- Aghbashlo, M., & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865-2871. https://doi.org/10.1016/j.enconman.2008.03.009
- Almaei, M., Nassiri, S. M., Nematollahi, M. A., Zare, D., & Khorram, M. (2024). Study on Drying Process of Farmed Shrimp Meat in a Hot Air Convective Dryer and Variation of Some Related Parameters. Journal of Agricultural Machinery, 14(3), 253-269. (in Persian with English abstract). https://doi.org/10.22067/jam.2023.80905.1145
- Apinan, S., Yujiro, I., Hidefumi, Y., Takeshi, F., Myllärinen, P., Forssell, P., & Poutanen, K. (2007). Visual observation of hydrolyzed potato starch granules by α‐amylase with confocal laser scanning microscopy. Starch‐Stärke, 59(11), 543-548. https://doi.org/10.1002/star.200700630
- Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch‐Stärke, 66(1-2), 41-57. https://doi.org/10.1002/star.201300106
- Ashtiani, S. H. M., Rafiee, , Morad, M. M., Khojastehpour, M., Khani, M. R., Rohani, A., ..., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
- Bahrami, R., Zibaei, R., Hashami, Z., Hasanvand, S., Garavand, F., Rouhi, M., ..., & Mohammadi, R. (2022). Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Critical Reviews in Food Science and Nutrition. 62 (7), 1936- 1950. https://doi.org/10.1080/10408398.2020.1848790
- Bassey, E. J., Cheng, J. H., & Sun, D. W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137-148. https://doi.org/10.1016/j.tifs.2021.03.045
- Belitz, H. , Grosch, W., & Schieberle, P. (2009). Coffee, tea, cocoa. Food Chemistry, 938-970.
- Bertolini, A. (2009). Starches: characterization, properties, and applications: CRC Press.
- Du, Y., Yang, F., Yu, H., Xie, Y., & Yao, W. (2022). Improving food drying performance by cold plasma pretreatment: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4402-4421. https://doi.org/10.1111/1541-4337.13027
- Gavahian, M., & Khaneghah, A. M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9), 1581-1592. https://doi.org/10.1080/10408398.2019.1584600
- Gupta, R. K., Guha, P., & Srivastav, P. P. (2023). Effect of high voltage dielectric barrier discharge (DBD) atmospheric cold plasma treatment on physicochemical and functional properties of taro (Colocasia esculenta) starch. International Journal of Biological Macromolecules, 253, 126772. https://doi.org/10.1016/j.ijbiomac.2023.126772
- Huber, K., & BeMiller, J. (2010). Modified starch: Chemistry and properties. En: Starches: characterization, properties and applications, (AC Bertolini ed.) Pp 145-204. In: CRC Press, Boca Raton, Fl.
- Katsigiannis, A. S., Bayliss, D. L., & Walsh, J. L. (2022). Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1086-1124. https://doi.org/10.1111/1541-4337.12885
- Kaur, B., Ariffin, F., Bhat, R., & Karim, A. A. (2012). Progress in starch modification in the last decade. Food Hydrocolloids, 26(2), 398-404. https://doi.org/10.1016/j.foodhyd.2011.02.016
- Li, S., Chen, S., Han, F., Xv, Y., Sun, H., Ma, Z., ..., & Wu, W. (2019). Development and optimization of cold plasma pretreatment for drying on corn kernels. Journal of Food Science, 84(8), 2181-2189. https://doi.org/10.1111/1750-3841.14708
- Misra, N., & Martynenko, A. (2021). Multipin dielectric barrier discharge for drying of foods and biomaterials. Innovative Food Science & Emerging Technologies, 70, 102672. https://doi.org/10.1016/j.ifset.2021.102672
- Motevali, A., Hashemi, S. J., & Keyani, R. (2023). Investigation of Thermodynamic Parameters and Essentioan Oil Content in Drying of Rosemary by Applying a Microwave Pulsed Pretreatment. Energy Engineering and Management, 7(2), 42-51. Retrieved from https://energy.kashanu.ac.ir/article_113413_49278afa381bdf6ff048e6d6c0b46d2a.pdf
- Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., & Khoshtaghaza, M. H. (2014). Comparison of energy parameters in various dryers. Energy Conversion and Management, 87, 711-725. https://doi.org/10.1016/j.enconman.2014.07.012
- Motevali, A., Minaei, S., & Khoshtagaza, M. H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2), 1192-1199. https://doi.org/10.1016/j.enconman.2010.09.014
- Motevali, A., Minaei, S., Khoshtaghaza, M. H., & Amirnejat, H. (2011). Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy, 36(11), 6433-6441. https://doi.org/10.1016/j.energy.2011.09.024
- Phillips, G. O. (1962). Radiation chemistry of carbohydrates. In Advances in Carbohydrate Chemistry (Vol. 16, pp. 13-58): Elsevier .https://doi.org/10.1016/S0096-5332(08)60258-1
- Ranjbar Nedamani, A., & Hashemi, S. J. (2021). RSM-CFD modeling for optimizing the apricot water evaporation. Journal of Food and Bioprocess Engineering, 4(2), 112-119. https://doi.org/10.22059/jfabe.2021.320809.1088
- Ranjbar Nedamani, A., & Hashemi, S. J. (2022). Energy consumption computing of cold plasma-assisted drying of apple slices (Yellow Delicious) by numerical simulation. Journal of Food Process Engineering, 45(5), e14019. https://doi.org/10.1111/jfpe.14019
- Singh, J., Kaur, L., & McCarthy, O. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21(1), 1-22. https://doi.org/10.1016/j.foodhyd.2006.02.006
- Sokhey, A., & Hanna, M. (1993). Properties of irradiated starches. Food Structure, 12(4), 2.
- Taghavi, A., Nedamani, A. R., Motevali, A., & Hashemi, S. J. (2025). Expanding the Application of Potato Starch in Diverse Food Products by Modifying Its Water Absorption, Swelling, and Solubility Through Pregelatinization–Cold Plasma Treatments. Journal of Food Biochemistry, 2025(1), 6809100. https://doi.org/10.1155/jfbc/6809100
- Thirumdas, R., Kadam, D., & Annapure, U. (2017). Cold plasma: An alternative technology for the starch modification. Food Biophysics, 12, 129-139.
- Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10, 1-11.
- Vieira, M., Estrella, L., & Rocha, S. (2007). Energy efficiency and drying kinetics of recycled paper pulp. Drying Technology, 25(10), 1639-1648. https://doi.org/10.1080/07373930701590806
- Wu, Y., Cheng, J. H., & Sun, D. W. (2021). Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 109, 647-661. https://doi.org/10.1016/j.tifs.2021.01.053
- Zhang, K., Perussello, C. A., Milosavljević, V., Cullen, P., Sun, D.-W., & Tiwari, B. K. (2019). Diagnostics of plasma reactive species and induced chemistry of plasma treated foods. Critical reviews in food science and nutrition, 59(5), 812-825. https://doi.org/10.1080/10408398.2018.1564731
- Zhang, X.-L., Zhong, C.-S., Mujumdar, A. S., Yang, X.-H., Deng, L.-Z., Wang, J., & Xiao, H.-W. (2019). Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum). Journal of Food Engineering, 241, 51-57. https://doi.org/10.1016/j.jfoodeng.2018.08.002
- Zhou, Y.-H., Vidyarthi, S. K., Zhong, C.-S., Zheng, Z.-A., An, Y., Wang, J., ..., & Xiao, H.-W. (2020). Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. Lwt, 134, 110173. https://doi.org/10.1016/j.lwt.2020.110173
|