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Population based algorithms for
approximate optimal distributed

control of wave equations

A. H. Borzabadi∗, S. Mirassadi and M. Heidari

Abstract

In this paper, a novel hybrid iterative scheme to find approximate optimal
distributed control governed by wave equations is considered. A partition of
the time-control space is considered and the discrete form of the problem

is converted to a quasi assignment problem. Then a population based al-
gorithm, with a finite difference method, is applied to extract approximate
optimal distributed control as a piecewise linear function. A convergence
analysis is proposed for discretized form of the original problem. Numerical

computations are given to show the proficiency of the proposed algorithm and
the obtained results applying two popular evolutionary algorithms, genetic
and particle swarm optimization algorithms.

Keywords: Optimal control problem; Evolutionary algorithm; Finite differ-
ence method; Wave equation

1 Introduction

In the past few decades, the science and engineering have witnessed a phe-
nomenal growth in the field of optimal control problems (OCPs) governed
by partial differential equations (PDEs), specially parabolic and hyperbolic
equations. A large part of these improvements is due to the efforts of pioneer
researchers such as J. L. Lions [15, 16, 17] and D. L. Russell [19, 20].

In particular, the controllability in wave equations are studied in [21, 22].
Kim and Erzberger [14] derived Riccati equation for optimum boundary con-
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trol of wave equation, with quadratic cost function. Applicability of Laplace
transform for determination of time optimal control for hyperbolic class of
problems has been shown in [10]. But solving optimal control problems gov-
erned by wave equations with analytical approaches, have some difficulties
such as computing gradient, integrals in hyperbolic and parabolic equations
and target functionals. For overcoming complexities due to the analytical ap-
proaches, the numerical approaches are created based on various techniques
as regularization [9, 8, 11], measure theoretical concepts [1, 5, 6] and penalty
method [12].

Recently, nature-inspired optimization methods have attracted more and
more attention and these powerful tools have been applied for solving a wide
range of OCPs [2, 3, 7].

In this paper, by combinating one of the population based algorithms
(Evolutionary Algorithms (EAs)) and a numerical method for solving wave
equations (finite difference method), an effective numerical scheme for finding
approximate optimal control and state functions has been procreated for
OCPs governed by wave equations with a distributed control and a non-
classical boundary condition as follows:

minimize J(ν(., .)) =

∫ T

0

∫ L

0

Φ(t, x, ν(x, t)) dx dt (1)

subject to utt(x, t) = uxx(x, t) + ν(x, t), (x, t) ∈ [0, L]× [0, T ] (2)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, L] (3)

u(0, t) = µ(t), ux(L, t)− ux(0, t) = η(t), t ∈ [0, T ] (4)

where φ(x), ψ(x), µ(t), η(t) are given functions and ν(x, t) is a bounded dis-
tributed control and gets its values in the interval V ⊂ R. The purpose is to
find the approximate optimal control ν(x, t) and state u(x, t) that minimize
the functional (1) and satisfy the wave equation (2) with initial conditions
(3), boundary conditions (4) and terminal conditions

u(x, T ) = ω(x), ut(x, T ) = ζ(x). (5)

Here ω(x) and ζ(x) are target functions.

The paper is organized as follows. In Sec. 2, we describe the discretiza-
tion of optimal distributed control problem governed by wave equation. The
problem is considered as a quasi assignment problem. The convergence of
this modification is proved in the third section. In Sec. 4, we present the
algorithm for solving OCP (1)-(5). In Sec. 5, numerical results arising from
applying and comparing the given algorithm using two EAs, i.e. particle
swarm optimization(PSO) and genetic algorithm(GA), are presented.



Population based algorithms for approximate optimal ... 33

2 Description of the method

To find the optimal solution we must examine the performance index in the
set of all possibilities of control-state pairs. The set of admissible pairs con-
sisting of pairs like (u, ν) satisfying in (2)-(4) is denoted by P. In this section
we consider a control space discretization based method considering equidis-
tant partitions of [0, T ], [0, L] and V as △t = {0 = t0, t1, · · · , tn−1, tn = T}
△x = {0 = x0, x1, · · · , xm−1, xm = L} and △ν = {v0, v1, · · · , vl−1, vl}, re-
spectively. Now the main problem can be considered as a quasi assignment
problem, where a performance index can be assigned corresponding to each
chosen partition and choosing the best performance index can lead to deter-
mine the near optimal control of the problem. A trivial way to determine
the near optimal solution is to calculate all possible partitions and compare
the corresponding trade offs. This trivial method of total enumeration needs
((m + 1)(n + 1))(l+1) evaluation. A typical discretization is given in Figure
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Figure 1: A typical control function in time-control space

1 with n = 4, m = 6 and l = 5. To avoid so many computations, we use
the EAs for evaluating special partitions that guides us to the optimal one.
For each partition of control we need its corresponding trajectory to evaluate
the performance index. Trivially, the corresponding trajectory should be in
discretized form.

For discretization of the wave equation (2)-(4), we use an approximate
method like finite difference method as central difference approximation for
the second partial derivative and forward difference approximation for the
first partial derivative. By this method,
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uj−1
i − 2uji + uj+1

i

k2
=
uji+1 − 2uji + uji−1

h2
+ ν̄ji ,

u0i = φi,

u1i − u0i
k

= ψi,

uj0 = µj ,

ujm+1 − ujm
h

− uj1 − uj0
h

= ηj ,

where uji = u(xi, tj), φi = φ(xi), ψi = ψ(xi), µ
j = µ(tj), η

j = η(tj) and

ν̄ji = ν̄(xi, tj). Then we have

u0i = φi, u
1
i = kψi + u0i , i = 0, 1, · · · ,m, (6)

uj0 = µj , u
j
m+1 = hηj + ujm + uj1 − uj0, j = 0, 1, · · · , n, (7)

and
uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , (8)

where j = 1, 2, · · · , n, i = 0, 1, · · · ,m and λ = k/h.

If (u, ν̄) be a pair of the trajectory and the control which satisfies in
(10)-(11) and

∥u(xi, tn)− ω(xi)∥ ≤ ϵ1 i = 0, 1, · · · ,m (9)

∥ut(xi, tn)− ζ(xi)∥ ≤ ϵ2 i = 0, 1, · · · ,m (10)

for given small numbers ϵ1 > 0 and ϵ2 > 0, then we can claim that, a good
approximate pair for minimizing functional J in (1) has been found. Here
∥ · ∥ is the infinity norm.

Also in (1), the integral term can be estimated by a numerical method
of integration, e.g. one of Newton-Cotes methods. After discretization of
the OCP governed by wave equation, the problem is converted to opti-
mization problem with two extra objective functions. We add the terms,∑m−1

i=1 ∥u(xi, tn) − ω(xi)∥ and
∑m−1

i=1 ∥ut(xi, tn) − ζ(xi)∥ to the original ob-
jective function and then, we apply EAs for this new criteria function. There-
fore, by applying the above method, the OCP governed by wave equation is
converted to constrained programming:

(CP)min
m∑
i=1

n∑
j=1

AiBjΦ(tj , xi, ν̄
j
i ) (11)

+M
m∑
i=1

∥uni − ω(xi)∥+W
m∑
i=1

∥ut(xi, tn)− ζ(xi)∥,
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subject to uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , (12)

u0i = φi, u
1
i = kψi + u0i , i = 0, 1, · · · ,m, (13)

uj0 = µj , u
j
m+1 = hηj + ujm + uj1 − uj0, j = 0, 1, · · · , n, (14)

where, Ai and Bj are the weights of a numerical method of integration, M
and W are large positive numbers (as the parameters in penalty function
approach).

3 Convergence

The solution of (CP) approximates the original problem by minimizing
J(u, ν) over the subset PN of P consists of all piecewise linear functions
u(., .) and ν(., .) with nodes at uji , ν̄

j
i , j = 0, 1, · · · , N, i = 0, 1, · · · , N which

satisfies (11) and the objective function (11) for this nodes called JN , here
without loss of generality, we assume that N = m = n. Our first aim is to
show that P1 ⊆ P2 ⊆ P3 · · · in an embedding fashion.

Lemma 1. There exists an embedding that maps PN to a subset of PN+1

for all N = 1, 2, · · · .

Proof. For simplicity, we prove the case when N = 1. The proof for N ≥ 2 is
obtained analogously.
Let consider an arbitrary pair (u, ν) in P1 represented by uji , ν̄

j
i , j = 0, 1, i =

0, 1. We have to find a corresponding pair (û, ν̂) in P2 with ûji , ˆ̄ν
j
i , j =

0, 1, 2, i = 0, 1, 2, as nodes that corresponds to (u, ν). We have from (11)

uj+1
i = λ2uji+1 + (2− 2λ2)uji + λ2uji−1 − uj−1

i + k2ν̄ji , j = 0, 1, i = 0, 1,

where uj+1
i = u(xi, tj+1). On the other hand, a typical element (û, ν̂) in P2

satisfies

ûj+1
i = λ2ûji+1 +(2− 2λ2)ûji +λ2ûji−1 − ûj−1

i + k2 ˆ̄νji , j = 0, 1, 2, i = 0, 1, 2,

where ûj+1
i = û(x̂i, t̂j+1).

It is clear that here we have x̂i = xi, i = 0, 1 and t̂j = tj , j = 0, 1. Therefore

we can choose ûji , ˆ̄ν
j
i , j = 0, 1, 2, i = 0, 1, 2 in such a way that

ûji = uji , j = 0, 1, i = 0, 1.

This shows that the constructed pair (û, ν̂) corresponds to (u, ν) and belongs
to P2.

The above lemma has an important result in decreasing behavior of the
optimal value of the objective function which leads to the following theorem.
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Theorem 1. If µN = infPN
JN for N = 1, 2, · · · , and µ∗ = infP J exists,

then limN→∞ µN = µ∗.

Proof. By Lemma 1, we have µ1 ≥ µ2 ≥ · · · ≥ µ∗. So, this decreasing and
bounded sequence converges to a limit µ0 ≥ µ∗. It is enough to show that
µ0 = µ∗. If µ0 > µ∗, then ϵ = µ0−µ∗ > 0 and by continuity of J(u, ν), we may
find a pair (ujn0

, νjn0
), such that |J(ujn0

, νjn0
)−µ∗| < ϵ, then J(ujn0

, νjn0
) < µ0,

and so µn0 < µ0 which is incorrect and therefore µ0 = µ∗.

4 Algorithm of the approach

In this section, an algorithm on the basis of the previous discussions is pre-
sented. This algorithm is designed in two stages, initialization step and main
steps, where the main steps contain the main structure of algorithm consid-
ering initialization step.
Initialization step:
Choose an equidistant partition for time interval [0, T ], with parameter dis-
cretization k = tj+1 − tj , j = 0, 1, · · · , n− 1 and an equidistant partition for
interval [0, L], with parameter h = xi+1 − xi, i = 0, 1, · · · ,m− 1.
Main steps:
Step 1. Choose a population randomly.
Step 2. Compute uji , j = 0, 1, · · · , n, i = 0, · · · ,m, using (10)-(11).
Step 3. Fitness scores are assigned to each population using objective func-
tion of (CP).
Step 4. Apply the rules of EA for current population.
Step 5. Consider the new population as the current population.
Step 6. If the termination conditions are satisfied, stop; otherwise jump to
Step 2.

5 Numerical results

In this section the proposed algorithm in the previous section is examined by
one numerical example. We have applied PSO and GA as two of the most
popular EAs.
Consider the following OCP:
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min J =

∫ 1

0

∫ 1

0

ν2(x, t) dt dx

subject to utt(x, t) = uxx(x, t) + ν(x, t), (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ (0, 1)

u(0, t) = 0, ux(1, t) = ux(0, t), t ∈ (0, 1)

u(x, T ) = sin(2πx), ut(x, T ) = sin(4πx), t ∈ (0, 1)

For analytical solution of this example, see [13].

Our solutions by PSO and GA algorithms are shown in the following
tables:

• where wave parameters, λ, be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
and the population sizes, (m), be 200 and the number of iterations,(kmax),
be 500, results are shown in Table 1. 1.

• where the population size,(m), be 50, 100, 150, 200, 250, 300, 350 and the
number of iterations,(kmax), be 500 and parameter wave equation,λ, be
0.2, results are shown in Table 2. 2.

• where the number of iterations,(kmax), be 100, 200, 300, 400, 500, 600, 700
and the population size,(m), be 200 and parameter wave equation,λ,
be 0.2, results are shown in Table 3. 3.

Also comparison between ω(x) and ζ(x) with u(x, T ) and ut(x, T ) are shown
in Figures 2 and 3 ,respectively, when m = 200, kmax = 500, λ = 0.2.

Table 1: Comparison of the errors due to applying PSO and GA with increasing λ

parameter ∥ut(x, T )− ζ(x)∥
λ PSO GA

0.1 1.1662e− 005 1.2375e− 005

0.2 2.4418e− 005 6.5369e− 005

0.3 5.3563e− 005 1.1038e− 004

0.4 2.2052e− 004 8.0804e− 005

0.5 1.3987e− 004 8.9201e− 005

0.6 9.6621e− 005 7.8682e− 005

0.7 1.5991e− 004 8.3949e− 005

0.8 1.3152e− 004 1.1785e− 004

0.9 1.6093e− 004 1.1817e− 004

1.0 2.4100e− 004 2.5027e− 004
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Table 2: Comparison of the errors due to applying PSO and GA with increasing the

number of population

number of ∥ut(x, T )− ζ(x)∥
population PSO GA

50 1.8470e− 004 2.16684e− 004

100 1.1513e− 004 9.4944e− 005

150 1.5074e− 004 1.0690e− 004

200 9.4195e− 005 8.5366e− 005

250 1.6513e− 004 1.2451e− 004

300 1.6264e− 004 1.0645e− 004

350 5.0556e− 005 8.6299e− 005

Table 3: Comparison of the errors due to applying PSO and GA with increasing the

number of iterations

number of ∥ut(x, T )− ζ(x)∥
iterations PSO GA

100 2.3324e− 004 4.0122e− 004

200 9.4547e− 005 1.1504e− 004

300 1.8058e− 004 1.0747e− 004

400 1.2749e− 004 1.0134e− 004

500 2.1751e− 004 9.1401e− 005

600 1.0138e− 004 7.7138e− 005

700 9.9944e− 005 9.2749e− 005

6 Conclusion

In this paper, a hybrid approach for the resolution of OCPs governed by
wave equations is presented. This approach is based on partitioning of the
time-control space, finite difference method, penalty method and EAs. The
derived results show the superiority of the approach.
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Figure 2: Diagram of u(x, T ) and ω(x)
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موج معادلات تحت توزیعی بهینه کنترل تقریب برای جمعیت پایه بر الگوریتمی

حیدری محمد و میراسدی، بیگم سکینه برزآبادی، هاشمی اکبر

کامپیوتر و ریاضی علوم دانشکده دامغان، دانشگاه

معادله تحت توزیعی تقریبی بهینه کنترل یافتن برای نوین تکراری تلفیقی روش یک مقاله، این در : چکیده
می گسسته را مساله که شده گرفته نظر در زمان-کنترل فضای از افرازی است. گرفته قرار بررسی مورد موج
بر الگوریتم یک آنگاه است. شده تبدیل تخصیص شبه مساله یک به شده گسسته شکل این سپس و کند
یک صورت به توزیعی تقریبی بهینه کنترل استخراج برای متناهی تفاضل روش یک با همراه جمعیت پایه
ارائه ابتدایی مساله گسسته شکل برای همگرایی تحلیل یک است. شده گرفته کار به خطی ای قطعه تابع
از حاصل نتایج با شده ارائه عددی نتایج شده، داده الگوریتم توانایی دادن نشان برای همچنین است. شده

اند. شده مقایسه ذرات ازدحام الگوریتم و ژنتیک الگوریتم جمعیت، پایه بر الگوریتم دو بکارگیری
موج. معادله متناهی؛ تفاضلات روش ارزیابی؛ الگوریتم بهینه؛ کنترل مسال : کلیدی کلمات
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