W., Wu, J., Xu, F., Mu, D., & Zhang, P. (2024). Modeling the effects of land use/land cover changes on river runoff using SWAT models: A case study of the Danjiang River source area, China. Environmental research, 242, 117810. https://doi.org/10.1016/j.envres.2023.117810
Module, F. L. A. A. S. H. (2009). Atmospheric correction module: Quac and flaash user’s guide. Version, 4, 44.
MPOI (2005). Guidelines for Flood Zoning and Delineation of Riverbed and Riparian Zone. Management and Planning Organization of Iran Press, Tehran. [In Persian] https://waterstandard.wrm.ir/uploaded_files/DCMS/WRMResearch_files/307-s.pdf
Nath, A., & Ghosh, S. (2022). Assessment of river morphology based on changes in land use and land cover and the spatial and temporal variation of meandering parameters of the barak river. Water Practice & Technology, 17(11), 2351-2370. https://doi.org/10.2166/wpt.2022.114
Nones, M., Guerrero, M., Schippa, L., & Cavalieri, I. (2024). Remote sensing assessment of anthropogenic and climate variation effects on river channel morphology and vegetation: Impact of dry periods on a European piedmont river. Earth Surface Processes and Landforms, 49(5), 1632-1652. https://doi.org/10.1002/esp.5791
Qin, Y., Jin, X., Du, K., & Jin, Y. (2024). Changes in river morphology and influencing factors in the upper Yellow River over the past 25 years. Geomorphology, 465, 109397. https://doi.org/10.1016/j.geomorph.2024.109397
Rhodes, E. C., Talchabhadel, R., & Jordan, T. (2024). A changing river: Long‐term changes of sinuosity and land cover in the Navasota River Watershed, Texas. River, 3(2), 152-165. https://doi.org/10.1002/rvr2.85
Richard, G. A. (2001). Quantification and prediction of lateral channel adjustments downstream from Cochiti Dam, Rio Grande, New Mexico. Colorado State University. https://www.proquest.com/openview/245b8fbb4e008aa6d75a66255376708c/1?pq-origsite=gscholar&cbl=18750&diss=y
Richard, G. A., Julien, P. Y., & Baird, D. C. (2005). Case study: modeling the lateral mobility of the Rio Grande below Cochiti Dam, New Mexico. Journal of Hydraulic Engineering, 131(11), 931-941. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(931)
Roccati, A., Luino, F., Turconi, L., Piana, P., Watkins, C., & Faccini, F. (2018). Historical geomorphological research of a Ligurian coastal floodplain (Italy) and its value for management of flood risk and environmental sustainability. Sustainability, 10(10), 3727. https://doi.org/10.3390/su10103727
Shields Jr, F. D., Simon, A., & Steffen, L. J. (2000). Reservoir effects on downstream river channel migration. Environmental Conservation, 27(1), 54-66. https://doi.org/10.1017/s0376892900000072
Shin, Y. H., & Julien, P. Y. (2011). Effect of flow pulses on degradation downstream of Hapcheon Dam, South Korea. Journal of Hydraulic Engineering, 137(1), 100-111. https://doi.org/10.1061/(asce)hy.1943-7900.0000287
Surian, N. (1999). Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(12), 1135-1151. https://doi.org/10.1002/(SICI)1096-9837(199911)24:12%3C1135::AID-ESP40%3E3.0.CO;2-F
Wang, Y., Borthwick, A. G., & Ni, J. (2022). Human affinity for rivers. River, 1(1), 4-14. https://doi.org/10.1002/rvr2.12
Williams, G. P., Wolman, M. G., & Wolman, M. G. (1984). Downstream effects of dams on alluvial rivers (Vol. 1286). US Government Printing Office. https://doi.org/10.3133/pp1286