- Botelho, F., Correa, P., Gonelli, A., Marico, A., Martins, A., Magalhaes, F., & Campos, S. (2011). Periods of constant and falling-rate for infrared drying of carrot slices. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 845-852. https://doi.org/10.1590/s1415-43662011000800012
- Bouhile, Y., Guo, Y., Wu, B., Dai, J., Song, C., Pan, Z., & Ma, H. (2025). Research progress in the application of infrared blanching in fruit and vegetable drying process. Comprehensive Reviews in Food Science and Food Safety, 24(1), e70103. https://doi.org/10.1111/1541-4337.70112
- Celma, A.R., Rojas, R., & Lopez-Rodriguez, F. (2008). Mathematical modelling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing, 47(1), 1810-1818. https://doi.org/10.1016/j.cep.2007.10.003
- Crank, J. (1975). The mathematics of diffusion. 2nd ed. New York, USA. Editorial Oxford University Press; Pag. 105.
- Chen, D., Li, K., & Zhu, X. (2012a). Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions, BioResources, 7(3), 3670-3678. https://doi.org/10.15376/biores.7.3.3670-3678
- Chen, C., & Pan, Z. (2023). An overview of progress, challenges, needs and trends in mathematical modeling approaches in food drying. Drying Technology, 41(16), 2586–2605. https://doi.org/10.1080/07373937.2023.2207636.
- Diamante, L.M., & Munro, P.A. (1993). Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy, 51, 271–276. https://doi.org/10.1016/0038-092x(93)90122-5
- Erbay, Z., & Icier, F.A (2009). Review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50, 441–464. https://doi.org/10.1080/10408390802437063
- Espinaco, B.Y., Niizawa, I., Cuffia, F., Zorrilla, S.E., & Sihufe, G.A. (2025). Astaxanthin and chia oil encapsulated in gel beads: Evaluation of the impact of their addition in a commercial yogurt by a consumer-based sensory analysis. International Dairy Journal, 160, 106080.
- FAO. (2023) Potato consumption in the world; Retrieved from: https://agraria.pe/noticias/fao-produccion-mundial-de-papa-en-2022-caeria-un-6-tras-el-r-30702
- Flores-Hurtado, Z.K., & Leon-Villugas, P.L. (2019). Thesis: Management factors in potato industrialization in the Huasahuasi-Tarma district. National University of Central Peru.
- Garcia, P.A., Muniz, B., Hernandez, G.A., Gonzales, M.L., & Fernandez, V.D. (2013). Comparative analysis of the kinetics of osmotic and hot air flow dehydration of pineapple (Ananas comosus) variety Cayena lisa. Revista Ciencias Técnicas Agropecuarias, 22(1), 62-69.
- Gongora, CH.M. (2012). Osmo-convective drying with hot air of star fruit slices (Averrhoa carambola). Master's thesis. Santiago de Cali. University of Valle, Colombia.. 2012.
- Gudino, A.D., & Calderon, T.A. (2014). Pineapple drying using a new solar hybrid dryer. Energy Procedia, 57(1), 1642-1650. https://doi.org/10.1016/j.egypro.2014.10.155
- Henderson, S.M., & Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6,169–174.
- Hohl, K., & Dreyer, J. (2025). Sensory analysis and hedonic evaluation of fermented plant-based prod-ucts similar to yogurt. Not imitating, but emancipating. Ernahrungs Umschau, 72(1), 10-17.
- Huang, D., Yang, P., Tang, X., Luo, L., & Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777. https://doi.org/10.1016/j.tifs.2021.02.039
- Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39, 337–344. https://doi.org/10.1016/s0260-8774(98)00132-0
- Konar, N., Durmaz, Y., Genc Polat, D., & Mert, B. (2022). Optimization of spray drying for chlorella vulgaris by using rsm methodology and maltodextrin. Journal of Food Processing and Preservation, 46(5), e16594. https://doi.org/10.1111/jfpp.16594
- Kushwah, A., Kumar, A., & Gaur, M.K. (2023). Optimization of drying parameters for hybrid indirect solar dryer for banana slices using response surface methodology. Process Safety and Environmental Protection, 170, 176-187. https://doi.org/10.1016/j.psep.2022.12.003
- Lewicki, P.P.,& Korczak, K. (1996). Modeling convective drying of apple. Drying '96 - Proceedings of the 10th International Drying Symposium (IDS 961, Vol. B, (C. Strumillo and Z. Pakowski, eds.) pp. 965-972, Krakow, Poland.
- Madukasi, A.H., Onyenanu, I.U., Oghenekaro, P.O., Nzenwa, C.C., & Madu, K.E. (2025). Optimization of the drying parameters for plantain chips using a locally made tray dryer: A study on drying efficiency and drying rate modeling using RSM.Journal of Food Technology & Nutrition Sciences, 206(7), 2-10. SRC/JFTNS-268. https://doi.org/10.47363/jftns/2025(7)206
- Marinos-Kouris, D., & Maroulis, Z.B. (1995). Transport properties in the drying of solids. In: Handbook of Industrial Drying. pp. 113–160. Mujumdar, A.S. Eds., 2nd Edition, Marcel Dekker Inc., New York. https://doi.org/10.1201/9780429289774-4
- Midagri. (2023). Ministries of agricultural development and irrigation ministry of agriculture and irrigation: Statistics; Retrieved From: https://www.gob.pe/midagri
- Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/drt-120005864
- Montgomery, D.C. (2004). Design and analysis of experiments. 2nd ed. Mexico D.F., Mexico. Editorial Limusa S.A.; pág. 320.
- Overhults, D.G., White, G.M., Hamilton, H.E., & Ross, I.J. (1973). Drying soybeans with heated air. ASAE, 16, 112–113. https://doi.org/10.13031/2013.37459
- Oviedo-Lopera, J.C., Urrea-Galeano, V., Zuluaga-Hernandez, C.D., Rodriguez-Ortiz, L.M., Moreno-Zarta, J.F. (2017). S-curves - Application in fruit evaporation and drying technologies. Espacios Magazine, 38(N°51), 9-24.
- Ouyang, N., Ma, H., Liu, D., Guo, L., Guo, Y., & Wang, Y. (2025). Improvement and development of physical field drying technology: Principles, models, optimizations and hybrids. Food Engineering Reviews, 1-28. https://doi.org/10.1007/s12393-025-09398-6
- Page, G.E. (1949). Factors influencing the maximum rate of air-drying shelled corn in thin-layers. M.S.Thesis, Purdue University, West Lafayette, Indiana.
- Ramaswamy, H.S., & Nsonzi, F. (1998). Convective-air drying kinetics of osmotic pre-treated blueberries. Drying Technology, 26(3/5), 743-759. https://doi.org/10.1080/07373939808917433
- Ravi, K., Prashant, K., Nishant, K.H., & Om Prakash, P. (2025). Semi-empirical thin-layer drying model for the agricultural products. Chemical Engineering Communications, 212(5), 728-738. https://doi.org/10.1080/00986445.2024.2432672
- Sharma, G., Verma, R., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin-layer drying of onion slices. Journal of Food Engineering, 71(3), 282-286. https://doi.org/10.1016/j.jfoodeng.2005.02.010
- Simal, , Femenia, A., Garau, M.C., & Rosello, C. (2005). Use of exponential, Page´s and diffusional models to simulate the drying kinetics of kiwi fruits, Journal of Food Engineering, 66(1), 323-328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
- Tahmasebi, M., Gundoshmian, T.M., Roshanianfard, A., Akbari, R., Agdam, B.R., & Nowacka, M. (2025). Modeling and optimization of quality properties of lentils during the hot air drying process utilizing the response surface methodology (RSM). Heat Transfer. https://doi.org/10.1002/htj.23371
- Tangkham, W., Vuong, O., Bui, D., Nooritthi, T., & Shields, T. (2025). Effects of cricket powder on growth performance, carcass traits, pork quality, physicochemical, and sensory analyses of finishing swine. Journal of Food Research, 14(1), 1-74. https://doi.org/10.5539/jfr.v14n1p74
- Thakur, A.K., & Gupta, A.K. (2006). Water absorption characteristics of paddy, brown rice and husk during soaking, Journal Food Engineering, 75(2), 252-257. https://doi.org/10.1016/j.jfoodeng.2005.04.014
- Treybal, R.E. (1980). Mass transfer operations. Ed. Mexico D. F. Mexico. Editorial McGraw-Hill; pág. 480.
- Uribe, E., Vega-Galvez, A., Di Scala, K., Oyanadel, R., Saavedra-Torrico, J., & Miranda, M. (2011). Characteristics of convective drying of pepino fruit (Solanum muricatum): Application of Weibull distribution. Food Bioprocess Technology, 4(8), 1349-1356. https://doi.org/10.1007/s11947-009-0230-y
- Vander der Werf, L., Cavalera, S., Delpech, C., Chapuis, A., & Courtois, F. (2023). A generic drying model for cassava products. Drying Technology, 41(15), 2487–2500. https://doi.org/10.1080/07373937.2023.2255391
- Vega, G.A., Lemus, M.R., Tello, I.C., Miranda, M., & Yagnam, F. (2009). Kinetic study of convective drying of blueberry variety O’Neil (Vaccinium corymbosum). Chilean Journal of Agricultural Research, 69(2), 171-178. https://doi.org/10.4067/s0718-58392009000200006
- Verma, L.R., Bucklin, R.A., Ednan, J.B., & Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transaction of the ASAE, 28, 296–301. https://doi.org/10.13031/2013.32245
- Vivanco-Pezantes, D., & Nieto-Freire, D.J. (2021). Use of response surface methodology for optimizing microwave drying of ginger (Zingiber officinale) slices and determining equilibrium moisture conditions. Agroindustrial Science, 11(2), 211-219. https://doi.org/10.17268/agroind.sci. 2021.02.11
- Vivanco, P.D. (2023). Drying of red seawed (Chondracanthus chamissoi) with hot air assisted by incandescent bulbs. Research Project. Universidad Nacional del Callao, Provincia Constitucional del Callao, Lima. Perú. https://doi.org/10.7764/eure.51.153.10
|