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Abstract

This paper deals with a novel proof of convergence of He’s variational iteration
method applied to nonlinear partial differential equations by proposing a new for-
mulation for this technique.

Keywords: Variational iteration method; Convergence theorem; Partial dif-
ferential equations; Burger’s equation.

1 Introduction

Recently He [8] has written a survey article and some new asymptotic tech-
niques with numerous examples. The limitations of traditional perturbation
procedures are illustrated. Various modified perturbation techniques are in-
troduced, and some mathematical tools such as variational theory, homotopy
technique, and iteration technique are proposed to overcome the shortcom-
ings. For the nonlinear oscillators, all the reviewed schemes produce high
approximate periods, but the accuracy of the amplitudes cannot be amelio-
rated by iteration. The emphasis of this author [8] is on the variational ap-
proaches, parameter-expanding methods, parameterized perturbation tech-
nique, homotopy perturbation method, iteration perturbation procedure and
ancient Chinese methods. Variational approaches to soliton solution, bifur-
cation, limit cycle, and period solutions of nonlinear equations including the
Ritz method, energy technique, variational iteration method are illustrated
in his paper [8].

The variational iteration method (VIM) plays an important role in recent
researches in this field. This method is proposed by He [4, 6, 5, 7] as a
modification of a general Lagrange multiplier method [11]. It has been shown
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that this procedure is a powerful tool for solving various kinds of problems
(e.g., see [1, 3, 13, 12]).

In this work, we adapt the technique to nonlinear partial differential equa-
tions and we prove the convergence of this method by proposing a new for-
mulation of the method.

2 The Variational Iteration Method

The idea of VIM is very simple and straightforward. To explain the basic idea
of VIM, we consider an one dimension general first order nonlinear partial
differential equation as follows with the assumption that the equation has the
unique solution (note that one can consider a nonlinear partial differential
equation in higher dimensions and also more general form without loss of
generality):

Φ(t, x, u, ut, ux, · · · ) = 0, (1)

with the specified initial condition (i.e., u(x, t0) = f(x)). We assume that the
nonlinear operator Φ is continuous with respect to its arguments and u(x, t)
is an unknown. We first consider Eq. (1) as follows:

Λ[u(x, t)] + N[u(x, t)] = 0, (2)

with, for example, the assumption α(x, t) �= 0

Λ[u] = α(x, t)ut + β(x, t)u

and
N[u] = Φ(t, x, u, ut, ux, · · · )− α(x, t)ut − β(x, t)u, (3)

where, as shown above, Λ with the property Λy ≡ 0 when y ≡ 0 denotes the
linear operator with respect to u and N is a nonlinear operator with respect
to u. We then construct a correction functional for Eq. (2) as [7]:

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s) {α(x, s)uns
(x, s) + β(x, s)un(x, s)

+N[ũn(x, s)] } ds, (4)

where u0(x, t) is the initial guess and the subscript n denotes the n-th itera-
tion, and λ(x,t,s) �= 0 denotes the Lagrange multiplier, which can be identified
efficiently via the variational theory, and ũn is considered as a restricted vari-
ation [7], i.e., δũn = 0.

Taking variation with respect to the independent variable un, noticing that
δun(x, t0) = 0 and by making the correction functional stationary, we obtain
δun+1(x, t) = 0 and therefore we have the following:
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δun+1(x, t) = δun(x, t) + δ

∫ t

t0

λ(x,t,s) {α(x, s)unt(x, s) + β(x, s)un(x, s)

+N[ũn(x, s)]} ds
= δun(x, t) + α(x, s)λ(x,t,s)δun(x, s)

∣∣
s=t

−
∫ t

t0

{
∂

∂s

(
α(x, s)λ(x,t,s)

)− β(x, s)λ(x,t,s)

}
δun(x, s)ds

= [1 + α(x, s)λ(x,t,s)] δun(x, s)|s=t

−
∫ t

t0

{
∂

∂s

(
α(x, s)λ(x,t,s)

)− β(x, s)λ(x,t,s)

}
δun(x, s)ds

= 0. (5)

Therefore, we have the following stationary conditions:

α(x, s)λ(x,t,s)

∣∣
s=t

= −1, (6)

∂

∂s

(
α(x, s)λ(x,t,s)

)− β(x, s)λ(x,t,s) = 0. (7)

Hence, the Lagrange multiplier can be readily identified as

λ(x,t,s) =
−1

α(x, t)
exp

(∫ t

s

ατ (x, τ)− β(x, τ)

α(x, τ)
dτ

)
. (8)

As a result, we have the following variational iteration formula:

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s)Φ(s, x, un(x, s), uns(x, s), unx(x, s), · · · ) ds.
(9)

Accordingly, the successive approximations un(x, t), n ≥ 0 of VIM will be
readily obtained by choosing all the above-mentioned parameters. Conse-
quently, the exact solution may be obtained by using

u(x, t) = lim
n→∞un(x, t). (10)

The initial guess can be freely chosen with possible unknown constants,
it can also be solved from its corresponding linear homogeneous equation
Λ[u0(x, t)] = 0. It is important to note that for linear problems, the exact
solution can be obtained easily by only one iteration due to the fact that the
auxiliary function can be suitably identified [9]. For nonlinear problems, in
general, one iteration leads to highly accurate solution by VIM if the initial
solution is carefully chosen with some unknown parameters.
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3 Convergence Theorem

The variational iteration formula makes a recurrence sequence {un(x, t)}. Ob-
viously, the limit of the sequence will be the solution of Eq. (1) if the sequence
is convergent. In this section, we give a new proof of convergence of VIM in
details by introducing a new iterative formulation of this procedure. Here, we
suppose that for every positive integer n, un ∈ C[t0, T ], and {unt(x, t)} and
{unx(x, t)} are uniformly convergent.

Lemma 3.1. The variational iteration formula (9) is equivalent to the fol-
lowing iterative relation

Λ[un+1(x, t)− un(x, t)] = −Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ), (11)

where Λ is as noted in (3).

Proof . Suppose un and un+1 satisfies the variational iteration formula (9).
Applying ∂

∂t into both sides of (9), results in

∂

∂t
[un+1(x, t)− un(x, t)] =

∫ t

t0

∂λ(x,t,s)

∂t
Φds+

∂

∂t
[λ(x,t,s)

∣∣
s=t

Φ]. (12)

Now, by using conditions (6) and (7), and
∂λ(x,t,s)

∂t = − β(x,t)
α(x,t) , we will have

α(x, t) ∂
∂t [un+1(x, t)− un(x, t)] + β(x, t)[un+1(x, t)− un(x, t)] =

−Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · }). (13)

From the definition (3) of Λ, we obtain

Λ[un+1(x, t)− un(x, t)] = −Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ). (14)

Conversely, suppose un and un+1 satisfies (11). Multiplying (11) by λ(x,t,s),
in view of the definition of Λ and λ(x,t,s) �= 0, and next by integrating on
both sides of the resulted term from t0 to t, yields

∫ t
t0

λ(x,t,s)α(x, s)[
∂
∂s

un+1(x, s)− ∂
∂s

un(x, s)]ds+
∫ t
t0

λ(x,t,s)β(x, s)[un+1(x, s)− un(x, s)]ds

= − ∫ t
t0

λ(x,t,s)Φ(s) ds.

(15)
Using simple integration by parts, the expression (15) becomes

α(x, t)λ(x,t,t)[un+1(x, t)− un(x, t)]−
∫ t
t0

(
∂
∂s

(α(x, s)λ(x,t,s)

)− β(x, s)λ(x,t,s))[un+1(x, s)

−un(x, s)] ds = − ∫ t
t0

λ(x,t,s) Φ(s) ds,

(16)

which exactly results (9) upon imposing conditions (6) and (7), i.e.,

un+1(x, t) = un(x, t) +

∫ t

t0

λ(x,t,s)Φ(s, x, un(x, s), uns(x, s), unx(x, s), · · · )ds.
(17)
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and this ends the proof. ��
Theorem 3.1. If the sequence (10) converges, where un(x, t) is produced by
the variational iteration formulation of (9), then it is the exact solution of
the equation (1).

Proof . If the sequence {un(x, t)} converges, we can write

v(x, t) = lim
n→∞un(x, t), (18)

and it holds
v(x, t) = lim

n→∞un+1(x, t). (19)

Using expressions (18) and (19), and by the definition of Λ in (3), we can
easily gain

lim
n→∞Λ [un+1(x, t)− un(x, t)] = Λ lim

n→∞[un+1(x, t)− un(x, t)] = 0. (20)

From (20) and according to the Lemma 3.1, we obtain

Λ lim
n→∞[un+1(x, t)− un(x, t)] = − lim

n→∞Φ(t, x, un(x, t), unt (x, t), unx (x, t), · · · ) = 0, (21)

which gives us

lim
n→∞Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · ) = 0. (22)

From (22) and the continuity of Φ operator, it holds

lim
n→∞Φ(t, x, un(x, t), unt(x, t), unx(x, t), · · · )

= Φ(t, x, lim
n→∞un(x, t), lim

n→∞unt(x, t), lim
n→∞unx(x, t), · · · )

= Φ

(
t, x, lim

n→∞un(x, t),
(
lim

n→∞un(x, t)
)
t
,
(
lim

n→∞un(x, t)
)
x
, · · ·

)

= Φ(t, x, v(x, t), vt(x, t), vx(x, t), · · · ). (23)

Now, from Equations (22) and (23), we have

Φ (t, x, v, vt, vx, · · · ) = 0, t0 ≤ t ≤ T. (24)

On the other hand, using the specified initial conditions and the definition of
the initial guess, we have

v(x, t0) = lim
n→∞un(x, t0) = f(x), since u(x, t0) = un(x, t0) = f(x), n ≥ 0,

(25)
Therefore, according to (24)-(25), v(x, t) must be the exact solution of the
equation (1), this ends the proof. ��

Note that the above theorem is valid for the linear operator Λ defined by
(3). This convergence theorem is important. It is because of this theorem we
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can focus on ensuring that the approximation sequence converges. It is clear
that the convergence of the sequence (10) depends upon the initial guess
u0(x, t) and the linear operator Λ. Fortunately, VIM provides us with great
freedom of choosing them. Thus, as long as u0(x, t) and Λ are so properly
chosen that the sequence (10) converges in a region t0 ≤ t ≤ T , it must
converge to the exact solution in this region. Therefore, the combination of
the convergence theorem and the freedom of the choice of the initial guess
u0(x, t) and the linear operator Λ establishes the cornerstone of the validity
and flexibility of VIM.

4 An Illustrative Example

In order to illustrate the efficiency of the VIM described in this paper, we
present one example.

Example A much-considered example is the Burger’s equation [12,13]

ut + uux − uxx = 0, (26)

This equation was only intended as an approach to the study of turbulence
because it exhibited some essential characteristics of the more realistic (and
difficult) equations. This equation involves nonlinearity, dissipation, and is
relatively simple. The VIM solves much more difficult systems. We consider
it now to show the simplicity of a proper solution.

According to the VIM procedure, (9), one can obtain the following varia-
tional iteration relation (λ(x,t,s) = −1):

un+1(x, t) = un(x, t)−
∫ t

0

{unt(x, s)+un(x, s)unx(x, s)−unxx(x, s)} ds. (27)

The problem is completely defined when the initial condition is specified. If
we specify u = x when t = 0, we have

u0(x, t) = x,
u1(x, t) = x− xt+O(t2),
u2(x, t) = x− xt+ xt2 +O(t3),
u3(x, t) = x− xt+ xt2 − xt3 +O(t4),
u4(x, t) = x− xt+ xt2 − xt3 + xt4 +O(t5),

· · · (28)

Thus, u(x, t) = x/(1 + t) which is the exact solution of (26).
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5 Conclusion

In this paper, we have given a proof of convergence of He’s variational iter-
ation method by presenting a new formulation of He’s method for nonlinear
partial differential equations. The main property of this method is in its flex-
ibility and ability to solve nonlinear equations accurately and conveniently
without decomposing the nonlinear terms, which makes the procedure very
complex. This technique is a very powerful tool for solving nonlinear prob-
lems. Furthermore, it gives an accurate and easily computable solution by
means of a truncated series whose convergence is fast.
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