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Solving an inverse problem for a
parabolic equation with a nonlocal

boundary condition in the reproducing
kernel space

M. Mohammadi, R. Mokhtari∗ and F. T. Isfahani

Abstract

On the basis of a reproducing kernel space, an iterative algorithm for
solving the inverse problem for heat equation with a nonlocal boundary con-
dition is presented. The analytical solution in the reproducing kernel space

is shown in a series form and the approximate solution vn is constructed by
truncating the series to n terms. The convergence of vn to the analytical
solution is also proved. Results obtained by the proposed method imply that
it can be considered as a simple and accurate method for solving such inverse

problems.

Keywords: Inverse problem; Parabolic equation; Nonlocal boundary condi-
tions; Reproducing kernel space.

1 Introduction

The problem of finding the solution of partial differential equations with
source control parameter has appeared increasingly in physical phenomena
such as heat transfer, thermoelasticity, control theory, population dynamics,
nuclear reactor dynamics, medical sciences, biochemistry, etc. [1, 2, 3]. The
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parameter determination in a parabolic partial differential equation from the
over-specified data plays a crucial role in applied mathematics and physics.
This technique has been widely used to determine the unknown properties
of a region by measuring a specified location in the domain. These unknown
properties such as the conductivity medium are important to the physical
process but usually can not be measured directly, or very expensive to be
measured [2, 3]. In general, these problems are ill-posed. Therefore a variety
of numerical techniques based on regularization, finite differences, finite ele-
ment and finite volume methods are given to approximate solutions of such
problems [2, 3, 4].

In recent years all kinds of boundary conditions and over-specified condi-
tions arise in the inverse problems which make them more and more difficult
to solve. The integral over-specified condition arises from many important
applications in heat transfer, termoelasticity, control theory, life sciences, etc.
Some different partial differential equations with nonlocal boundary and over
specified conditions can be found in [5, 6, 7, 8, 9, 10].

The theory of reproducing kernels [11], was used for the first time at
the beginning of the 20th century by S. Zaremba in his work on bound-
ary value problems for harmonic and biharmonic functions. This theory
has been successfully applied for solving a bunch of problems, see e.g.
[12, 13, 14, 15, 16, 17, 18] and references cited therein. The book [19] provides
excellent overviews of the existing reproducing kernel methods.
In this paper, a new algorithm for determining unknown solution and un-
known control parameter of the parabolic inverse problem with nonlocal
boundary and integral over-specified conditions based on the reproducing
kernel space, is presented. The advantages of the approach must lie in the
following facts. The approximate solution converges uniformly to the analyt-
ical solution. The method is mesh free, easily implemented and it needs no
time discretization. Also we can evaluate the approximate solution vn(x, t)
for fixed n once, and use it over and over.

The rest of the paper is organized as follows. In section 2 we describe the
governing equation. Several reproducing kernel spaces are defined in Section
3. The method implementation and convergence analysis are prepared in
Section 4. Numerical results are presented in section 5. The last section is a
brief conclusion.

2 Governing equation

Consider the inverse problem of determination a pair of functions {v, p} in
the following parabolic equation

∂v

∂t
− ∂2v

∂x2
= p(t)v + f(x, t) (x, t) ∈ Ω = (0, 1)× (0, T ] (1)
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with the initial condition

v(x, 0) = φ(x), x ∈ [0, 1] (2)

nonlocal boundary conditions

v(0, t) = v(1, t), vx(1, t) = 0, 0 ≤ t ≤ T (3)

and the integral over-specified condition∫ 1

0

v(x, t)dx = E(t), t ∈ [0, T ] (4)

where f(x, t), φ(x), and E(t) are known functions.

The existence, uniqueness, and continuous dependence of the solution
upon the data for this problem are demonstrated in [20].

After taking integration from both sides of the equation (1) and using
integral over-specified condition, we obtain

p(t) =
E′(t) + vx(0, t)−

∫ 1

0
f(x, t)dx

E(t)
. (5)

Then we have the following model problem
∂v
∂t −

∂2v
∂x2 =

E′(t)+vx(0,t)−
∫ 1
0
f(x,t)dx

E(t) v + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ]

v(x, 0) = φ(x), v(0, t) = v(1, t), vx(1, t) = 0.

After homogenizing the initial condition, we have
∂u
∂t −

∂2u
∂x2 +

∫ 1
0
f(x,t)dx−E′(t)

E(t) u = F (x, t, u, ux) (x, t) ∈ Ω = (0, 1)× (0, T ]

u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0,

(6)

where

F (x, t, u, ux) =
(u(x, t) + φ(x)) (ux (0, t) + φ′ (0))

E(t)

+
E′(t)−

∫ 1

0
f(x, t)dx

E(t)
φ(x) + φ′′(x) + f(x, t).
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3 Reproducing kernel spaces

Definition 1. Let H be a real Hilbert space of functions f : Ω→ R. Denote
by ⟨ · , ·⟩ the inner product and let ∥ · ∥ =

√
⟨ · , ·⟩ be the induced norm in H.

A real valued function K(x, y) : Ω× Ω→ R is called a reproducing kernel of
H if the followings are satisfied:

(i) Ky(x) = K(x, y) ∈ H for all y ∈ Ω,

(ii) f(y) = ⟨f(x),Ky(x)⟩ for all f ∈ H and for all y ∈ Ω.

Definition 2. A Hilbert space H of functions on a set Ω is called a repro-
ducing kernel Hilbert space if there exists a reproducing kernel K of H.

Remark 1. The existence of the reproducing kernel of a Hilbert space H is
due to the Riesz Representation Theorem. It is known that the reproducing
kernel is unique.

Now, we define some useful reproducing kernel spaces. The corresponding
reproducing kernels can be found by the usual technique in many articles in
literature (see [13]).

Definition 3. W0[0, 1] = {u(x)|u(x), u′(x), u′′(x) are absolutely continuous
in [0, 1], u(3)(x) ∈ L2[0, 1], u(0) = u(1), u′(1) = 0}. The inner product and
the norm in W0[0, 1] are defined respectively by

⟨u, v⟩
W0

=
2∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u(3)(x)v(3)(x)dx, u, v ∈W0[0, 1], (7)

and

∥u∥W0
=
√
⟨u, u⟩W0

, u ∈W0[0, 1].

The space W0[0, 1] is a reproducing kernel space and its reproducing kernel
function is called Ry(x).

Definition 4. W1[0, T ] = {u(t)|u(t), u′(t) are absolutely continuous in
[0, T ], u′′(t) ∈ L2[0, T ], u(0) = 0}. The inner product and the norm in
W1[0, T ] are defined respectively by

⟨u, v⟩W1
=

1∑
i=0

u(i)(0)v(i)(0) +

∫ T

0

u′′(t)v′′(t)dt, u, v ∈W1[0, T ],

and

∥u∥
W1

=
√
⟨u, u⟩

W1
, u ∈W1[0, T ].

The space W1[0, T ] is a reproducing kernel space and its reproducing
kernel function rs(t) is given by
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rs(t) =

{
st+ s

2 t
2 − 1

6 t
3 t ≤ s,

st+ s2

2 t−
1
6s

3 t > s.

Definition 5. W2[0, 1] = {u(x)|u(x), u′(x) are absolutely continuous in
[0, 1], u′′(x) ∈ L2[0, 1]}. The inner product and the norm in W2[0, 1] are
defined respectively by

⟨u, v⟩W2
=

1∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u′′(x)v′′(x)dx, u, v ∈W2[0, 1],

and

∥u∥
W2

=
√
⟨u, u⟩

W2
, u ∈W2[0, 1].

The spaceW2[0, 1] is a reproducing kernel space and its reproducing kernel
function Qy(x) is given by

Qy(x) =

{
1 + yx+ y

2x
2 − 1

6x
3 x ≤ y,

1 + yx+ y2

2 x−
1
6y

3 x > y.

Definition 6. W3[0, T ] = {u(t)|u(t) is absolutely continuous in [0, T ], u′(t) ∈
L2[0, T ]}. The inner product and the norm inW3[0, T ] are defined respectively
by

⟨u, v⟩
W3

= u(0)v(0) +

∫ T

0

u′(t)v′(t)dt, u, v ∈W3[0, T ],

and

∥u∥
W3

=
√
⟨u, u⟩

W3
, u ∈W3[0, T ].

The space W3[0, T ] is a reproducing kernel space and its reproducing
kernel function qs(t) is given by

qs(t) =

{
1 + t t ≤ s,
1 + s t > s.

Definition 7. W (Ω) = {u(x, t)| ∂
3u

∂x2∂t is completely continuous in Ω, ∂5u
∂x3∂t2 ∈

L2(Ω), u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0}. The inner product and the
norm in W (Ω) are defined respectively by
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⟨u, v⟩
W

=
2∑
i=0

∫ T

0

[
∂2

∂t2
∂i

∂xi
u(0, t)

∂2

∂t2
∂i

∂xi
v(0, t)

]
dt

+
1∑
j=0

⟨ ∂
j

∂tj
u(x, 0),

∂j

∂tj
v(x, 0)⟩

W0

+

∫ T

0

∫ 1

0

[
∂3

∂x3
∂2

∂t2
u(x, t)

∂3

∂x3
∂2

∂t2
v(x, t)

]
dxdt, u, v ∈W (Ω),

and
∥u∥W =

√
⟨u, u⟩W , u ∈W (Ω).

Theorem 1. W (Ω) is a reproducing kernel space and its reproducing kernel
function is

K(y,s)(x, t) = Ry(x)rs(t),

such that for any u(x, t) ∈W (Ω),

u(y, s) = ⟨u(x, t),K(y,s)(x, t)⟩W ,

where Ry(x), rs(t) are the reproducing kernel functions of W0[0, 1] and
W1[0, T ], respectively.

Proof. see [19].

Definition 8. W̃ (Ω) = {u(x, t)|∂u∂x is completely continuous in Ω, ∂3u
∂x2∂t ∈

L2(Ω)}. The inner product and the norm in W̃ (Ω) are defined respectively
by

⟨u(x, t), v(x, t)⟩
W̃

=
1∑
i=0

∫ T

0

[
∂

∂t

∂i

∂xi
u(0, t)

∂

∂t

∂i

∂xi
v(0, t)

]
dt

+⟨u(x, 0), v(x, 0)⟩
W2

+

∫ T

0

∫ 1

0

[
∂2

∂x2
∂

∂t
u(x, t)

∂2

∂x2
∂

∂t
v(x, t)

]
dxdt, u, v ∈ W̃ (Ω),

and

∥u∥
W̃

=
√
⟨u, u⟩

W̃
, u ∈ W̃ (Ω).

W̃ (Ω) is a reproducing kernel space and its reproducing kernel function is

G(y,s)(x, t) = Qy(x)qs(t).
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4 The method implementation

By defining the linear operator L :W (Ω)→ W̃ (Ω) as

Lu =
∂u

∂t
− ∂2u

∂x2
+

∫ 1

0
f(x, t)dx− E′(t)

E(t)
u,

model problem (6) changes to the following problemLu(x, t) = F (x, t, u, ux), (x, t) ∈ Ω,

u(x, 0) = 0, u(0, t) = u(1, t), ux(1, t) = 0.
(8)

Lemma 1. L is a bounded linear operator.

Proof. see [13].

Now, we choose a countable dense subset {(x1, t1), (x2, t2), . . . , } in Ω, and
define

ϕi(x, t) = G(xi,ti)(x, t), ψi(x, t) = L∗ϕi(x, t),

where L∗ is the adjoint operator of L. The orthonormal system {ψ̄i(x, t)}∞i=1

of W (Ω) can be derived from Gram-Schmidt orthogonalization process of
{ψi(x, t)}∞i=1 as

ψ̄i(x, t) =
i∑

k=1

βikψk(x, t),

where the orthogonal coefficients βik are given by

βik =



1
∥ψ1∥ , i = k = 1,

1√√√√√√∥ψi∥2−

i−1∑
j=1

c2ij

, i = k ̸= 1,

−

i−1∑
j=k

cijβjk

√√√√√√∥ψi∥2−

i−1∑
j=1

c2ij

, i ̸= k,

where
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cij = ⟨ψi(x, t), ψ̄j(x, t)⟩W
= ⟨L∗ϕi(x, t), ψ̄j(x, t)⟩W
= ⟨ϕi(x, t), L(x,t)ψ̄j(x, t)⟩W
=
(
L(x,t)ψ̄j(x, t)

)
(x,t)=(xi,ti)

=

(
j∑

m=1

βjmL(x,t)ψm(x, t)

)
(x,t)=(xi,ti)

.

Like in [13], we get the following theorems.

Theorem 2. Suppose that {(xi, ti)}∞i=1 is dense in Ω, then {ψi(x, t)}∞i=1 is
a complete system in W (Ω) and ψi(x, t) = L(y,s)K(y,s)(x, t)|(y,s)=(xi,ti).

Theorem 3. If {(xi, ti)}∞i=1 is dense in Ω, then the analytical solution of (8)
is

u(x, t) =

∞∑
i=1

i∑
k=1

βik [F (xk, tk, u(xk, tk), ∂xu(0, tk))] ψ̄i(x, t). (9)

By truncating the series in (9), we can obtain the approximate solution of
(8). But, since the the series terms are not known, we need to construct an
iterative method for obtaining the approximate solution. For this purpose,
we choose nonnegative integer n and put the initial function u0(x, t) = 0.
Then the approximate solution is defined by

un(x, t) =

n∑
i=1

Biψ̄i(x, t), (10)

where

Bi =

i∑
k=1

βikF (xk, tk, uk−1(xk, tk), ∂xuk−1(0, tk)). (11)

On account of (26), the approximate solution pn(t) can also be obtained by

pn(t) =
E′(t) + ∂xun(0, t) + φ′(0)−

∫ 1

0
f(x, t)dx

E(t)
. (12)

4.1 Convergence analysis

The convergence of un(x, t) can lead to that of pn(t), due to (26). So we
only need to show that the approximate solution un(x, t) converges to the
analytical solution u(x, t). At first, the following lemma is given.



Solving an inverse problem for a parabolic equation... 65

Lemma 2. Assume that un is a bounded sequence in W (Ω), un
∥.∥−→ ū,

(xn, tn) → (y, s), as n → ∞. If F (x, t, u(x, t), ux(0, t)) is continuous, then
F (xn, tn, un−1(xn, tn), ∂xun−1(0, tn))→ F (y, s, ū(y, s), ∂xū(0, s)).

Proof. Similar to proof of Lemma 2 in [13], we have

|un−1(xn, tn)− ū(y, s)| → 0, as n→∞.

Since

|tn − s| ≤
√
|xn − y|2 + |tn − s|2,

if follows that

(0, tn) −→ (0, s).

Thus in a same manner

|∂xun−1(0, tn)− ∂xū(0, s)| → 0, as n→∞.

The continuation of F (x, t, u(x), v(x)) implies that

F (xn, tn, un−1(xn, tn), ∂xun−1(0, tn)) → F (y, s, ū(y, s), ∂xū(0, s)), as n → ∞.

Theorem 4. Suppose that un is a bounded sequence in W (Ω) and (8) has a
unique solution. If {(xi, ti)}∞i=1 is dense in Ω, then the n-term approximate
solution un(x, t) derived from the above method converges to the analytical
solution u(x, t) of (8) in W (Ω), such that

u(x, t) =
∞∑
i=1

Biψ̄i(x, t),

where Bi is given by (11).

Proof. Similar to proof of Theorem 4 in [13], un(x, t) converges to ū(x, t) of
the form

ū(x, t) =
∞∑
i=1

Biψ̄i(x, t),

such that
Lū(xl, tl) = F (xl, tl, ul−1(xl, tl), ∂xul−1(0, tl)).

Since {(xi, ti)}∞i=1 is dense in Ω, for each (y, s) ∈ Ω, there exist a subsequence
{xnj , tnj}∞j=1 such that

(xnj , tnj )→ (y, s) (j →∞).
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We know that Lū(xnj , tnj ) = F (xnj , tnj , unj−1(xnj , tnj ), ∂xunj−1(0, tnj )).
Let j →∞, by Lemma (2) and the continuity of F , we have

(Lū)(y, s) = F (y, s, ū(y, s), ∂xū(0, s),

which indicates that ū(x, t) satisfies (8).

Theorem 5. Under the conditions of Theorem 4, the approximate solution
un(x, t) and its derivatives ∂i+jxt un(x, t), i = 0, 1, 2, j = 0, 1, converge uni-
formly to exact solution u(x, t) and its derivatives ∂i+jxt u(x, t), i = 0, 1, 2,
j = 0, 1, respectively.

Proof.

|∂i+jxt un(x, t)− ∂
i+j
xt u(x, t)| = |∂i+jxt ⟨un(y, s)− u(y, s),K(x,t)(y, s)⟩W |

= |⟨un(y, s)− u(y, s), ∂i+jxt K(x,t)(y, s)⟩W |
≤ ∥∂i+jxt K(x,t)(y, s)∥W ∥un(y, s)− u(y, s)∥W
≤ Ci+j∥un − u∥W , n→∞.

5 Numerical experiments

To test the accuracy of the proposed method, two examples are treated in
this section. The results are compared with the exact solutions.

Example 1. Consider problem (25)-(4) with

φ(x) = 2 + cos(2πx),

E(t) = 1 + e−t,

f(x, t) = 1 + 4π2e−t cos(2πx).

It is easy to check that the exact solution is

{v(x, t), p(t)} = {e−t(1 + cos(2πx)),−1}.

Using our method, we choose 81 points in the region Ω, and obtain the
approximate solution v81(x, t). We have listed approximate versus exact so-
lutions, along with the relative errors at some nodal points at time T = 1

4 in
Tables 1-2 and at time T = 1

2 in Tables 3-4. Numerical results are in good
agreement with the exact solutions. In Figs. 1-2, we display the exact and
approximate solutions of v at times T = 1

4 , and T = 1
2 , respectively. In order

to verify the convergence of the exact solution and its partial derivatives to
the approximate solution and its partial derivatives, we depicted the relative
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errors graphs of v, vxt and vxxt at time T = 1
4 for different values of n in

Figs. 3-5, respectively. The results show that the errors becomes smaller as
n increases.

Example 2. Consider problem (25)-(4) with

φ(x) = 1 + cos2(2πx),

E(t) =
1

2
et + 1,

f(x, t) = −8π2et + 16π2et cos2(2πx)− t− tet cos2(2πx)− 1.

The exact solution is

{v(x, t), p(t)} = {1 + et cos2(2πx), 1 + t}.

Taking T = 1
4 and choosing 81 and 144 points in the region Ω, we have listed

approximate versus exact solutions, along with the relative errors at some
nodal points in Tables 5-6 and 7-8, respectively. Numerical results are in
good agreement with the exact solutions and the accuracy of approximate
solution is getting better as n increases. In Fig. 6, we display the exact and
approximate solutions of v at time T = 1

4 . Relative error distribution of v
at time T = 1

2 is also given in Fig. 7a. It is clear that the numerical results
are in good agreement with the exact solutions. Artificial errors 10−2 were
introduced into the right end and conditional condition. It can be seen from
Fig. 7b that the error never affects the results of the method.

Example 3. Consider problem (25)-(4) with

φ(x) = 1 + cos(2πx),

E(t) = exp(−(2π)2t),
f(x, t) = (2π)2 cos(2πx) exp(−(2π)2t) + 2t(1 + cos(2πx) exp(−(2π)2t+ 10t2).

The exact solution is given by

{v(x, t), p(t)} = {(1 + cos(2πx) exp(−(2π)2t), (2π)2 + 2t exp(10t2)}.

Relative error distribution of v at time T = 1
2 is given in Fig. 8a. It can be

noted from Fig. 8a that our results are in better accuracy than the results
in [20]. In order to demonstrate the stability of our algorithm, we shall give
a perturbation ϵ = 10−2 to the right side function f(x, t) and over-specified
condition E(t). The relative error distribution of v at time T = 1

2 depicted
in Fig. 8b shows that the method is stable and gives excellent approximation
to the solution.
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6 Conclusion

In this paper, the reproducing kernel Hilbert space method was applied suc-
cessfully for solving an inverse problem for a parabolic equation with nonlocal
boundary condition. Proposed method is shown to be of good convergence,
simple in principle, easy to program and easy to treat the boundary condi-
tions. It seems that the method can also be applied to higher dimensional
inverse problems. We leave this to our further works.
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Table 1: Relative errors of v(x, t) for Example 1; n = 81, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.998001 2.998100 3.315676E-05 ( 78 ,

1
6 ) 2.445035 2.443523 6.182374E-04

( 12 ,
12

1000 ) 1 1.000715 7.151300E-04 (1, 16 ) 2.692963 2.691261 6.321103E-04

(1, 1
100 ) 2.980099 2.980922 2.758099E-04 ( 34 ,

1
5 ) 1.818731 1.8169752 9.652627E-04

( 1
10 ,

1
10 ) 2.636866 2.637919 3.995758E-03 ( 1

10 ,
1
5 ) 2.481098 2.479660 5.795225E-04

( 14 ,
1
10 ) 1.904837 1.909188 2.283755E-03 ( 23 ,

1
5 ) 1.409365 1.408556 5.742847E-04

(1, 1
10 ) 2.809675 2.810196 1.853823E-04 ( 12 ,

2
9 ) 1 1.002348 2.347800E-03

( 12 ,
1
9 ) 1 1.002317 2.317300E-03 ( 35 ,

2
9 ) 1.152927 1.152638 2.505188E-04

( 23 ,
1
9 ) 1.447420 1.448317 6.202361E-04 ( 13 ,

2
9 ) 1.400369 1.399123 8.895521E-04

(1, 18 ) 2.764994 2.764715 1.009424E-04 ( 35 ,
1
4 ) 1.148738 1.148205 4.639945E-04

( 23 ,
1
8 ) 1.441248 1.441835 4.073198E-04 ( 12 ,

1
4 ) 1 1.002458 2.458400E-03

( 34 ,
1
6 ) 1.846482 1.845673 4.378733E-04 (1, 14 ) 2.557601 2.552739 1.901260E-03

Table 2: Relative errors of p(t) for Example 1; n = 81, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 -1 -1.000064 6.453900E-05 1

8 -1 -1.000684 6.838260E-04

12
1000 -1 -1.000669 6.689750E-04 1

6 -1 -0.999358 6.414128E-04

1
100 -1 -1.000585 5.854630E-04 1

5 -1 -0.9984953 1.504941E-03

1
10 -1 -1.000343 3.435430E-04 2

9 -1 -0.997999 2.000439E-03

1
9 -1 -1.000717 7.166060E-04 1

4 -1 -0.997132 2.868264E-03

Table 3: Relative errors of v(x, t) for Example 1; n = 81, T = 1
2

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.998001 2.998135 4.480185E-05 ( 78 ,

1
6 ) 2.445035 2.445058 9.422361E-06

( 12 ,
12

1000 ) 1 1.000089 8.926900E-05 (1, 16 ) 2.692963 2.693930 3.587980E-04

(1, 1
100 ) 2.980099 2.981268 3.922174E-04 ( 34 ,

1
5 ) 1.818731 1.816356 1.305423E-03

( 1
10 ,

1
10 ) 2.636866 2.640780 1.484401E-03 ( 1

10 ,
1
5 ) 2.481098 2.485261 1.677789E-03

( 14 ,
1
10 ) 1.904837 1.912180 3.854839E-03 ( 23 ,

1
5 ) 1.409365 1.407343 1.434693E-03

(1, 1
10 ) 2.809675 2.809855 6.428644E-05 ( 12 ,

2
9 ) 1 1.002219 2.219280E-03

( 12 ,
1
9 ) 1 1.004321 4.321410E-03 ( 35 ,

2
9 ) 1.152927 1.151739 1.030525E-03

( 23 ,
1
9 ) 1.447420 1.447886 3.219329E-04 ( 13 ,

2
9 ) 1.400369 1.407778 5.291163E-03

(1, 18 ) 2.764994 2.765560 2.047726E-04 ( 35 ,
1
4 ) 1.148738 1.146675 1.795169E-03

( 23 ,
1
8 ) 1.441248 1.441568 2.220845E-04 ( 12 ,

1
4 ) 1 1.001966 1.966360E-03

( 34 ,
1
6 ) 1.846482 1.845236 6.746695E-04 (1, 14 ) 2.557601 2.556291 5.124707E-04
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Table 4: Relative errors of p(t) for Example 1; n = 81, T = 1
2

t pexact papp Relative errors t pexact papp Relative errors

1
1000 -1 -0.999794 2.063958E-04 1

8 -1 -0.977383 2.261733E-02

12
1000 -1 -0.997471 2.528598E-03 1

6 -1 -0.979758 2.024151E-02

1
100 -1 -0.997903 2.096714E-03 1

5 -1 -0.975690 2.430969E-02

1
10 -1 -0.976715 2.328518E-02 2

9 -1 -0.971106 2.889415E-02

1
9 -1 -0.976639 2.336095E-02 1

4 -1 -0.964804 3.519553E-02

Table 5: Relative errors of v(x, t) for Example 2; n = 81, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.001000 2.000890 5.523337E-05 ( 78 ,

1
6 ) 1.590680 1.591406 4.562790E-04

( 12 ,
12

1000 ) 2.012072 2.001377 5.315484E-03 (1, 16 ) 2.181360 2.164421 7.765664E-03

(1, 1
100 ) 2.010050 2.008924 5.601139E-04 ( 34 ,

1
5 ) 1 1.002636 2.636500E-03

( 1
10 ,

1
10 ) 1.723344 1.715849 4.348790E-03 ( 1

10 ,
1
5 ) 1.799418 1.801355 1.076466E-03

( 14 ,
1
10 ) 1 0.996456 3.544300E-03 ( 23 ,

1
5 ) 1.305351 1.276493 2.210723E-02

(1, 1
10 ) 2.105171 2.089205 7.583953E-03 ( 12 ,

2
9 ) 2.248849 2.171894 3.421967E-02

( 12 ,
1
9 ) 2.117519 2.073065 2.099328E-02 ( 35 ,

2
9 ) 1.817382 1.751413 3.629875E-02

( 23 ,
1
9 ) 1.279380 1.256824 1.762984E-02 ( 13 ,

2
9 ) 1.312212 1.303871 6.356607E-03

(1, 18 ) 2.133148 2.116888 7.622889E-03 ( 35 ,
1
4 ) 1.840405 1.768371 3.914031E-02

( 23 ,
1
8 ) 1.283287 1.260171 1.801297E-02 ( 12 ,

1
4 ) 2.284025 2.199602 3.696255E-02

( 34 ,
1
6 ) 1 0.999525 4.751000E-04 (1, 14 ) 2.284025 2.266547 7.652462E-03

Table 6: Relative errors of p(t) for Example 2; n = 81, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 1.001000 1.000778 2.216753E-04 1

8 1.125000 1.177465 4.663580E-02

12
1000 1.012000 1.009609 2.363016E-03 1

6 1.166667 1.138380330 2.424571E-02

1
100 1.010000 1.007937 2.042468E-03 1

5 1.200000 1.157718084 3.523493E-02

1
10 1.100000 1.141458 3.768888E-02 2

9 1.222222 1.170887564 4.200091E-02

1
9 1.111111 1.156422 4.077993E-02 1

4 1.250000 1.211209275 3.103258E-02
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Table 7: Relative errors of v(x, t) for Example 2; n = 144, T = 1
4

(x, t) vexact vapp Relative errors (x, t) vexact vapp Relative errors

(1, 1
1000 ) 2.001000 2.000941 2.983507E-05 ( 78 ,

1
6 ) 1.590680 1.595549 3.060781E-03

( 12 ,
12

1000 ) 2.012072 2.008807 1.622859E-03 (1, 16 ) 2.181360 2.180958 1.846293E-04

(1, 1
100 ) 2.010050 2.009449 2.992512E-04 ( 34 ,

1
5 ) 1 1.013353 1.335274E-02

( 1
10 ,

1
10 ) 1.723344 1.722972 2.159116E-04 ( 1

10 ,
1
5 ) 1.799418 1.810589 6.207763E-03

( 14 ,
1
10 ) 1 1.001805 1.805350E-03 ( 23 ,

1
5 ) 1.305351 1.309086 2.861377E-03

(1, 1
10 ) 2.105171 2.101083 1.941670E-03 ( 12 ,

2
9 ) 2.248849 2.230536 8.143059E-03

( 12 ,
1
9 ) 2.117519 2.102535 7.076129E-03 ( 35 ,

2
9 ) 1.817382 1.808653 4.803084E-03

( 23 ,
1
9 ) 1.279380 1.276005 2.637737E-03 ( 13 ,

2
9 ) 1.312212 1.325054 9.786674E-03

(1, 18 ) 2.133148 2.129999 1.476139E-03 ( 35 ,
1
4 ) 1.840405 1.833820 3.578477E-03

( 23 ,
1
8 ) 1.283287 1.280545 2.136414E-03 ( 12 ,

1
4 ) 2.284025 2.266462 7.689720E-03

( 34 ,
1
6 ) 1 1.008052 8.052170E-03 (1, 14 ) 2.284025 2.293042 3.947540E-03

Table 8: Relative errors of p(t) for Example 2; n = 144, T = 1
4

t pexact papp Relative errors t pexact papp Relative errors

1
1000 1.001000 1.000929 7.116752E-05 1

8 1.125000 1.148678 2.104750E-02

12
1000 1.012000 1.010731951 1.253013E-03 1

6 1.166667 1.145867427 1.782820E-02

1
100 1.010000 1.008977553 1.012324E-03 1

5 1.200000 1.196111194 3.240672E-03

1
10 1.100000 1.118037 1.639767E-02 2

9 1.222222 1.264996 3.499686E-02

1
9 1.111111 1.131717 1.854514E-02 1

4 1.250000 1.245162209 3.870233E-03

Figure 1: Exact and approximate solution of v for Example 1 at T = 1
4



Solving an inverse problem for a parabolic equation... 73

Figure 2: Exact and approximate solution of v for Example 1 at T = 1
2

a b

c d

Figure 3: Relative errors graphs of v for Example 1 at time T = 1
4
; a(n = 36), b(n = 64),

c(n = 81), d(n = 100)
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a b

c d

Figure 4: Relative errors graphs of vxt for Example 1 at time T = 1
4
; a(n = 36),

b(n = 64), c(n = 81), d(n = 100)
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a b

c d

Figure 5: Relative errors graphs of vxxt for Example 1 at time T = 1
4
; a(n = 36),

b(n = 64), c(n = 81), d(n = 100)

Figure 6: Exact and approximate solution of v for Example 2 at T = 1
4
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Figure 7: Relative error graphs of v for Example 2 at time T = 1
2
; a(without noise),

b(with noise)
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Figure 8: Relative error graphs of v for Example 3 at time T = 1
2
; a(without noise),

b(with noise)
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