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Abstract

R. Ewing, O. Liev, R. Lazarov and A. Naumovich in [1] proposed a finite volume

discretization for one dimensional Biot poroelasticity system in multilayer domains.
Their discretization and exact solution are invalid. We derive valid discretization
and exact solution. Finally, our numerical solution is compared with known exact
solution in discrete L2 norm.

Keywords: Biot poroelasticity system; Interface problem; Finite volume
discretization.

1 Introduction

The presence of a moving fluid in a porous medium affects its mechani-
cal response. At the same time, the change in the mechanical state of the
porous skeleton influences the behavior of the fluid inside the pores. These
two coupled deformation-diffusion phenomena lie at the heart of the theory
of poroelasticity. More precisely, the two key phenomena can be summarized
as follows:

1. fluid-to-solid coupling: occurs when a change in the fluid pressure or the
fluid mass induces a deformation of the porous skeleton.

2. solid-to-fluid coupling: occurs when modifications in the stress of the
porous skeleton induce change in the fluid pressure or the fluid mass.

In accordance with these two phenomena, the fluid-filled porous medium acts
in a time-dependent manner. Indeed, suppose that the porous medium is com-
pressed. This will result in an increment of the fluid pressure inside the pores
and consequent fluid flow. The time dependence of the fluid pressure will in-
duce a time dependence of the poroelastic stresses, which in turn will respond
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back to the fluid pressure field. The earliest theories, which is related to Terza-
ghi, accounted for the fluid-to-solid coupling only. In this case, the problem is
mathematically much easier. This kind of theory can model successfully some
of the poroelastic processes in the case of highly compressible fluids such as
air. However, when one deals with slightly compressible or incompressible
fluids, the solid-to-fluid coupling cannot be neglected since the changes in
stress field can influence significantly the pore pressure. Maurice Biot was
the first who, by means of phenomenological approach, developed a detailed
mathematical theory of poroelasticity which successfully incorporated both
basic phenomena mentioned above. In this paper, assumption of only ver-
tical subsidence is invoked and this leads to the one dimensional model of
poroelasticity. We consider a finite volume discretization for one dimensional
Biot poroelasticity system in multilayer domains. For stability reasons, stag-
gered grids are used. The discretization takes into account discontinuity of
the coefficients across the interfaces between layers with different physical
properties.

2 Biot model in one dimension

In one dimension, the domain of consideration Ω is an interval (0, L) where
the boundary Γ is {0, L}. The Biot model, which describes poroelastic process
in Ω can be written as a system of partial differential equations for the
unknown fluid pressure p(x, t) and displacement of the porous medium u(x, t)
consisting of the equilibrium equation and the diffusion equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∂

∂x
((λ+ 2μ)

∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, L), t ∈ (0, T ],

∂

∂t
(φβp+

∂u

∂x
)− ∂

∂x
(
κ

η

∂p

∂x
) = q(x, t), x ∈ (0, L), t ∈ (0, T ],

where λ (dilation moduli) and μ (shear moduli) are Lame coefficients of the
porous medium. Here φ, β, κ, η and q(x, t) are porosity of porous medium,
compressibility of the fluid, permeability of the porous medium, viscosity
of the fluid and source term, respectively. We define stress tensor and fluid
velocity, respectively by the following relationships

S = (λ+ 2μ)
∂u

∂x
, V = −κ

η

∂p

∂x
.

In classical formulation, the one-dimensional Biot model describes, fluid flow
and skeleton deformation caused by the constant vertical load applied on the
top of column of soil, which is bounded with rigid and impermeable bottom
and lateral walls, and a top wall which is free to drain. The following boundary
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and initial conditions supplement this model

p = 0, (λ+ 2μ)
∂u

∂x
= −s0, at x = 0.

This means that the upper boundary is free to drain and a load with the
value s0 is applied to it. Also

u = 0,
∂p

∂x
= 0, at x = L,

corresponds to a rigid and impermeable lower boundary. The initial condition

φβp+
∂u

∂x
= 0, at t = 0,

means that the variation in water content is zero at the beginning of the pro-
cess. Now, consider the case when the porous medium is not homogeneous but
has a layered structure, each layer being characterized by different porosity,
permeability and Lame coefficients. For the simplicity of presentation, let us
restrict ourselves to the case of only two layers. In the case of the considered
two-layered medium, coefficients of the governing equations are discontinuous
across the interface ξ

λ(x) =

{
λ1 x ≤ ξ,
λ2 x > ξ,

μ(x) =

{
μ1 x ≤ ξ,
μ2 x > ξ,

κ(x) =

{
κ1 x ≤ ξ,
κ2 x > ξ,

φ =

{
φ1 x ≤ ξ,
φ2 x > ξ.

Assuming a perfect contact, the interface conditions look as follows

[u] = 0, [p] = 0, (1)

which express continuity of the displacement and of the fluid pressure across
the interface. Also

[S] = 0, [V ] = 0, (2)

which means continuity of the stress of the porous skeleton and continuity of
the fluid flux, respectively. In the formulae (1) and (2), we have

[q] = q |x=ξ+0 −q |x=ξ−0,

where q is a symbol for quantities u, p, S and V . As it is shown in [3], the set
of interface conditions (1) and (2) can also be derived directly from the Biot
equations if they are written for a general inhomogeneous medium. Now, the
following dimensionless dependent and independent functions are introduced
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x :=
x

L
, ξ :=

ξ

L
, t :=

(λ0 + 2μ0)κ0t

η0L2
, p :=

p

s0
, u :=

(λ0 + 2μ0)u

s0L
,

ν :=
λ+ 2μ

λ0 + 2μ0
, κ :=

κ

η
κ0
η0

, a := φβ(λ0 + 2μ0), f(x, t) :=
L2η0
s0κ0

q(x, t).

Then, the governing equations together with the boundary, initial and inter-
face conditions can be transformed to dimensionless form

− ∂

∂x
(ν
∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
)− ∂

∂x
(κ
∂p

∂x
) = f(x, t), x ∈ (0, 1), t ∈ (0, T ],

ν
∂u

∂x
= −1, p = 0, at x = 0, t ∈ [0, T ], (3)

u = 0, κ
∂p

∂x
= 0, at x = 1, t ∈ [0, T ],

ap+
∂u

∂x
= 0, at t = 0, x ∈ (0, 1),

[u] = 0, [ν
∂u

∂x
] = 0, [p] = 0, [κ

∂p

∂x
] = 0, at x = ξ, t ∈ [0, T ].

Further, the possible discontinuities of the dimensionless coefficients at x = ξ
are distinguished

ν(x) =

{
ν1 x ≤ ξ,
ν2 x > ξ,

κ(x) =

{
κ1 x ≤ ξ,
κ2 x > ξ,

a(x) =

{
a1 x ≤ ξ,
a2 x > ξ.

For the convenience of the theoretical analysis, the problem (3) is transformed
into a problem with homogeneous boundary conditions, by the following sub-
stitution

u(x, t) := u(x, t)− 1

ν
x+

1

ν
.

According to this substitution, problem (3) is reformulated as follows:
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− ∂

∂x
(ν
∂u

∂x
) +

∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
)− ∂

∂x
(κ
∂p

∂x
) = f(x, t), x ∈ (0, 1), t ∈ (0, T ],

ν
∂u

∂x
= 0, p = 0, at x = 0, t ∈ [0, T ], (4)

u = 0, κ
∂p

∂x
= 0, at x = 1, t ∈ [0, T ],

ap+
∂u

∂x
=

1

ν
, at t = 0, x ∈ (0, 1),

[u] = 0, [ν
∂u

∂x
] = 0, [p] = 0, [κ

∂p

∂x
] = 0, at x = ξ, t ∈ [0, T ].

Due to the complexity of the Biot system, analytical solutions in closed form
are available only in very special cases. Certainly, the situation gets compli-
cated in the case of inhomogeneous porous media. The choice of the numerical
method for the discretization of the poroelasticity system is not obvious. The
finite element method currently dominates in solving poroelasticity system,
especially when dealing with complex domains (see [4] for further details).
Although finite element methods can be applied to the interface problems,
however, they usually work on grids which resolve the interfaces. Hence this
fact leads to that imposes certain restriction on the method. Moreover, even
when the grids resolve the interfaces, standard finite element methods do not
provide good approximation for the flux variables. On the other hand, there
is variety of successful finite difference and finite volume approaches, where
the interfaces are allowed to cross the grid cells (see [5]).

2.1 Grids and notations

For the interval (0, 1) and N > 1, we define stepsize h in the following form

h :=
2

2N − 1
.

To overcome stability difficulties, which often arise when the discretization of
the Biot model is done on the collocate grids, the use of staggered grids was
proposed in [2], [7]. Two different spatial grids, ω̄p to discretize the pressure
equation and ω̄u to discretize the displacement equation, are employed

ω̄p = {xi : xi = ih, i = 0, 1, ..., N − 1},
ω̄u = {xi−0.5 : xi−0.5 = xi − 0.5h, i = 1, 2, ..., N}.

Further, the grids ωp and ωu are also used
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ωp = {xi ∈ ω̄p, i = 1, 2, ..., N − 1},
ωu = {xi−0.5 ∈ ω̄u, i = 1, 2, ..., N − 1}.

A grid in time with a stepsize τ is also defined

ωT = {tn : tn = nτ, n = 1, 2, ...,M}.

These grids as designed to represent the values of the pressure p at the grid
points xi ∈ ω̄p and the values of the displacement u at the midpoints xi−0.5 ∈
ω̄u of the subintervals (xi−1, xi). According to these grids, position of the
interface ξ could be represented in the form

ξ = xiint−0.5 + θh,

where 0 < iint < N is an integer and 0 ≤ θ < 1. Now, the following notations
for discrete functions, defined on ω̄u × ωT and ω̄p × ωT , respectively, are
introduced

u : = un := uni := u(xi−0.5, tn),

p : = pn := pni := p(xi, tn),

pσ : = σpn+1 + (1− σ)pn,

p∧ : = pn+1.

Moreover we use some notations for the first order forward and backward
finite differences on a uniform mesh in the following form

px := px,i =
p(xi+1, t)− p(xi, t)

h
,

px̄ := px̄,i =
p(xi, t)− p(xi−1, t)

h
.

In a similar way we define

ux := ux,i =
u(xi+0.5, t)− u(xi−0.5, t)

h
,

ux̄ := ux̄,i =
u(xi−0.5, t)− u(xi−1.5, t)

h
.

Finally, the finite differences in time are defined

ut := unt := ut(xi−0.5, tn) =
un+1
i − uni

τ
, xi−0.5 ∈ ωu,

pt := pnt := pt(xi, tn) =
pn+1
i − pni

τ
, xi ∈ ωp.
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2.2 Finite volume discretization

In order to approximate the differential problem (4) by finite volume method.
Firstly the Biot equations are rewritten in the following way

−∂S
∂x

+
∂p

∂x
= 0, x ∈ (0, 1), t ∈ (0, T ],

∂

∂t
(ap+

∂u

∂x
) +

∂V

∂x
= f(x, t), x ∈ (0, 1), t ∈ (0, T ].

(5)

Now, the first equation in (5) is integrated over the interval (xi−1, xi)

−
∫ xi

xi−1

∂S

∂x
dx+

∫ xi

xi−1

∂p

∂x
dx = 0, (6)

and the second equation over the interval (xi−0.5, xi+0.5)

∫ xi+0.5

xi−0.5

∂

∂t
(ap+

∂u

∂x
)dx+

∫ xi+0.5

xi−0.5

∂V

∂x
dx =

∫ xi+0.5

xi−0.5

f(x, t)dx. (7)

Hence, in accordance with the interface conditions (1) and (2), some integrals
from (6) and (7) can be rewritten as

∫ xi

xi−1

∂S

∂x
dx = S(xi)− S(xi−1),

∫ xi+0.5

xi−0.5

∂V

∂x
dx = V (xi+0.5)− V (xi−0.5),

∫ xi

xi−1

∂p

∂x
dx = p(xi)− p(xi−1),

∫ xi+0.5

xi−0.5

∂u

∂x
dx = u(xi+0.5)− u(xi−0.5).

(8)
Using the rectangular quadratic formula, we can write

∫ xi+0.5

xi−0.5

∂

∂t
(ap)dx ≈ ∂p

∂t
(xi)

∫ xi+0.5

xi−0.5

a(x)dx ≈ ai
pn+1
i − pni

τ
,

where

ai =

∫ xi+0.5

xi−0.5

a(x)dx. (9)

In order to approximate the fluxes S(x) and V (x) in (8) in the grid points,
with integrating the equation

S(x)

ν
=
∂u

∂x
,

over the interval (xi−0.5, xi+0.5) and the equation
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V (x)

κ
= −∂p

∂x
,

over the interval (xi−1, xi) we will have the following integral equations

∫ xi+0.5

xi−0.5

S(x)

ν
dx =

∫ xi+0.5

xi−0.5

∂u

∂x
dx,

∫ xi

xi−1

V (x)

κ
dx = −

∫ xi

xi−1

∂p

∂x
dx.

Then, by applying approximate formulae for integrals, we can transform these
equations into the following form

S(xi)

∫ xi+0.5

xi−0.5

dx

ν(x)
dx ≈ ui+0.5−ui−0.5, V (xi−0.5)

∫ xi

xi−1

dx

κ(x)
dx ≈ −(pi−pi−1).

From these two formulae, approximate expressions for fluxes can be found

S(xi) ≈ Si = νi
ui+0.5 − ui−0.5

h
, V (xi−0.5) ≈ Vi = −κi pi − pi−1

h
,

where

νi = (
1

h

∫ xi+0.5

xi−0.5

dx

ν(x)
)−1, κi = (

1

h

∫ xi

xi−1

dx

κ(x)
)−1. (10)

After the substitution of approximate expressions for all the integrals into
equations (6) and (7), weighted discretization in time with the weight pa-
rameter σ is applied. This procedure produces a finite difference scheme,
which is a discrete analogue of the problem (4). The obtained finite differ-
ence scheme is theoretically investigated and detailed convergence analysis
is presented in [6]. Using non-index notations, this scheme for the discrete
approximate solution u = uni at point (xi−0.5, tn) ∈ ωu × ωT and p = pni at
grid point (xi, tn) ∈ ωp × ωT can be written as in the following form

− ν
hu
∧
x + p∧x̄ = 0, x = x0.5 (i = 1), t ∈ ωT , ν(x) =

{
ν1 x ≤ ξ,
ν2 x > ξ.

− ν1(u
∧
x̄ )x + p∧x̄ = 0, xi ≤ ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

− ν2

h u
∧
x + ν1

h u
∧
x̄ + p∧x̄ = 0, xi−1 ≤ ξ, xi > ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

− ν2(u
∧
x̄ )x + p∧x̄ = 0, xi−1 > ξ, (i = 2, 3, ..., N − 1), t ∈ ωT ,

(ap+ ux)t − κ1(p
σ
x̄)x = fσ, xi−0.5 ≤ ξ, (i = 1, 2, ..., N − 2), t ∈ ωT , (11)

(ap + ux)t − κ2

h p
σ
x + κ1

h p
σ
x̄ = fσ, xi−0.5 ≤ ξ, xi+0.5 > ξ, (i = 1, 2, ..., N −

2), t ∈ ωT ,

(ap+ ux)t − κ2(p
σ
x̄)x = fσ, xi−0.5 > ξ, (i = 1, 2, ..., N − 2), t ∈ ωT ,

(ap + ux)t +
κ
hp

σ
x̄ = fσ, x = xN−1, (i = N − 1), t ∈ ωT , κ(x) =
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{
κ1 xN−1.5 ≤ ξ,
κ2 xN−1.5 > ξ.

p0 = 0, uN = 0, t ∈ ωT ,

ap+ ux = 1
ν , x = xi ∈ ω̄p, (i = 1, 2, ..., N − 1), t = 0,

where coefficients a, κ and ν are calculated according to the formula (9),
(10) and the right hand side f is defined as

fi(t) =
1

h

∫ xi+0.5

xi−0.5

f(x, t)dx.

3 Numerical results

In this section, results of the numerical experiment are presented. Conver-
gence of all unknowns of the system, i.e., u and p produced by the scheme
(11) with respect to the exact solution of the continuous problem are shown.
The numerical solution is compared to the known exact solution in discrete
L2 norm, which is calculated according to the following form

‖εw‖L2 = h
∑

xi ∈ ωw

|wext(xi, tn+1)− wapp(xi, tn+1)|2,

where wext and wapp stand for the exact and numerical solutions, respectively
and w = {u, p}. In the following experiment, weight parameter is σ = 0.5.

Example 3.1 Suppose the following values of the parameters are used:

ν1 = 1, ν2 =
tan( 1

12 ) tan(
10π
3 )

8π
,

κ1 = 1, κ2 =
1

8π tan( 1
12 ) tan(

10π
3 )

,

a1 = 0, a2 = 0, f(x, t) = 0.

The position of the interface is at ξ = 1
6 . There is no exact solution of problem

(4). Now, consider the following initial condition

(a− 1)p+ ν
∂u

∂x
= 0 at t = 0.

If we substitute the above condition in problem (4), the exact solution is as
the following forms
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p(x, t) =

⎧⎨
⎩

cos( 10π3 ) sin(x2 ) exp(−0.25t) x ≤ ξ,

sin( 1
12 ) cos(4π(1− x)) exp(−0.25t) x > ξ,

u(x, t) =

⎧⎪⎨
⎪⎩
−2 cos( 10π3 ) cos(x2 ) exp(−0.25t) x ≤ ξ,

−2 cos( 1
12 )

tan( 10π
3 )

sin(4π(1− x)) exp(−0.25t) x > ξ.

Note that the mesh size h is decreased in a way, preserving a constant value
for the parameter θ in the expression ξ = xi−0.5 + θh. The convergence
results are given for times t = 0.1 and t = 1. All numerical results are shown
in Tables 1 and 2. In Figures 3.1(a-e) and 3.2(f-j), we have the convergence

Table 1: Convergence in discrete L2 norm at the time t = 0.1.

h = τ ‖εu‖ ‖εp‖
1
10

0.010978550724151 2.584356430578406× 10−5

1
40

4.299657739862227× 10−7 1.565023743780048× 10−6

1
160

5.255105309209073× 10−9 4.642021997862129× 10−7

1
640

5.263842780036844× 10−10 2.411707866280830× 10−7

1
2560

3.408942895693747× 10−11 6.152003882582387× 10−8

Table 2: Convergence in discrete L2 norm at the time t = 1.

h = τ ‖εu‖ ‖εp‖
1
10

6.010657532287119× 10−5 2.069371443954429× 10−5

1
40

2.741582817269723× 10−7 9.979031969906696× 10−7

1
160

3.350803084864384× 10−9 2.959883906284094× 10−7

1
640

3.356374342242523× 10−10 1.537772829030507× 10−7

1
2560

2.173637957624389× 10−11 3.922690864486794× 10−8

of displacement for given stepsizes h=0.1, 1/40, 1/160, 1/640 and 1/2560 at
t=0.1 and t=1, respectively. Also, Figures 3.3(k-o) and 3.4(p-t) are prepared
for representation of convergence of pressure for given stepsizes h=0.1, 1/40,
1/160, 1/640 and 1/2560 at t=0.1 and t=1, respectively. In all of these figures,
exact and approximate solutions are represented by continuous lines and
broken lines, respectively.
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Figure 3.1(a)

h=0.1,  t=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.1(b)

h=1/40,  t=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.1(c)

h=1/160,  t=0.1
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Figure 3.1(d)

h=1/640,  t=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 3.1(e)

h=1/2560,  h=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.2(f)

h=0.1,  t=1
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Figure 3.2(g)

h=1/40,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.2(h)

h=1/160,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.2(i)

h=1/640,  t=1
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Figure 3.2(j)

h=1/2560,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.3(k)

h=0.1,  t=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.3(l)

h=1/40,  t=0.1
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Figure 3.3(m)

h=1/160,  t=0.1
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x

Figure 3.3(n)

h=1/640,  t=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.3(o)

h=1/2560,  t=0.1
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Figure 3.4(p)

h=0.1,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.4(q)

h=1/40,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.4(r)

h=1/160,  t=1
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x

Figure 3.4(s)

h=1/640,  t=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3.4(t)

h=1/2560,  t=1

4 Conclusion

In this paper, we derived a finite volume discretization for the Biot system
with continuous coefficients. In example 3.1, numerical solution was compared
to the known exact solution in descrete L2 norm. In Tables 1 and 2 and de-
rived figures, when the stepsize h becames smaller, we derived better results.
In fact, our numerical experiments confirmed the theoretical considerations.
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