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A level set moving mesh method in
static form for one dimensional PDEs

Maryam Arab Ameri

Abstract

In this paper, we propose an adaptive mesh approach for time dependent parial
differential equations, based on a so-called moving mesh PDE(MMPDE) and level
set method. It means that the velocity of mesh nodes is calculated by MMPDE
and is employed as veocity in the level set equation. Then, at each time level, the

mesh points are considered as the level contours of the level set function. Finally
the method is merged with local time step technique.

Keywords: Adaptive grid; Level set function; Level contours; Moving mesh;
Local time stepping refinement; MMPDE.

1 Introduction

In this paper, we discuss a class of adaptive mesh algorithms for solving time-
dependent partial differential equations(PDEs) whose solutions have large
variations over a given physical domain, such as shock waves, boundary layer
and interior layer.

This method is based on the level set concept. the level set methods are
powerful numerical techniques for tracking the evolution of interfaces moving
in complex ways. The level set methods were used for the first time to repre-
sent the evolution of surfaces implicity by Osher and Sethian [11]. Due to its
many advantages, this approach has been used for many cases [1, 5, 9, 13, 19],
for example, it has been used for mesh generation around a body(inside or
outside) by the level set function [12]. Liao et al. presented some points about
using the level set functions for moving grid based on deformation method
[6]. In this paper, we also formulate an adaptive mesh method which is based
on the level set method. This method is combined with a class of moving
mesh methods which employs a moving mesh partial differential equation,
MMPDE, to perform mesh adaptation. The MMPDE is formulated in terms
of coordinate transformation or mapping,[3, 4, 8, 16, 17]. Several moving
mesh equations(MMPDEs) based upon equidistribution principle have been
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derived in [3], where in Section 2, we briefly review some of them. Finally
after introducing the new method, we present local time stepping refinement
technique based on the slope of the level set function for increasing the effi-
ciency of the moving mesh method. The mentioned method is used to solve
scalar field satisfying

ut(x, t) = L(u), (1)

where L is a differential operator defined on physical domain Ω, a ≤ x ≤ b
and 0 ≤ t ≤ Tf .

2 Moving Mesh Methods

In this section, we develop a new moving mesh method based on the level set
concept. We start with a review of the equidistribution principle(EP)[3, 15]
and derive MMPDEs from that principle in subsection 2.1,then a description
of adaptive grid based on level set method is given in the subsection 2.2.

2.1 MMPDE

The evolution of moving computational grid can be viewed as a discretiza-
tion of a one-to-one time dependent coordinate mapping. Let x and ξ denote
the physical and computational coordinates, with domains Ω and Ωc, respec-
tively. Without loss of generality, both of them are assumed to be in [0, 1].
Define a coordinate transformation by:

x = x(ξ, t), ξ ∈ [0, 1], x(0, t) = 0, x(1, t) = 1. (2)

The computational coordinates is discretized on a uniform mesh given by

ξj =
j

N
, j = 0, 1, · · · , N,

where N is a certain positive integer and the corresponding mesh in x denoted
by

0 = x0 < x1(t) < x2(t) < · · · < xN−1(t) < xN = 1.

A major factor of moving mesh approach is the monitor function, ρ(x, t),
which is chosen to be somehow a measure of the solution error. For a given
monitor function, the mesh point locations, xj(t), could be required to satisfy
the following equidistribution principle (EP) for all the values of time t [3]:

∫ xj(t)

xj−1(t)

ρ(x, t)dx =
1

N

∫ 1

0

ρ(x, t)dx =
1

N
θ(t),
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or equivalently ∫ xj(t)

0

ρ(x, t)dx =
j

N
θ(t) = ξjθ(t). (3)

By differentiating (3) with respect to ξ once and twice,, we obtain two dif-
ferential forms of EP,

ρ(x(ξ, t))
∂

∂ξ
x(ξ, t) = θ(t), (4)

∂

∂ξ
(ρ(x(ξ, t), t)

∂

∂ξ
x(ξ, t)) = 0. (5)

These EPs,(3),(4) and (5), which do not contain the node speed ẋ(ξ, t),are
called quasi-static EPs(QSEPs). Related to these QSEPs, various MMPDEs
were derived in [3] by taking the mesh to satisfy the above EP (Eq. (5)) at a
later time t+ τ instead of at t. In this case the mesh should satisfy

∂

∂ξ
ρ(x(ξ, t+ τ), t+ τ)

∂

∂ξ
x(ξ, t+ τ) = 0 (6)

where the parameter τ is called a relaxation time. By expanding the term
∂
∂ξx(ξ, t+τ) in Taylor series and dropping certain higher order terms, various
MMPDEs can be obtained. Two of them which are used in our work are
MMPDE5 and MMPDE6:

MMPDE5 : −ẋ = −1

τ

∂

∂ξ
(ρ
∂x

∂ξ
), (7)

MMPDE6 :
∂2ẋ

∂ξ2
= −1

τ

∂

∂ξ
(ρ
∂x

∂ξ
). (8)

These MMPDEs and also the rest of them not only force the mesh ,x(ξ, t),
toward equidistribution principle but also prevent the mesh from crossing.
More specifically, the term −( 1τ )( ∂∂ξ (ρ∂x∂ξ )) plays the fundamental role of a
correction term to make the mesh equidistribute the monitor function and it
is stabilizing term for the mesh trajectories.
The monitor function, ρ, is chosen such that the mesh points are concentrated
in regions where more accuracy is needed, and so ρ is usually taken to be
some measure of the solution error estimated from discrete solution values. A
commonly used monitor function is ρ =

√
1 + αu2x (α is regularizing factor),

which equidistributes the arclength of the solution u.
In this work, we discretize MMPDE5 and MMPDE6 by centered finite dif-
ference in space, which yields for MMPDE5

ẋj =
Ej
τ
, j = 0, 1, . . . , N

and for MMPDE6
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ẋj+1 − 2ẋj + ẋj−1 = −Ej
τ
, j = 0, 1, . . . , N.

The quantity Ej represents a centered approximation to the term on the right
hand side of MMPDE5 and MMPDE6 given by

Ej =Mj+1/2(xj+1 − xj)−Mj−1/2(xj − xj−1), j = 0, 1, . . . , N

where Mj+1/2 = 1
2 (Mj +Mj+1),Mj = M(uj), and uj ≈ u(xj , t) is an ap-

proximation of the solution at grid point xj .

2.2 Moving Mesh Based on Level Set Approach

In this section, at first a new moving grid method is formulated, and then
the algorithm of this method is presented.
Essential point in all applications of the level set method is using the implicit
representation. This point is also used in grid generation in such a way that
the mesh nodes are represented implicitly by the level contours of the level
set function. In this method, at each time level we construct the level set
function,ψ(x, t), and the mesh points xj , j = 0, 1, . . . , N , are obtained by the
level contours of ψ(x, t), that means the mesh points are:

{xj | ψ(x, t) = cj , j = 1, 2, . . . , N} (9)

where cj is j-th component of a constant vector C = (0, 1
N ,

2
N , . . . , 1) and N

is the number of mesh points.
In fact, in each time, we seek a level set function, ξ = ψ(x, t) : Ω → Ωc
, which maps xj to cj = j

N , j = 0, 1, . . . , N and satisfies the well-known
equidistribution principle

Jρ =
σ

|Ωc| , (10)

where J is the Jacobian of the coordinate transformation x = ψ−1(ξ, t) :
Ωc → Ω, and ρ = ρ(x, t) is a given monitor function, and σ = σ(t) =∫
Ω
ρ(x, t)dx.

For updating the level set function or equivalently for updating the position
of mesh nodes, the well-known level set equation is applied,

ψt(x, t) + vψx(x, t) = 0. (11)

The ideal initial condition for the above equation is ψ(x, t) = x, because in
the most mesh adaptation algorithms, the purpose is to convert a uniform
mesh at initial time to an equidistributed mesh at the next time levels. The
mentioned initial condition gives a uniform mesh at t = 0. Also the following
boundary conditions are considered for the level set equation,
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ψ(0, t) = 0, ψ(1, t) = 1.

As we mentioned at each time level, any

ψ(x, t) = a (12)

has a correspondence point on x-axis which is one of the new mesh nodes.
By differentiating (12) with respect to t, we get

ψt(x, t) + ψx(x, t)ẋ = 0, (13)

and when compared with (11) and (13), we get

ẋ = v, (14)

that means, the nodes velocity is equal to v.
So for calculating the nodes velocity in the level set equation, the MMPDE5
or MMPDE6 should be applied which generates an equidistributed mesh
through this algorithm.
At each time level, after determining new nodes, the solution of PDE should
be determined. For this purpose, let

Ũ(ψ(x, t), t) = u(x, t), (15)

then
Ũt = uxẋ+ ut

where ut = L(u) by (1) and ẋ = v by (14). The derivatives in L(u), such as
ux, uxx are also transformed. For example, from (15), we have

Ũψ = uxxψ ⇒ ux =
Ũψ
xψ

=
Ũψ
σ

ρ|Ωc|
=
ρ|Ωc|
σ

Ũψ,

Ũψψ = uxx(xψ)
2+uxxψψ ⇒ uxx =

Ũψψ − uxxψψ
(xψ)2

= (
ρ|Ωc|
σ

)2(Ũψψ−uxxψψ).

The higher derivatives can be derived similarly. The transformed equation
for Ũ(ψ, t) takes the form of

Ũt = L̃(Ũ), (16)

where L̃ is a differential operator in ψ. Finally (16) will be solved on a uniform
grid.
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2.3 Algorithm of Adaptive Level Set Method(ALSM)

In this section, we provide an algorithm to solve the given PDE (1) in a
moving grid based on the level set function.
Step1: Enter the initial time, t0, the final time, Tf , the length of time step,
Δt, and the number of mesh points, N.
Step2: Set i = 0.
Step3: If t0 = 0, set

X(t0) = {x0j =
j

N
, j = 0, 1, . . . , N},

ψ(t0) = X(t0),

U (t0) = u(t0) = u(X(t0), t0),

Ũ (t0) = U (t0)

Step4: Determine ρ(u(x, ti)) by the solution u being calculated.
Step5: Compute mesh velocity, v = ẋ, either by MMPDE5:

ẋj =
Ej
τ
, j = 0, 1, . . . , N

or by MMPDE6:

ẋj+1 − 2ẋj + ẋj−1 = −Ej
τ
. j = 0, 1, . . . , N

Step6: Update the level set function by the following equation:

ψt(x, t) + ψx(x, t).v = 0,

which by forward finite difference discretization in time converts to:

ψ(ti+1) = ψ(ti) +Δt(vψx)ti ,

with the boundary conditions ψ0(ti + 1) = 0 and ψN (ti + 1) = 1.
Step7: Define the inverse of ψ(x, t) for updating the new nodes, X(ti+1), in
current time.
Step8: Determine the values of u on the current time level by the described
procedure in previous subsection and solve (16) or

Ũ(ti+1) = Ũ(ti) +Δt.L̃(Ũ(ti)),

Step9: Set i = i+ 1.
Step10: If ti ≤ Tf go to Step3, else break.
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3 Local Time Step Refinement

Local time stepping for one-dimensional conservation laws was first proposed
by Osher and Sanders [10]. Tan et. al. proposed variable time stepping for one
and two dimension for conservation laws, which uses semi-dynamic moving
mesh method such that the CFL condition is used to obtain time interval
refinement to compute the solution [18]. Also, Soheili and Salahshour used
this approach for the blow-up problems [14].
In this section, we also present the details of the local time stepping refine-
ment(LTSR) which is performed based on the level set function.
Let initial time steps of the problem have the form

t0 = 0→ t1 = t0+Δt→ . . .→ tn = t0+nΔt→ tn+1 = t0+(n+1)Δt→ . . .→ Tf ,

where Δt is a specified value for the time step and is constant through using
this procedure. On the first interval [t0, t1], set Δt0 = t1−t0

k0
where k0 ∈ N is

constant and depends on the slope of the level set function, (the method of
determining k0 will be described). We have

t0+(k0−i)Δt0 = t0 + (k0 − i)Δt0, i = k0, k0 − 1, . . . , 0

so the time integration on [t0, t1] involves k0 sub-steps such that

t0 = 0 → t0 +Δt0 → . . . → t0 + k0Δt0 = t1.

Generally, suppose that we are at time level t = tn and we want to move
towards t = tn+1. Similarly consider Δtn = tn+1−tn

kn
such that

tn+(kn−i)Δtn = tn + (kn − i)Δtn, i = kn, kn − 1, . . . , 0

that means, on interval [tn, tn+1], we have

tn → tn +Δtn → . . .→ tn + knΔtn = tn+1.

This process continues up to Tf . Now, k0, k1, . . . , kn, . . . are determined by
the following process. At the first step, we start integrate the problem from
t0 to t1 = t0 + Δt without any LTSR, we call this process prediction step,
then we determine the level set function, the new mesh nodes of adaptive
mesh and solution of PDE at t1. According to the property of the mentioned
adaptive mesh method in previous section, ”for larger slope of the level set
function, more mesh nodes are concentrated”. Thus according to slope of

the level set function, we define the interval [t0, t1]. So the slope of ψ
(1)
j

on [xj , xj+1], j = 0, 1, . . . , N is calculated, then for having more efficient
solution, [t0, t1] is subdivided to k0 parts. Judicious choice for k0 can be

k0 = min{max
j

[slope(ψ
(1)
j ), 10]}, j = 0, 1, . . . , N,
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and the time integration is done on this sub-interval again but with Δt0 =
t1−t0
k0

. After obtaining the solution at t1 we act on [t1, t2] similarly and de-
termine the solution at t2.
Generally, after calculating the solution at tn, at first we have a prediction
process concluding time integration from tn to tn+1 with pre-determined

value of Δt as time step for knowing the slope of ψ
(n+1)
j on [xj , xj+1], j =

0, 1, . . . , N and subsequently kn = min{max
j

[slope(ψ
(n+1)
j )], 10}. Then the

time integration is performed on this sub-interval kn times with local time
step Δtn.

3.1 Algorithm of Adaptive Level Set Method with LTSR

Step1: Enter the initial time, t0, the final time, Tf , the length of time step,
Δt, and the number of mesh points, N .
Step2: Set i = 0.
Step3: If t0 = 0, set

X(t0) = {x0j =
j

N
, j = 0, 1, . . . , N},

ψ(t0) = X(t0),

Ũ (t0) = U (t0) = u(t0) = u(X(t0), t0).

Step4: Run ALSM one time with t0 = ti, Tf = ti+1 and Δt, then calculate

ψ(ti+1), X(ti+1) and Ũ (ti+1).
Step5: Calculate the slope of ψ(i+1) = ψ(ti+1) on [xj , xj+1], j = 0, 1, . . . , N

and subsequently ki = min{max
j

[slope(ψ
(i+1)
j )], 10}.

Step6: Set Δti =
ti+1−ti
ki

.
Step7: Run ALSM ki times with t0 = ti, Tf = ti+1, and Δt = Δti, then

again calculate ψ(ti+1), X(ti+1) and Ũ (ti+1).
Step8: Set i = i+ 1.
Step9: If ti ≤ Tf go to step4, else break.

4 Numerical Experiment

In this section, we implement the present work for two numerical examples
where u(x, t) is a given function. We use the arclength monitor function. In
order to obtain an accurate and non-oscillatory solution, it is necessary to
smooth the mesh points. Following [5], we have applied smoothed monitor
function as below:
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ρ̃i =

∑i+ip
k=i−ip ρk(

γ
γ+1 )

|k−i|
∑i+ip
k=i−ip(

γ
γ+1 )

|k−i| ,

where ip is a nonnegative integer and γ is a positive constant. In this paper
we select the mentioned formula for smoothing monitor function with ip = 1
and γ = 1. We apply MMPDE5 and MMPDE6 in the evolution equation of
the level set function for obtaining nodes velocity.

Fig. 1: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with adaptive
level set method(MMPDE5) of 21 mesh point,(μ = 0.5, λ = 0.4, ε = 0.01, β = 0).

Example 4.1. Consider the Burger’s equation as first example,

ut + uux − εuxx = 0,

where its exact solution is:

u(x, t) =
μ+ λ+ (μ− λ)eλ

ε (x−μt−β)

1 + e
λ
ε (x−μt−β)

.

We select μ = 0.5, λ = 0.4, ε = 0.01 and β = 0. This problem is characterized
by moving discontinuities(specially when ε is very small), that means the dis-
continuities move in time, and so the solution at a particular point in space



22 M. Arab Ameri

Fig. 2: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with adaptive

level set method(MMPDE6) of 21 mesh point,(μ = 0.5, λ = 0.4, ε = 0.01, β = 0).

Table 1: The error of ALSM(with MMPDE5) for the first example at t = 1.0, obtained by
the arclength monitor function with α = 0(uniform mesh) and α = 2(moving mesh)without

LTSR and with LTSR, (μ = 0.5, λ = 0.4, ε = 0.01 and β = 0).

MMPDE Time stepping Type of mesh N L∞-error CPU time

21 0.1924 0.504
5 without LTSR fixed mesh 31 0.0782 0.612

(α = 0) 41 0.0564 0.8807

21 0.0711 0.7548
5 without LTSR Moving mesh 31 0.0602 0.8315

(α = 2) 41 0.0587 0.9812

21 0.0510 0.917
5 with LTSR Moving mesh 31 0.0347 1.019

(α = 2) 41 0.0298 1.079

can change very rapidly. The solution of such a problem on a fixed uniform
spatial mesh, needs very small time step in order to have sufficient accuracy,
but using the adaptive mesh for finding the solution of this problem improves
both the accuracy and the efficiency.
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Fig. 3: The solution at t = 0 with uniform mesh and at t = 1 with adaptive level set
method(MMPDE5) of 21 mesh point for the first example, (μ = 0.5, λ = 0.4, ε = 0.01, β =
0).

Table 2: The error of ALSM(with MMPDE6) for the first example at t = 1.0, ob-

tained by the arclength monitor function with α = 0 (uniform mesh) and α = 2(moving
mesh)without LTSR and with LTSR, (μ = 0.5, λ = 0.4, ε = 0.01 and β = 0).

MMPDE Time stepping Type of mesh N L∞-error CPU time

21 0.0645 0.8815

6 without LTSR fixed mesh 31 0.0578 0.9205
(α = 0) 41 0.0512 0.9876

21 0.0441 0.031

6 without LTSR Moving mesh 31 0.0315 1.108
(α = 2) 41 0.0274 1.230

For this reason, we have used new adaptive mesh for this problem and
in order to demonstrate the efficiency of the adaptive level set method
(ALSM)(which has combined with MMPDE5), and also to compare ALSM
with or without LTSR, some results are presented in Table1. These results
show L∞-error and CPU times for different number of mesh points. These re-
sults certify higher accuracy of the mentioned method(ALSM) in comparison
with using uniform mesh. Besides, it shows that using the adaptive method
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Fig. 4: The solution at t = 0 with uniform mesh and at t = 1 with adaptive level set
method(MMPDE6) of 21 mesh point for the first example, (μ = 0.5, λ = 0.4, ε = 0.01, β =
0).

with LTSR gives better results. Similar information, are given in Table 2
when the MMPDE6 is applied for calculating nodes velocity. Figure 1(a)
shows mesh trajectories for 0 ≤ x ≤ 2, 0 ≤ t ≤ 1.0 which has been derived by
using the new method with MMPDE5, also the solution of PDE, u, has been
plotted on the moving mesh for 0 ≤ t ≤ 1.0 in Figure 1(b). The spatial do-
main is divide into 21 mesh points. Like above, mesh trajectories and solution
of Example 4.1 have been plotted by using the new method with MMPDE6
in Figure 2. Also in Figure 3 we plotted the solution of PDE at t = 0 on
a uniform initial mesh and at t = 1 on a moving mesh with MMPDE5 and
similarly, the solution at t = 0 and t = 1 has been plotted with MMPDE6 in
Figure 4.
For demonstrating the efficiency of our method we compare this method with
another moving mesh method. For this purpose, we consider moving element
free Petrov-Galerkin viscous method, MEFP-GVP, where introduced in [2],
for comparing under equal conditions we consider the parameters μ, λ, ε and
β in the Burger’s equation according to [2], (μ = 0.5, λ = 0.4, ε = 1/15 and
β = 0.16). Also, we solve this equation for x ∈ [0, 1] and t ∈ [0, 0.51] again.
With above conditions and with N = 7 grid points the L∞-error is 0.03 by
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Fig. 5: The mesh trajectory and solution of the first example for 0 ≤ t ≤ 1.0 with
adaptive level set method(MMPDE5) of 21 mesh point,(μ = 0.5, λ = 0.4, ε = 1/15, β = 0).

MEFP-GVM but in ALSM we have L∞- error= 0.01. This result shows the
preference of our method. In addition, the CPU time in our method is very
smaller than the MEFP-GVM. Also we plotted grid motion and the solution
for new conditions for 21 grid points in Figure 5.

Table 3: The error of ALSM(with MMPDE5) for the second example at t = 1.0, obtained
by the arclength monitor function (α = 2) without LTSR and with LTSR.

MMPDE Time stepping N L∞-error CPU time

21 0.0060 0.7213
5 without LTSR 31 0.0052 0.8507

41 0.0050 0.9759

21 0.0051 0.906
5 without LTSR 31 0.0032 1.015

41 0.0029 1.076

Example 4.2. Consider the equation
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Fig. 6: The mesh trajectory and solution of the second problem for 0 ≤ x ≤ 1 and

0 ≤ t ≤ 1.0 with adaptive level set method(MMPDE5) of 21 mesh point.

Table 4: The error of ALSM(with MMPDE6) for the second example at t = 1.0, obtained
by the arclength monitor function (α = 2) without LTSR and with LTSR.

MMPDE Time stepping N L∞-error CPU time

21 0.0023 0.8706
6 without LTSR 31 0.0015 0.9844

41 0.0009 1.029

21 0.0048 1.025
6 without LTSR 31 0.0030 1.098

41 0.0024 1.221

ut = uxx,

with the exact solution:

u(x, t) = e−π
2t sinπx

This problem has been used in [3] as a numerical example and also in [15] to
study the moving mesh with variable relaxation time.
Since ux(x, t)→ 0 in the limit as t→ +∞, then for typical arclength monitor
function
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Fig. 7: The mesh trajectory and solution of the second problem for 0 ≤ x ≤ 1 and
0 ≤ t ≤ 1.0 with adaptive level set method(MMPDE6) of 21 mesh point.

M =
√

1 + αu2x

we have M(x, t) → 1 as t → +∞ and so the equidistributed mesh should
tend to a uniform mesh in space.
Similar to Tables 1 and 2, some results about the second example are given in
Tables 3 and 4 which certify the quality of the new mesh adaptive algorithm.
Figure 6(a) shows the mesh trajectories for the above problem using adaptive
level set method with MMPDE5 and in Figure 6(b), the numerical solution
of PDE is plotted for 0 ≤ t ≤ 1.0 by the new method with MMPDE6 have
been plotted. We also plotted the solution at t = 0 on uniform initial mesh
and at the times t = 0.3, 0.5 and t = 1 on moving mesh in Figure 8. As we
expect, the adaptive mesh at t = 1 tends towards uniform mesh.
In the second example, because of the smoothness of the solution there is not
any major difference between the uniform and the adaptive mesh and also
between the adaptive mesh with MMPDE5 and MMPDE6. In this example,
ALSM with LTSR does not yield any different result from ALSM without
LTSR.

Example 4.3. We use the following Burger’s equation as the third example,

ut + uux − εuxx = 0, 0 < x < xR.
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Fig. 8: The solution of the second PDE at t = 0, 0.3, 0.5 and t = 1 with its corresponding
mesh nodes.

Fig. 9: The mesh trajectory and the computed solution of the third example up to t = 1
for 0 < x < 2 with adaptive level set method(MMPDE5) of 21 mesh points.



A level set moving mesh method in static form for one dimensional PDEs 29

The initial condition is considered as follows [7]:

u(x, 0) = | sin(2πx
xR

)|.

The boundary conditions are chosen in the form

u(0, t) = u(xR, t) = 0.

We select ε = 10−5 and xR = 2 in this example. This example has been
solved by the presented method up to t = 1.
The mesh trajectory has been plotted along with the nodes of moving grid
with N = 21 mesh points in different times in Figure 9. Also the computed
solution of the third example has been plotted in Figure 9. It is clear that the
mesh moves correctly, because the solution has large variations about x = 0.5
and x = 2 and the mesh also concentrates around these areas.

5 Conclusion

In this paper, we have developed a static moving mesh method based on the
level set approach for solving one dimensional time dependent PDEs, such
that for representing the nodes of adaptive mesh, the level set equation is
used. Also, we proposed a strategy for local time step refinement where the
local time step is selected by the level set function. This adaptive method is
among the static moving mesh. We plan to investigate the dynamical moving
mesh method based on the level set function.
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