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Abstract

Classical control methods such as Pontryagin Maximum Principle and Bang-
Bang Principle and other methods are not usually useful for solving opti-
mal control systems (OCS) specially optimal control of nonlinear systems
(OCNS). In this paper, we introduce a new approach for solving OCNS
by using some combination of atomic measures. We define a criterion for
controllability of lumped nonlinear control systems and when the system is
nearly null controllable, we determine controls and states. Finally we use

this criterion to solve some numerical examples.
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1 Introduction
We consider a nonlinear time-variant system as follows:

i = g(t, (1), u(t)), Vit € J, (1)
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z(to) = zo, z(ty) =z, (2)
where €y = J x A x U x D, here J is a known closed interval [to, %], A and
D are compact and peicewise connected sets in R™ such that z(t) € A and
z(t) € D,Vt € J, and U is a compact set in R™ such that u(t) € U,Vt € J, and
g is continuous on J. If there are u(.) and z(.) that satisfy equation (1)-(2) we
call the system is controllable.

In the following, by means of a process of embedding and using measure the-
ory, this problem is replaced by another one in the space of Borel measures, that
we seek to minimize to a linear form over a compact subset of the measure space.
The theory allows us to convert the new problem to an infinite-dimensional lin-
ear programming problem. Later on the infinite-dimensional linear programming
problem is approximated by a finite dimensional one. Then by the solution of
the linear programming problem one can find approximate functions for states
z(+) and control u(-).

If the system has an objective function we can use this process for solving the
systems defined by multi-objective control systems.

There are some literature on nonlinear optimal control for lumped and dis-

tributed parameter systems, see for example, [2]-[12].

2 Defining the problem

Let us define in (1), for all ¢ in J = [to, 1]

y(t) £ (), (3)
Then the equations can be rewritten as
y(t) = g(t, z(1), u(?)), (4)
z(to) = zo, x(ty) = xy. (5)
Now we define the function i : Q1 — R as

h(t, (), u(t), y(t)) = lly(t) — g(t, z(t), u(®)), (6)
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and let the functional I(.,z(.),u(.),y(.)) be as follows:

I(2(),ul-),y()) é/]h(tam(t)au(t)ay(t))dt'

Now, we investigate a necessary and sufficient condition for controllability of con-

trol system (1)-(2).

Theorem 1. A necessary and sufficient condition for controllability of control
system (1)-(2) is
Min I(-,-,-,-) =0,

that is equation (1) and boundary conditions (2) are valid on €.
Proof. Since h > 0 and it is continuous, h is Rimman integrable. If
Min I(-,-,-,-) =0,

u*(.) and *(.) are the corresponding control and trajectory and z(tg) = xo, z(ts) =

zy, then
/ h(t,z*(t),u*(t),y*(t))dt =0
J

and we will have h = 0. So

y*(t) = g(t, 2" (1), u" (1)),
or

& (t) = g(t, =" (1), u" (2)).
In other words, in this case u*(.) and z*(.) satisfy equations (1)-(2) and the
system will be controllable.

Conversely, if the system is controllable; that is, if (1)-(2) are satisfied, then
h =0, forall tin J. So

/}h(t,x(t),u(t),y(t))dt =0

and then I(.,z,u,y) =0, hence Min I(.,z,u,y) = 0.
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Note In practice we usually obtain suboptimal solution for I(.,.,.,.) in The-
orem 1, that is we have many errors for controllability of the system, for example
computational errors. So usually [ is not exactly equal to zero, in this case let the

total permissible errors be at most € > 0, where € is a known positive number. If

e(0) £ " () = gt O ) 1a = ([ 170 = glt.” (@), @) Pa) 2 (7

and e < €, then the system is almost controllable, so we define fuzzy controlla-

bility.

Fuzzy controllability Let C be the fuzzy set of permissible controls and tra-

jectories as follows:

C={(z,u,y): C(x,u,y) is as follows}

(e—€)
Clz,u,y) = ‘
0 , otherwise.

, e <€,

Then we say the system is controllable of grade C.

Controllability of multi-objective systems

Let our Multi-Objectives System be the minimization of

Ii(t,x(t),u(t),:b(t)):/]fi(t,x(t),u(t),i(t))dt, i=1,2,k

subject to the conditions (1)-(2), also we would like to be sure that our system
is controllable or fuzzy controllable.

If we consider y(t) as before and
w(t) £ (wi(t), wa (), wer1(t))
such that

w(t) € E, where E C R and E=10,1] x [0,1] x --- x [0,1],
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and also we define an objective function which is a convex combination of the

above objectives, that is, we assume the weights for objectives, as follows:

k
) 23wl | £t 00), )0y ® [ Bt (0.u).u0)at
k+1
wit) =1, 0<wi(t) <1, i=1,2,...k+]1,
=1
and we consider f in the following way
k
f(t,x(t),u(t),y(t),w(t)) £ Zwi(t)fi(-amauay) + W(k+1) (t)h(.,m,u,y),
=1

then I(.,.,.,.,.) will be

1020,y w) & /J £ (b (8), u(t), y(t), w(t)) dt,

then the minimization of I(.,z,u,y,w) will be a criterion for controllability and
also multi-objective performances functional. In the special case, when w;(t) =

0, i=1,2,...k and wy1)(t) = 1, it is just a criterion for controllability.

3 Metamorphism

We define [z(-), u(:), y(-)] to be an admissible triple, provided for all ¢ in .J,
e the function z(-) is continuous, and z(t) € A4;
e the function z(-) is continuous, and y(t) € D;
e the function u(-) is Lebesgue measurable, and u(t) € U;

e the triple satisfies the system of differential equations (4)-(5) and a.e. on

J® = (to,ts) in the sense of Caratheodory.

We denote the set of admissible triples by V. The problem has no solution unless

Vv #£0.
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Using the above assumption, the problem is now as follows:

Find an optimal admissible triple v € V' which minimizes the functional

I('a'a'a'a') = /Jf(t,:v(t),u(t),y(t),w(t))dt. (8)

Assume that B is an open ball in R"*! containing J x A, denote the space of all

differentiable functions on B by C'(B), and for ¢ € C'(B) define

¢g(t,.’L‘,U,y) = ¢x(t7m)'g + ¢t(tax)7 (9)

where ¢(-) and g(-) are n-vectors and the first term in the right-hand side of (9) is
an inner product and ¢? is in the space C(f2) of real-valued continuous functions
defined on the compact set €2, where Q = Q; x E. Then by the definitions of g

and ¢ and using the chain rule we have
[ #ttsto)uo.vnat = [ it atenar
J J
= ¢(ty,z(ty)) — d(to, z(to)) = 6¢.

Therefore
[ # a0, a0yt = 5696 € C'(5). (10)
J
Since A may have an empty interior in R", we need to introduce the set B and
space C'(B). Suppose D(J°), is the space of infinitely differentiable real valued

functions with compact support in J° and each = and g have n components such

as z; and g;,7 = 1,2,...n. For each 1) € D(J°), define

If w is an admissible pair, then for any ¢ € D(J°) we have

Awmﬂmmmmmﬁzﬂwwmm+ﬁwwmﬂ

=%@Wﬂ%—ﬂm—wmﬂmmmwm%

Since 1 has compact support on J°, it follows that
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and hence
/]¢j(t,m(t),u(t),y(t))dt =0. (12)

Now, we choose those functions in C'(B) which depend on the time variable only

and denote this subspace by C1(2). Set

IB(t7$7u7y7w) = IB(t)’ (tﬂxﬂu’y) e Q'

Thus
!LWUJMJW%MmﬁZGmﬁeaﬁm

where ag is the Lebegue integral of 8(t, z,u,y) on J.

In a given classical problem, the set of admissible triples is fixed. If we add
some elements to it, we have changed the problem and considered a new one,
inspired classically, but a different formulation nevertheless.

Consider the mapping
Aercmw+/memmmmmmeu
J

which is a linear and positive functional. Let us rewrite (8) subject to the condi-

tions (4)-(5) in the new representation as follows:
Minimize Ay (f) (13)
subject to
Ay(¢7) = b9, ¢ € C'(B)
Ay(;) =0,7=1,2,...,n;9 € D(J°) (14)

Av(/B) = aﬂMB € CI(Q)

We mention that A, is a positive Radon measure on the set C(£2). We denote
the space of all positive Radon measures on 2 by M (Q). A Radon measure on

2 can be identified with a regular Borel measure on this set (see [13], Riesz
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Representation Theorem). Thus, for a given positive functional on C(2), there

is a positive Borel measure on €2 such that

M(F) = [ Fdu= ().

Now, the problem (13)-(14) can be replaced by a new problem as follows. We

seek a measure in M (£2) which minimizes the functional
peMT(Q) = pu(f) €R (15)
and satisfies the following constraints:
u(¢?) = d¢, ¢ € C'(B)

p(tp;) = 0,5 =1,2,....,m;9 € D(J°) (16)
w(B) = ag, B € C1(92).

Thus, we consider the extension of our problem: Minimization of (15) over the set
Q of all positive Radon measures on € satisfying (16). Considering such measure

theoretic form of the problem has teo main adventages, namely

e The existence of an optimal measure in the set ), which satisfies (16) can be
studied in a straightforward manner without having to impose conditions

such as convexity, which may be artificial.

By the Proposition II.1, Theorem II.1 and Proposition I1.3 of [14], we are able to

prove the existence of the optimal measure.

4 First approximation

The problem (15)-(16) is an infinite dimensional linear programming(LP) prob-
lem, because all the functionals in (15)-(16) are linear in the variable u even if

the original problem is nonlinear and furthermore, the measure p is required to
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be positive. Of course, (15)-(16) is an infinite dimensional LP problem, because
M™(Q) is an infinite dimensional space. It is possible to approximate the solu-
tion of this problem by the solution of a finite-dimensional LP of sufficiently large
dimension. Also, from the solution of this new finite dimensional LP we induce
an approximated admissible triple in a suitable manner. We shall first develop an
intermediate problem, still infinite-dimensional, by considering the minimization
(15), not over the set Q but over a subset of M*(Q) defined by requiring that
only a finite number of the constraints in (16) are satisfied. This will be achieved
by choosing countable sets of functions whose linear combinations are dense in
the set @), and then selecting a finite number of them. Consider the first set
of equalities in (16). Let the set {¢;,7 = 1,2,...} be such that the linear com-
binations of the functions ¢; € C'(B) are uniformly dense. For instance, these
functions can be taken to be monomials in the components of the n-vectors z and
variable ¢.
Now, we consider the functions in D(J°) defined as below

27TT’(t - t(])
ot

271”)"(t - t(])
ot

sin| ], 1—-cos] l,r=1,2,.. (17)

where 6t =ty — 1o, if ¢y>s are chosen as (17), and the sequence {x ,},I =1,2,... is
of type 1 in (11). Then the first approximation will be completed by using the
above subjects and Proposition III.1 of [14].

5 Second approximation

By Proposition II1.2 of [14] the optimal measure has the form

N
ph=Y o agd(z), (18)
k=1

where 2} € Q and of > 0,k = 1,2,..., N, where J(-) is unitary atomic measure

with the support being the singleton set {z; }, characterized by

d(2)(F) = F(2),z € Q.

35
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This structural result points the way towards a nonlinear problem in which
the unknowns are the coefficients o} and supports {z;},k =1,2,...,N.
To change this problem to a LP problem, we use another approximation.

If w" is a countable dense subset of €, we can approximate p* by a measure

v € M*(Q) such that
N
v= Zaz(s(zk)a
k=1

where z; € w" = {21, 29, ..., 2y } (Proposition 111.3 of [14]).
This result suggests the following LP problem
Given € > 0 and z; € wV, j=1,2,...,N,

Minimize Z aif(z) (19)

subject to

N
| Za]¢zg(zj) - 5¢1 |§ €1=1,2,---, M,

N
| Y aixlz) < el=1,2,.., My, (20)
Jj=1
N
| Zayﬂs(zj) —ag, |[<es=1,2,-- L,
j=1

a;>0,5=1,2,..,N.

Assume P(My, My, L) in RY is defined by o; > 0,5 = 1,2,..., N satisfies (20),
then by Theorem III.1 of [14], for every ¢ > 0 the problem of minimizing the
functional (19) on the set P(My, My, L) has a solution for N = N (e) sufficiently

large, and the solution satisfies
N
(M17M27 Z z] <77 M17M27L) €,

where p(e) > 0ase— 0.



A sufficient condition for null controllability . ..

Let 6, € C (Q),
0T(t7$7u7y7w) :tT7T :0’ ]‘7"" (21)
then the set of 6,°s is dense in C(€2). Assume that there are a number L of them
in the set {¢? }f\ill It is necessary to choose L number of functions of the time

only, to replace the functions 6,,r = 0, 1, ... which were not found suitable, so we

have chosen some suitable functions, to be denoted by f,, s = 1,2, ...L, as follows:

1 ifteJ
fS(t) =

0 otherwise,

where J; = (to+ (s —1)d, to + sd), d = % Since every continuous function can be

written as a linear combination of monomials of type 1,z,z?,.... We assume
$1=T1,¢2 = T2, ..., Pp = Ty,

2 2 2
Gl = T17, Ppt2 = T2, oy o = Ty,

until M; functions are chosen, also assume

2rr(t —t
o) = sin 2ty o
ot
or
2nr(t — 1t
Pr(t) =1-— COS[W],T = My + 1, My +2,...,2Moy,
where x , are chosen as ¢} in (11), then we have My = 2nMy; number of type
X -
Now, if in the problem (19)-(20), e — 0 and z; € w¥,j = 1,2,..., N, then we
have
N
Minimize Z a;f(z) (22)
j=1
subject to

N

Za]¢zg(z]) = (5¢1,Z = 172a T aMla
=1

N

S ajx (z) =0.1=1,2,.... My, (23)
7j=1

37
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N

Zozjfs(zj) =as,s=1,2,..., L,
j=1
a;>0,j=1,2,..,N,

where a, is the integral of fs on J. By solving this finite dimensional LP problem

we obtain the nearly optimal a*’s.

6 Numerical examples

Example 1. Consider the nonlinear time-variant problem

2sin(z) + u

T=z
z(0) =0,z(1) = 0.5.
We let € = 0.1 and partition respectively the sets J = [0, 1], A = [0,0.5], D = [0, 1],
and U = [0,1] into p; = p4 = pp = py = 10 and My = 6, My = 4, and L = 10.

1 - 0B
0.4+t
Zos} |2
0.2t
a — a '
a 0.5 1 0 0.5 1
Optimal Control State

We used Revised Simplex method to solve such problem and found f* = 0.0065,
z*(0) = 0 and z*(1) = 0.4995, and degree of controllability of this example is
C = 0.9349. Below, the figures of z(-) and u(-) are given.

Example 2. Consider the nonlinear time-variant optimal control problem

1
Minimize / u?(t)dt,
0



A sufficient condition for null controllability . ..

subject to the conditions

& = z’sin(z) + u

Then

h(t,z(t), u(t), y(1)) = ly(t) — (2*sin(z) + ), Ve J

and

We let wi(t) = wa(t) = 1 and € = 0.1 and divide respectively the sets J =
[0,1], A = [0,0.5],D = [0,1], and U = [0,1] into p; = pa = pp = py, = 10 and
M, =6,Ms =4, and L = 10.

We used Revised Simplex method to solve this problem and found f* = 0.1133,
z*(0) = 0 and z*(1) = 0.4981. Below, the figures of z(-) and u(-) are given.

04 - DB
0.4+t
S 045} 1 =
=
0.2+
0.4 0 :
a 0.5 1 a 0.5 1
Optimal Control State

Example 3 (A system of coupled hydraulic tanks [1]) A state-space model
can be set up with the inlet flow-rate u as input, the depths of liquid (z1,z2)
in the respective tanks as state variables and the output taken as xzo, since the
objective is to control the level in tank2. With tanks of the same dimensions, and

orifices of equal size, the state-space equations expressed in suitably normalized

39
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variables become

where it is understood that the system operates only in the region
x1 > 29 > 0.

We assume € = 0.1 and divide respectively the sets J = [0,0.5], A1 = [0.05,0.45], D1 =
[0.05,0.45], A2 = [0.05,0.35], D2 = [0.05,0.35], and U = [0, 1] into p; = pa, =
PD, =PA, =PD, =py =4 and My =2,Ms =8, and L = 4.

We solve this problem and found f* = 0.0465, z7(0) = 0.02,z7(0.5) =
0.1214,2%(0) = 0.02 and z5(0.5) = 0.0902, and degree of controllability of this
example is C' = 0.5355. Below, the figures of u(-), z1(-), and z2(-) are given.

1 T T T T
08 .
Z 06 -
0.4F .
Dz 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Optirmal Cantral
0.1 - 0.15
01
= 005¢ {1 =
= =
0.05¢
0 0
0 0.5 0 0.5

State2 Statel
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