
Iranian Journal of Numerical Analysis and Optimization

Vol 4, No. 1, (2014), pp 41-56

A numerical technique based on
operational matrices for solving

nonlinear integro-differential equations

A. Golbabai

Abstract

This paper presents a computational method for solving two types of
integro-differential equations, system of nonlinear high order Volterra-Fredholm
integro-differential equation(VFIDEs) and nonlinear fractional order integro-
differential equations. Our tools for this aims is operational matrices of inte-

gration and fractional integration. By this method the given problems reduce
to solve a system of algebraic equations. Illustrative examples are included
to demonstrate the efficiency and high accuracy of the method.

Keywords: Operational matrix of integration; Volterra-Fredholm; Non-
linear system of integro-differential equations; Fractional order; Legendre
wavelet.

1 Introduction

Integro-differential equations frequently appear in all fields of sciences such
as physics, chemistry and engineering problems [11, 20, 23, 24]. In last few
decades fractional calculus and fractional differential equations have found
application in several different disciplines, many important phenomena in
electromagnetic, acoustics, viscolasticity, electrochemistry and material sci-
ence are well described by differentiable and integro differentiable equation
of fractional order[3, 22]. There are various numerical and analytical meth-
ods to solve such problems, for example, the homotopy perturbation method
[4, 7, 8, 9], the Adomian decomposition method [5], fractional differential
transform method [21] and Gronwald–Letnikov discretization method [6].

In recent years the approximation of orthogonal functions has been play-
ing role in the solution of different kinds of mathematical and engineering
problems such as identification, analysis and optimal control[15, 16, 18]. The
main feature of this technique is to reduce the integro-differential equations
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to a nonlinear algebraic equation by introducing integration matrix of basis
functions. In present article, we are concerned with the application of Leg-
endre wavelet to the numerical solution of:
(I). Nonlinear fractional order integro-differential equations

Dα
∗tu(t) = f(t) +

∫ x

0

K(t, u(t), Dα
∗tu(t))dt, 0 ≤ α < 1. (1)

(II). Nonlinear system of high order (VFIDe) of the form

n∑
j=0

pij(x)ul
(j)

(x) = fi(x) + λi1
∫ x
0
Ki1(x, t, u(t), u

′(t), . . . , u(n)(t))dt

+λi2
∫ 1

0
Ki2(x, t, u(t), u

′(t), . . . , u(n)(t))dt, i = 1, . . . , s,
(2)

where u(j)(x) =
(
u
(j)
1 , . . . , u

(j)
s

)
for j = 0, . . . , n and initial conditions are

u
(j)
i (0) = aj , j = 0, 1 . . . , n− 1, (3)

where f(x),K, Ki1 and Ki2 are known functions assumed to be in L2(R)
on the interval 0 ≤ x, t ≤ 1, u(t) is unknown, Ki1 and Ki2 are nonlinear in
x, t, u(t), . . . , u(n)(t). This type of equations whose integrand contain high
order derivatives arise in many fields such as theory of elasticity .

The article is organized as follows: in Section 2 we define the Legendre
wavelets and operational matrix of integration. Section 3 is devoted to the
solution of Eq. (1). In Section 4, we obtain an error bound for our method.
Section 5, include our numerical findings and demonstrate the accuracy of
the proposed scheme.

2 Preliminaries and notation

This section gives some necessary definition and mathematical preliminaries
of the fractional calculus theory which are used further in this paper. The
Riemann-Lioville fractional integration of order α > 0 is defined as [14]

Iαt f(t) =
1

Γ(α)

∫ t
0

f(τ)
(t−τ)(1−α)dτ,

I0t f(t) = f(τ),
(4)

and its fractional derivative of order α > 0 is normally used:

Dα
t f(t) = (

d

dt
)nIn−αt f(t) (n− 1 < α ≤ n), (5)

where n is an integer. For Riemann-Lioville definition, one has
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Iαt t
υ =

Γ(υ + 1)

Γ(α+ υ + 1)
tυ+α. (6)

The modified fractional differential operator Dα
∗t proposed by Caputo is

Dα
∗tf(t) =


1

Γ(n−α)
∫ t
0
(t− τ)n−α−1

f (n)(τ) (n− 1 < α ≤ n),

dn

dtn f(t) α = n ∈ N,
(7)

where n is an integer. Caputos integral operator has an useful property:

Iαt D
α
∗tf(t) = f(t)−

n−1∑
k=0

f (k)(0+)
tk

k!
, (n− 1 < α ≤ n), (8)

where n is an integer.

3 Properties of Legendre wavelet

3.1 Wavelets and Legendre wavelet

Wavelet constitute a family of functions constructed by a single function
called the mother wavelet. When the dilation parameter a and translation
parameter b vary continuously, we have the following family of continuous
wavelet as [10]

ψ(a,b) = |a|
−1/2

ψ(
t− b
a

), a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−m0 , b =
kb0a

−m
0 , a0 > 1, b0 > 0 and m, k ∈ Z.We have the following family of discrete

wavelets
ψm.k(t) = |a0|m/2ψ(am0 t− kb0),

where ψm.k(t) forms a wavelet basis for L2(R). In particular, when a0 = 2,
b0 = 1, ψm.k(t) forms an orthonormal basis.

The Legendre wavelets are defined on interval [0,1) see [16, 17].

ψnm=


√
m+ 1

22
k/2Lm(2kt− n̂), for n̂−1

2k
≤ t < n̂+1

2k
,

0 otherwise,

where m = 0, 1, . . .M − 1 and n = 1, 2, 3, . . . , 2k−1. The coefficient
√
m+ 1

2

is for orthogonality. Here, Lm(t) are the well-known Legendre polynomials
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of order m which are defined on the interval [- 1,1] and can be determined
with the aid of the following recurrence formulae:

L0(t) = 1, L1(t) = t,

Lm+1(t) = (
2m+ 1

m+ 1
)tLm(t)− (

m

m+ 1
)Lm−1(t), m = 1, 2, 3, . . .

3.2 Function approximation

Theorem. A function f(t) defined on [0,1) can be expanded as infinite sum
of Legendre wavelets, and the series converges uniformly to the function f(x),
that is

f(t) =
∞∑
n=1

∞∑
m=0

cnmψnm(t), (9)

where, cnm = (f(t), ψnm(t)), in which (., .) denote the inner product.
Proof. see[13].

If the infinite series in Eq. (9) is truncated, then it can be written as

f(t) ≃
2k−1∑
n=1

M−1∑
m=1

cnmψnm(t) = CTΨ(t), (10)

where C and Ψ(t) are 2M × 1 matrices given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M ]
T
, (11)

Ψ(t) = [ψ10, ψ11, . . . , ψ1M−1, ψ20, . . . , ψ2M−1, . . . , ψ2k−10, . . . , ψ2k−1M ]T .
(12)

Now we want to find an upper bound to the estimate error . Suppose that
f(x) is a (m + 1)−times differentiable function on Ω = [0, 1). An error
function between f(x) and its Legendre-wavelet approximation fnm(x) is
defined on every subinterval Ωn = [ n̂−1

2k
≤ t < n̂+1

2k
] as

enm(x) = f(x)− fnm(x) = f(x)− cnmψnm(x). (13)

Then we can write

∥enm(x)∥ 2 =

∫ n̂+1

2k

n̂−1

2k

|f(x)− cnmψnm(x)|2. (14)

Since ψnm(x) is a polynomial of degree m,we can use the error bound for
interpolation of degree m on Ωn that is
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|f(x)− pn(x)| ≤
h(m+1)

4(m+ 1)
max

ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣∣f (m+1)(ξ)
∣∣∣ , (15)

where h = 1
2km

.By Eq. (14)and Eq. (15)

∥enm(x)∥ 2 ≤
∫ n̂+1

2k

n̂−1

2k

∣∣∣∣∣ h(m+1)

4(m+1) max
ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣f (m+1)(ξ)
∣∣∣∣∣∣∣
2

≤ 1
2k

∣∣∣∣∣ h(m+1)

4(m+1) max
ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣f (m+1)(ξ)
∣∣∣∣∣∣∣
2 . (16)

According to above equation we find an error bound for each subinterval as

∥enm(x)∥ ≤ 1

2k/2
h(m+1)

4(m+ 1)
max

ξ∈[ n̂−1

2k
, n̂+1

2k
]

∣∣∣f (m+1)(ξ)
∣∣∣. (17)

Then for error on Ω we get

∥e(x)∥ ≤ 1

2k/2
h(m+1)

4(m+ 1)
max
ξ∈[0,1]

∣∣∣f (m+1)(ξ)
∣∣∣. (18)

3.3 The Legendre wavelets operational matrix of
integration

The integration of the Vector defined in Eq.(12) can be obtained as∫ t

0

Ψ(t′)dt′ = PΨ(t), (19)

where P is the 2k−1M × 2k−1M operational matrix for integration [18]

P =
1

2k



L H H H · · · H
0 L H H · · · H
0 0 L H · · · H
...

...
...

. . .
. . . · · ·

0 0 0 · · · L H
0 0 0 0 · · · L


.

H and L are M ×M matrices given by :
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H =


2 0 · · · 0
0 0 · · · 0

· · · · · ·
. . .

...
0 0 · · · 0

 ,
and

L =



1 1
31/2

0 0 · · · 0 0 0

−31/2

3 0 31/2

3×51/2
0 · · · 0 0 0

0 − 51/2

5×31/2
0 51/2

5×71/2
0 0 0

0 0 − 71/2

7×51/2
0

. . . 0 0 0
...

...
...

...
. . .

. . .
. . .

...

0 0 0 0 · · · − (2M−3)1/2

(2M−3)(2M−5)1/2
0 (2M−3)1/2

(2M−3)(2M−1)1/2

0 0 0 0 · · · 0 − (2M−1)1/2

(2M−1)(2M−3)1/2
0


.

3.4 Operational matrix of fractional integration

We defined a m-set of Block Pulse function (BPF)as:

bi(t) =

{
1, i/m ≤ t < (i+ 1)/m
0, otherwise,

(20)

where i = 0, 1, 2, . . . (m− 1).

The function bi(t) are disjoint and orthogonal. That is

bi(t)bj(t) =

{
0, i ̸= j
bi(t), i = l.

(21)

The Legendre wavelet may be expanded into m-terms of block pulse function
(BPF) as

Ψm(t) = Φm×mBm(t), (22)

where
Bm(t)

∆
= [ b0(t) b1(t) . . . bi(t) . . . b(m−1)(t) ]

T . (23)

The Block Pulse operational matrix of the fractional integration give in [12]
Fα as following:

(Iαt Bm)(t) ≈ FαBm(t), (24)

where
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Fα =
1

mα

1

Γ(α+ 2)


1 ξ1 ξ2 · · · ξ(m−1)

0 1 ξ1 · · · ξ(m−2)

0 0 1 · · · ξ(m−3)

0 0 0
. . .

...
0 0 0 0 1

 .
with ξk = (k+1)α+1−2kα+1+(k−1)α+1. The Legendre wavelet operational
matrix of of fractional integration is defined in [19] as

Pαm×m = Φm×mF
αΦ−1

m×m, (25)

so the fractional integration of vector in Eq. (12) is defined as

(Iαt Ψ)(t) ≈ PαΨm(t). (26)

4 Application to nonlinear system of VFIDEs

Here, before presenting our method, we prove the next lemma. By this
lemma we can approximate the high order derivative of a function by Legen-
dre wavelet.

Lemma. Suppose that u(x) = CTΨ(x) where C and Ψ(x) are defined
in Eq. (11) and Eq. (12), then

u(k)(x) = (CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k)Ψ(x), (27)

where P is operational matrix of integration, u(i)(0) = u
(i)
0 and E is defined

as ETΨ(t) = 1.

Proof. suppose that f(x) = uk(x) and we approximate u(x) and f(x) by
Legender wavelet as {

u(x) = CTΨ(x),
f(x) = FTΨ(x),

(28)

by integrating f(t) on [0, t]∫ t
0

∫ t
0
. . .
∫ t
0
f(t′) dt′ . . . dt′︸ ︷︷ ︸

k−times

=
∫ t
0

∫ t
0
. . .
∫ t
0
FTPΨ(t′) dt′ . . . dt′︸ ︷︷ ︸

(k−1)times

=
∫ t
0

∫ t
0
. . .
∫ t
0
FTP 2Ψ(t′) dt′ . . . dt′︸ ︷︷ ︸

(k−2)times

...
= FTP kΨ(t),

(29)
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Since f(x) = uk(x), then∫ t
0

∫ t
0
· · ·
∫ t
0
f(t′) dt′ · · · dt′︸ ︷︷ ︸

k−times

=
∫ t
0

∫ t
0
· · ·
∫ t
0
(u(k−1)(t)−u(k−1)(0)) d(t′) · · · dt′︸ ︷︷ ︸

(k−1)−times

=
∫ t
0

∫ t
0
· · ·
∫ t
0
u(k−1)(t) dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times

u(k−1)(0)
∫ t
0

∫ t
0
· · ·
∫ t
0
dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times
...

= u(t)− u(0)(0)− u(1)(0)− · · · − u(k−1)(0)
∫ t
0

∫ t
0
· · ·
∫ t
0
dt′ · · · dt′︸ ︷︷ ︸

(k−1)−times

,

(30)

by u(i)(0) = u
(i)
0 we get

u
(i)
0

∫ t

0

∫ t

0

· · ·
∫ t

0

dt′ · · · dt′︸ ︷︷ ︸
k−times

= u
(i)
0 ETP iΨ(t), (31)

Eq. (29)-(31) result

FTP kΨ(t) = CΨ(t)− u(0)0 ETΨ(t)− u(1)0 ETPΨ(t)− · · · − u(k−1)
0 ETP k−1Ψ(t)

= CTΨ(t)−
k−1∑
i=0

u
(i)
0 ETP iΨ(t),

(32)
Since the basis functions are linear independent, we omit Ψ(t) from both
sides of Eq. (32), then this equation can be written as

FTP k = CT −
k−1∑
i=0

u
(i)
0 ETP i, (33)

and then

FT = CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k, (34)

according to Eq. (28)

u(k)(x) = (CTP−k −
k−1∑
i=0

u
(i)
0 ETP i−k)Ψ(x). (35)

This ends the proof of lemma. □

To solve Eq. (2) by Legendre wavelets, we assume that each uℓ(x) has the
expansion as

uℓ(x) = CTℓ Ψ(x), ℓ = 1, . . . , s, (36)

by Eq. (35) the derivative expansion is given by
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y
(k)
ℓ (x) = (CTℓ P

−k −
k−1∑
i=0

y
(i)
ℓ0 E

TP i−k)Ψ(x), ℓ = 1, . . . , s, (37)

substituting Eq. (36) and Eq. (37) in Eq. (2) results for ℓ = 1, . . . , s

pℓ0C
T
ℓ Ψ(x) +

n∑
i=1

pℓi(x)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(x) = fℓ(x)

+λℓ1
∫ 1

0
Kℓ1(x, t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x))dt

+λℓ2
∫ x
0
Kℓ2(x, t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x))dt.

(38)
by suitable collocation points, the zeros of Chebyshve polynomials [16]

xi = cos(
(2i− 1)π

2kM
), i = 1, . . . , 2k−1M, (39)

we collocate the Eq. (38). In order to use the Gaussian integration formula
for Eq. (38), we transfer the t-intervals [0, xi] and [0,1] into ζ1 and ζ2 intervals
[-1,1] by

ζ1 =
2

xi
t− 1, ζ2 = 2t− 1. (40)

Let
Hℓ1(xj , t) = Kℓ1(xj , t, C

T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

y
(i)
0 ETP i−n)Ψ(x)),

Hℓ2(xj , t) = Kℓ2(xj , t, C
T
1 Ψ(t), . . . , (CTP−n −

n−1∑
i=0

u
(i)
0 ETP i−n)Ψ(x)),

ℓ = 1, . . . , s.

(41)
We rewrite Eq. (38) as

pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(xj) = fℓ(xj)

+λl1
xj

2

∫ 1

−1
Hℓ1(xj ,

xj

2 (ζ1 + 1))dζ1

+λℓ2

2

∫ 1

−1
Hℓ2(xj ,

1
2 (ζ2 + 1))dζ2, ℓ = 1, . . . , s,

(42)
and with the Gaussian integration

pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

u
(m)
ℓ0 ETPm−i)Ψ(xj) ≈ fℓ(xj)

+λℓ1
xj

2

s1∑
h=1

ω1hHℓ1(xj ,
xj

2 (ζ1h + 1))

+λℓ2

2

s2∑
h=1

ω2hHℓ2(xj ,
1
2 (ζ2h + 1)), ℓ = 1, . . . , s,

(43)
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where ζ1h and ζ2h are s1 and s2 zeros of Legendre polynomials Ls1+1 and
Ls2+1 respectively, and ω1h, ω2l are the corresponding weights. If we assume
that

Aℓ(x) = pℓ0C
T
ℓ Ψ(xj) +

n∑
i=1

pℓi(xj)(C
T
ℓ P

−i −
i−1∑
m=0

)u
(m)
ℓ0 ETPm−i)Ψ(xj)

−λℓ1 xj

2

s1∑
h=1

ω1hHℓ1(xj ,
xj

2 (ζ1h + 1))− λℓ2

2

s2∑
h=1

ω2hHℓ2(xj ,
1
2 (ζ2h + 1)),

Bℓ(x) = fℓ(x), ℓ = 1, . . . , s,
(44)

Then our problem has the next matrix representation form

A1(x1)
...

A1(x2k−1M )
−−−−−

...
−−−−−
As(x1)

...
As(x2k−1M )


=



B1(x1)
...

B1(x2k−1M )
−−−−−

...
−−−−−
Bs(x1)

...
Bs(x2k−1M )


This 2k−1Ms×2k−1Ms nonlinear system of equations which can be solved

using Newton iterative method for the elements of C.

5 Application to nonlinear fractional order
integro-differential equations

In this section we want to apply the operational matrix of fractional in-
tegration to fractional order integro-differential equation. Assume that we
approximate Dα

∗tu(x) by Legndre wavelet as

Dα
∗tu(x) = KTΨ(x), (45)

then Eq. (8)and Eq. (26) result

u(x) = KTPαm×mΨ(x) + u(0). (46)

By Eq. (45)and Eq. (46) we rewrite Eq. (1) as

KTΨ(x) = f(x) +

∫ x

0

k(t,KTPαm×mΨ(t) + u(0),KTΨ(t))dt (47)
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Assume that

H(t) = k(t,KTPαm×mΨ(t) + u(0),KTΨ(t)), (48)

and like the last chapter, we collocated this equation by Eq. (39)in 2k−1M
points and then use the Gaussian integration. Finally, we can write Eq. (39)
as

KTΨ(xi) = f(xi) +

s1∑
h=1

xi
2
ω1hH(

xi
2
(ζh + 1)) i = 1, . . . , 2k−1M (49)

which is the 2k−1M × 2k−1M nonlinear of system equation which can be
solved using Newton iterative method for the elements of C.

6 Numerical examples

In this section we consider some examples which show that operational ma-
trices are powerful and demonstrate the accuracy of our method.

Example 5.1. Consider the nonlinear system of integro-differential equa-
tion

3xu1(x) + u′′1(x) = 5x3 + 2u′2(x)−
∫ x
0
(u′2(t) + u1(t)u

′′
3(t))dt,+

∫ 1

0
xu′1(t)u

′
2(t)dt,

2u′2(x) + u′′2(x) = −4x2 − xu1(x) +
∫ x
0
(txu′2(t)u

′′
1(t) + u′3(t))dt+

∫ 1

0
x2u3(t) + u′2(t)u

′′
1(t)dt

x/3y3(x) + u′′3(x) = 2− 4
3x

3 + u′′21 (x)− 2u21(x) +
∫ x
0
(x2u2(t) + u′2(t) + t3u′′3(t))dt+

∫ 1

0
x2u′1(t)dt

u1(0) = u′1(0) = 0, u2(0) = 0, u′2(0) = 1, u3(0) = u3(0) = 0,

(50)
which has the exact solution u1(x) = x2, u2(x) = x and u3(x) = 3x2. Fig-
ure.1 show the absolute error when we apply our method for M = 3 and
k = 1.
It is clear form figures that our approximate solution is in good agreement
with exact one.

Example 5.2. As a second example, consider the nonlinear system given
in [2, 1] u′1(x) = 1− 1

2u
′
2(x) +

∫ x
0
((x− t)u2(t) + u1(t)u2(t))dt,

u′2(x) = 2x+
∫ x
0
((x− t)u1(t)− u22(t) + u21(t))dt,

u1(0) = 0, u2(0) = 1,
(51)

which has the exact solution u1(x) = sinh(x) and u2(x) = cosh(x) forM = 6
and k = 1.
Results for Example 5.2 are reported in Table 1 for u1(xi) and u2(xi).
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Figure 1: Absolute error for Example 5.1 for M=3 And k=1

Example 5.3. Consider the nonlinear fractional order integro differential
equation given in[7]

Dα
∗tu(t) = 1 +

∫ x

0

u(t)Dα
∗tu(t)dt 0 ≤ x < 10 ≤ α < 1 (52)

The exact solution of this problem for α = 1 is
√
2Tan(

√
2
2 t) we solve this

equation for m = 20 and different α numerical results are shown in Figure 2.

Example 5.4. Finally Consider the nonlinear fractional order integro dif-
ferential equations in[7]

Dα
∗tu(t) = −1 +

∫ x

0

u2(t)dt0 ≤ x < 1 0 ≤ α < 1 (53)

subject to the initial conditions y(0) = 0. Table 2 shows the numerical
results for α = 0.8, 0.9, 1 when m = 20. From Table 2 we can see that
the approximate solutions obtained by our method are in good agreement
with the exact solution for α = 1, and with the approximate solutions for
α = 0.8, 0.9 in [7].
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Table 1: Numerical result of Example 5.2

Error for Error for Method of [2] Error for Method of [1]

M = 6, k = 1 N = 5 N = 6
xi u2(x) u1(x) u2(x) u1(x) u2(x) u1(x)

0 1.70× 10−6 7.66× 10−7 0 0 0 0
0.1 6.82× 10−7 3.42× 10−7 1.3× 10−8 1× 10−8 1.41× 10−9 1.41× 10−9

0.2 2.85× 10−7 8.94× 10−8 7.98× 10−7 1.33× 10−7 9.15× 10−8 9.15× 10−8

0.3 5.17× 10−7 2.50× 10−7 9.06× 10−6 2.17× 10−6 1.06× 10−6 1.06× 10−6

0.4 1.17× 10−7 1.22× 10−8 5.06× 10−5 1.53× 10−5 6.03× 10−6 6.03× 10−6

0.5 5.43× 10−7 2.40× 10−7 1.90× 10−4 6.64× 10−5 2.34× 10−5 2.34× 10−5

0.6 1.75× 10−7 1.08× 10−7 5.05× 10−4 2.12× 10−4 7.08× 10−5 7.08× 10−5

0.7 4.65× 10−7 2.43× 10−7 1.36× 10−3 5.27× 10−4 1.81× 10−5 1.81× 10−5

0.8 2.68× 10−7 4.02× 10−7 2.87× 10−3 1.05× 10−3 4.10× 10−4 4.10× 10−4

0.9 7.65× 10−7 5.10× 10−7 5.34× 10−3 1.66× 10−3 8.45× 10−4 8.45× 10−4

1 2.85× 10−6 1.44× 10−6 8.71× 10−3 1.17× 10−3 1.62× 10−3 1.62× 10−3

Α=0.5

Exact

Α=1

Α=0.9

Α=0.75

Α=0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Figure 2: Numerical result for Example 5.3 for different α and m=20

7 Conclusion

Most nonlinear integro-differential equation with nonlinear differential part
are usually difficult to solve analytically. In many cases it is required to
obtain the approximate solution. We have shown that the properties of op-
erational of matrix of integration and operational matrix of fractional inte-
gration together with Legendre wavelet can reduce the system of nonlinear
integro-differential equation and nonlinear fractional order integro differential
equation to a system of algebraic equations. The advantage of this method
is that it can solve high and fractional order integro-differential equation eas-
ier and more time efficient. Also we found an error bound. Although we
solved our problem by Legender wavelet, other orthogonal basis also can be
used. Illustrative examples show the high accuracy of the method in compar-
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Table 2: Numerical result of Example 5.4
xi Exact solution α = 1 Our method Method of [7]

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8
0 0 0 -0.00013 -0.00046 0 0 0

0.0625 -0.06250 -0.06249 -0.08574 -0.11683 -0.06250 -0.08574 -0.11682
0.125 -0.12498 -0.124977 -0.15995 -0.20327 -0.12498 -0.15997 -0.20328
0.1875 -0.18740 -0.18749 -0.23023 -0.28080 -0.18740 -0.23024 -0.28082
0.2500 -0.24968 -0.24966 -0.29788 -0.35269 -0.24968 -0.29790 -0.35272
0.3125 -0.31171 -0.31172 -0.36339 -0.42026 -0.31171 -0.36342 -0.42039
0.3750 -0.37336 -0.37333 -0.42695 -0.48409 -0.37336 -0.42689 -0.48413
0.4375 -0.43446 -0.43443 -0.48858 -0.54446 -0.43446 -0.48861 -0.54451
0.5000 -0.49482 -0.49478 -0.54818 -0.60140 -0.49482 -0.54824 -0.60150
0.5625 -0.55423 -0.55418 -0.60565 -0.65501 -0.55423 -0.60571 -0.65510
0.6250 -0.61243 -0.61237 -0.66078 -0.70511 -0.61243 -0.66086 -0.70521
0.6875 -0.66917 -0.66910 -0.71337 -0.75162 -0.66917 -0.71345 -0.75172
0.7500 -0.72415 -0.72418 -0.76318 -0.79440 -0.72415 -0.76327 -0.79451
0.8125 -0.77710 -0.77710 -0.80997 -0.83330 -0.77710 -0.81006 -0.83341
0.8750 -0.82767 -0.82771 -0.85348 -0.86820 -0.82767 -0.85395 -0.86831
0.9375 -0.87557 -0.87564 -0.89349 -0.89896 -0.87557 -0.89361 -0.89908

ison with other methods. This procedure can also be used for solving other
functional equations such as ordinary and partial differential equations.
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