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Operational Tau method for nonlinear
multi-order FDEs

P. Mokhtary

Abstract

This paper presents an operational formulation of the Tau method based
upon orthogonal polynomials by using a reduced set of matrix operations for
the numerical solution of nonlinear multi-order fractional differential equa-
tions(FDEs). The main characteristic behind the approach using this tech-

nique is that it reduces such problems to those of solving a system of nonlinear
algebraic equations. Some numerical examples are provided to demonstrate
the validity and applicability of the method.

Keywords: Fractional differential equations(FDEs); Caputo derivative; Op-
erational Tau method.

1 Introduction

The mathematical modelling and simulation of systems and processes based
upon the description of their properties in terms of fractional derivatives,
naturally leads to differential equations of fractional order and to the necessity
to solve such equations. However, effective general methods for solving them
can not be found even in the most useful works on fractional derivatives and
integrals.

There are several approaches to the generalization of the notation of dif-
ferentiation to fractional orders e.g., Riemann-Liouville, Grunwald-Letnikov
and Caputo. We focus on one particular form so-called Caputo derivative.

Recently, linear FDEs based upon the fractional derivatives(such as
Riemann-Liouville and Caputo schemes) with general variable coefficients
have been solved by adapting various analytical and numerical methods[2, 5,
7, 20]. Nowadays, applications have included some classes of nonlinear FDEs,
and this motivates us to consider their effective numerical methods for solu-
tion of these type of equations. Among the most recent works concerned with
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nonlinear initial value problems of fractional order, we can consider papers
[4, 8, 12, 13, 18, 19, 21, 22, 31, 32].

Spectral methods have been studied intensively in the last two decades
because of their good approximation properties. The formulation of spectral
methods was first presented in the monograph of Gottlieb and Orszag [11].
The text book of Canuto, et al [3] focuses on practical and theoretical aspects
of global spectral methods.

Global spectral methods use a representation of function u(t) throughout
the domain via a truncated series expansion with suitable basis functions.
This series is then substituted into functional equation and upon the mini-
mization of the residual function the unknown coefficients are computed.

Spectral methods can be broadly classified into three categories, Pseu-
dospectral or Collocation, Galerkin and Tau methods. The Tau method,
through which the spectral methods, as shown in [6, 23-29] has found exten-
sive application for the numerical solution of many operator equations in the
recent years.

The Tau method, firstly introduced by Lanczos[15-17], involves the pro-
jection of the residual function on the span of some appropriate set of basis
functions, typically arising as the eigenfunctions of a singular Sturm-Liouville
problem. The auxiliary conditions imposed as constraints on the expansion
coefficients. It is well known that eigenfunctions of certain singular Sturm-
Liouville problems allow the approximation of functions belong to the space
C∞[a, b] whose truncation error approaches zero faster than any negative
power of the number of basis functions used in approximation, as that num-
ber(order of truncation N)tends to ∞. This phenomenon is usually referred
to as ”Spectral accuracy” (Gottlieb and Orszag [11]). A convergence analy-
sis and error bounds for the Tau method was considered by Ortiz and Pham
in the papers [24, 25]. The recursive form of the Tau method, formulated
by Ortiz in [26] was extended to the case of systems of ordinary differen-
tial equations in [6]. The basic philosophy of the method was extended to
the numerical solutions of the linear and nonlinear initial value, boundary
value, and mixed problems for ordinary differential equations [23, 25, 27], to
the eigenvalue problems [27, 28], to the ”Stiff” problems [23], to the partial
differential equation[29], among others.

The main objective of the present paper is to provide Ortiz and Samara[27]
operational approach to the Tau method for the numerical solution of non-
linear FDEs of the general form

LD(u(t)) = f(t), (1)

on t ∈ Λ = [0, 1] with initial conditions

u(i)(0) = di, i = 0, 1, . . . , ν − 1, (2)

where
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LD(u(t)) =

Nd∑
r=0

pr(t)

lr∏
k=0

(D
θrk
C u(t))

γrk
, θrk ∈ Q+, Nd, γrk, lr ∈ N

∪
{0}, (3)

where N,Q+ are the collections of the all natural and positive rational num-
bers, respectively. di are constants and ν = max

0≤r≤Nd

{⌈θrk⌉}lrk=0. The symbol

⌈q⌉ is the smallest integer greater than or equal to q. u(t) is unknown func-
tion, pr(t) and f(t) are algebraic polynomials or their suitable polynomial
approximations. Finally, the fractional derivative is considered in the Ca-
puto sense that is given by

Dθrk
C u(t) =

1

Γ(⌈θrk⌉ − θrk)

t∫
0

(t− τ)
⌈θrk⌉−θrk−1

u(⌈θrk⌉)(τ)dτ, t ∈ Λ. (4)

The properties of Caputo derivative can be found in [30].

In this paper we proceed as follows: In the next section, the spectral
Tau method for nonlinear FDEs is described. We reduce the problem to a
set of nonlinear algebraic equations using some useful operational matrices.
Numerical experiments are carried out in Section 3, to illustrate the efficiency
of the proposed method.

2 Numerical approach

Consider the operational Tau solution for nonlinear FDE (2- 3) as a polyno-
mial of degree N

uN (t) =

∞∑
i=0

uiJ
α,β
i (t) = uN J = uNJXt, (5)

where uN = [u0, u1, . . . , uN , 0, . . .]. J is non-singular lower triangular coeffi-

cient matrix given by the shifted Jacobi polynomials in Λ, where {Jα,β
i (t)}∞i=0 =

J = JXt with a standard basis vector Xt = [1, t, t2, . . .]T [3]. The effect of

u
(k)
N (t), tsuN (t) and (uN (t))p on the coefficients vector of polynomial (5) are

u
(k)
N (t) = uNJηkXt, t

suN (t) = uNJµsXt, (uN (t))p = uNJEp−1(uN ,J)Xt,
(6)

where matrices η and µ have the following simple structures ([27])
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η =



0 0 0 . . .
1 0 0

0 2 0
...

0
...

0 3
· · · . . .

 , µ =



0 1 0 0 · · ·
0 0 1 0

...
0 0 0 1
0
...

0 0
· · ·

0
. . .

 ,

and E(uN ,J) is an infinite upper triangular Toeplitz matrix with the following
structure

E(uN ,J) =


uNJ0 uNJ1 uNJ2 . . .
0 uNJ0 uNJ1 . . .
0 0 uNJ0 . . .
...

...
...

. . .

 ,
where Ji is the i-th column of the matrix J. Details for formulation of the
matrix E(uN ,J) can be found in [10].

Now, we intend to explain details of the structure of the operational ap-
proach to the Tau method with Jacobi polynomial bases for the numerical
solution of the nonlinear multi-order FDEs. Firstly, in the Lemma 2.1, we
will show that the effect of Caputo fractional derivative Dθrk

C (uN (t)), will
be represented as the product of a matrix and a vector. Secondly, in the
Lemma 2.2, we will prove that the product of polynomials can be written as
the product of a matrix and a vector. Finally, in the Theorem 2.3, we will
give the matrix representation of LD(uN (t)) by using the Lemmas 2.1 and 2.2.

Lemma 2.1 Let Jα,β
j (t) be the shifted Jacobi polynomials with respect to

the weight function χα,β(t) = (2 − 2t)α(2t)β on Λ. Assume that the ap-
proximated solution uN (t) and the fractional derivative Dθrk

C are given by the
relations (5) and (4) respectively, then

Dθrk
C (uN (t)) = uNJΥθrkJ,

where

Υθrk =



0 ··· 0 ···
...

...
...

...
0 ... 0

Θ(⌈θrk⌉)ξmrk,0 ... Θ(⌈θrk⌉)ξ⌈θrk⌉,N ···

Θ(⌈θrk⌉+1)ξ⌈θrk⌉+1,0 ... Θ(⌈θrk⌉+1)ξ⌈θrk⌉+1,N

...
...

...
...

...
Θ(N)ξN,0 ... Θ(N)ξN,N ···

...
...

...
...


,

with Θ(ζ) = ζ!
Γ(ζ−θrk+1) and

ξk,j =
1

∥ Jα,β
j (t) ∥2

χα,β

(tk−q, Jα,β
j (t))χα,β ,

k ≥ θrk,
j = 0, 1, . . . .
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Proof. See [9]. 2

Lemma 2.2 (a) For two given polynomials h(t) =
∞∑
i=0

hivi(t) = HVXt

and s(t) =
∞∑
i=0

sivi(t) = SV Xt with H = [h0, h1, h2, . . .], S = [s0, s1, s2, . . .],

we have
s(t)h(t) = SV E(H,V )Xt.

(b) For given polynomials hi(t) =
∞∑
j=0

ajTij(t) = aNTiXt, i = 0, 1, ...,

where Ti are nonsingular coefficients matrices given by {Tij}∞j=0 = TiXt, we
have

l∏
i=0

hi(t) = aN T0

l∏
i=1

E(aN , Ti)Xt. (7)

Proof. For proof of part(a) see [10]. By using part (a) and mathematical
induction we can prove part (b). 2

Theorem 2.3 (Matrix representation for nonlinear part)
Assume that the approximated solution uN (t) and the nonlinear fractional
operator LD are given by the relations (5) and (2), respectively, then

LD(uN (t)) = uN Π̂ J,

where

Π̂ = J
( Nd∑

r=0

ΨdE
γrd−1(uN ,JΨd)

lr∏
k=d+1

E(uN , Frk) pr(µ)
)
J−1,

Ψk =

{
ηθrk , θrk ∈ N,
ΥθrkJ, , θrk ∈ Q+ − N, Frk = JΨkE

γrk−1(uN ,JΨk),

and d is the smallest index that γrd ̸= 0.

Proof. From Lemma 2.1 and the third relation in (6) for k ̸= {p |γrp = 0} we
have

lr∏
k=0

(Dθrk
C (uN (t)))

γrk
=

lr∏
k=0

(uNJΨkXt)
γrk =

lr∏
k=0

(uNJΨkE
γrk−1(uN ,JΨk)Xt).

Let d be the smallest index that γrd ̸= 0, then from (6) we can write
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lr∏
k=0

(uNJΨkE
γrk−1(uN ,JΨk)Xt) = uNJΨdE

γrd−1(uN ,JΨd)

∗
lr∏

k=d+1

E(uN,JΨkE
γrk−1(uN,JΨk))Xt

= uNΠrJ,

where

Πr = JΨdE
γrd−1(uN ,JΨd)

lr∏
k=d+1

E(uN , Frk)J
−1andFrk = JΨkE

γrk−1(uN ,JΨk).

By substituting the above relation in (3) and using the second relation in
(6) we obtain

LD(uN (t)) = uN

( Nd∑
r=0

Πrpr(µ)
)
J,

that is the statement of the Theorem. 2

Also for obtaining the matrix form of the initial conditions (3), we intro-
duce vector d = [d0, d1, . . . , dν−1, 0, . . .] where ν = max

0≤r≤Nd

{θrk}lrk=0. On the

other hand we can write

u
(j)
N (0) = uNJηjXt

∣∣
t=0

= uNJηje1 = uNbj , j = 0, 1, 2, . . . , ν − 1,

where e1 = [1, 0, 0, . . .]T and

B = (bj)
ν−1
j=0 = (Jηje1)

ν−1
j=0 . (8)

Now, we are ready to obtain the nonlinear algebraic system of implement-
ing the operational Tau method to the nonlinear multi-order FDE (2-3).

Following Theorem 2.3 and the relation (7) we obtainuN Π̂J = fJ,

uNB = d,

(9)

where f(t) = fJ with f = [f0, f1, ...]. Because of orthogonality of {Jα,β
i (t)}∞i=0,

projecting (9) on the {Jα,β
k (t)}Nk=0 yields

uN Π̂k = fk, k = 0, 1, 2, . . . , N.

By setting

MN = [b0, b1, . . . , bν−1, Π̂0, Π̂1, . . . , Π̂N ], rN = [d0, d1, . . . , dν−1, f0, f1, . . . , fN ],
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we obtain uNMN = rN . We restrict this system to its first N + 1 columns.
The square system uNMN−ν = rN−ν , gives us unknown vector uN .

3 Numerical results

In this section we have considered three test problems. All of these test prob-
lems have been solved by the operational Tau method based on the Chebyshev
and Legendre bases. In all cases any non-polynomial functions were replaced
by a suitable polynomial approximation. All calculations were performed on
a PC running Mathematica software. To report some information about the
number of operations, we use function \LeafCount in the Mathematica soft-
ware, that gives us total number of indivisible subexpressions. All of achieved
nonlinear algebraic systems were solved by the well known iterative Newton
method.

Example 1 : [18] Consider the nonlinear FDE with α = 1.5

Dα
Cu(t) + u2(t) = f(t), u(i)(0) = 0, i = 0, 1,

where

f(t) =
Γ(6)

Γ(6− α)
t5−α − 3Γ(5)

Γ(5− α)
t4−α +

2Γ(4)

Γ(4− α)
t3−α + (t5 − 3t4 + 2t3)2.

the exact solution is u(t) = t5 − 3t4 + 2t3.

We apply the proposed operational Tau method to obtain the approx-
imated solution of the problem. The maximal error, with the Chebyshev
and Legendre bases have been given in Table 1. A comparison of the Tau
method with fractional high order method proposed by R. Lin and F. Liu
in [18] shows that our method produces powerful superiority with respect to
the proposed method in [18].

Table 1: Numerical results of Example 1, using operational Tau method with different

bases
Maximal Error

N Chebyshev Tau Legendre Tau

5 4.58× 10−16 7.28× 10−17

7 1.50× 10−16 7.67× 10−17

10 8.75× 10−17 5.52× 10−16

Lin and Liu scheme Max. error is 1.544 × 10−5 in t = 1



50 P. Mokhtary

Example 2 : Consider the nonlinear FDE

D
1
4

Cu(t)D
1
2

Cu(t) + u(t) = et + e2terf(
√
t)
(
1−

Γ( 34 , t)

Γ(34 )

)
, u(0) = 1,

where erf(z) gives the error function and Γ(a, z) is the incomplete Gamma
function.

the exact solution of this problem is u(t) = et. We apply the proposed
operational Tau method to obtain the approximate solution of this example.
We have reported the obtained numerical results in Table 2 and Fig. 1 with
the Chebyshev and Legendre bases. In Fig. 1, obtained numerical errors
are plotted for several values of approximation degree N in the L∞ norm.
From Table 2 and Fig. 1, we can conclude that desired spectral accuracy
is obtained for this nonlinear problem and the approximate solutions are in
high agreement with the exact solution. In addition, by using the function
\LeafCount in the Mathematica software, for N = 4, 8, 12 and N = 16, we
need 213, 812, 1261 and 2153 operations, respectively, to obtain the opera-
tional Tau solution with the reported errors in the Table 2 and Fig. 1 based
on the Chebyshev polynomial bases.

Table 2: Numerical results of Example 2, using operational Tau method with different

bases
Maximal Error

N Chebyshev Tau Legendre Tau

4 6.79× 10−5 5.13× 10−5

8 7.19× 10−11 5.85× 10−11

12 7.31× 10−16 7.06× 10−16

16 2.85× 10−16 2.81× 10−16

Example 3 : [14] Consider the following equation of fractional order θ = 0.5:

Dθ
Cu(t) = λtβ(u(t))2, (0 < θ < 1), (10)

with λ, β ∈ R(λ ̸= 0). If θ + β < 1, this equation has the exact solution

u(t) =
Γ(1− θ − β)

λΓ(1− 2θ − β)
t−(θ+β). (11)

If β ≤ −2θ, then the equation (10), has unique solution u(t) ∈ C[a, b]
given by (11) and if β = −(k+ θ), k ∈ N, then the equation (10) , has unique
solution u(t) ∈ C∞[a, b]. (See [14, Chapter 3]).
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Figure 1: An illustration of the rate of convergence for the Tau method with various

N . We observe the errors of Example 2 using Chebyshev bases (left) and Legendre bases

(right)

The numerical results for example 3 with the Chebyshev and Legendre
bases are presented in Fig. 2 and Table 3. Fig. 2, shows the rate of conver-
gence for various β. Each part of the figure contains numerical errors for sev-
eral values of N , which are plotted for a special value of β in L∞ norm. As we
can see from Table 3., and Fig. 2, the performance of the spectral Tau method
with the Chebyshev and Legendre bases for β ∈ [−1.5,−2.5] almost same,
but when β tends to the β = −2.5(smooth solution) the rate of convergence
increases and we have accurate numerical solutions. For β = −1.5,−2.5, nu-
merical results have not been presented, since the exact solution is obtained.
In addition, by using the function \LeafCount in the Mathematica software,
for N = 15 we need 917 operations to obtain the operational Tau solution
based on the Legendre polynomial bases.

Table 3: The numerical results of Example 3 with different β, λ = 1 and N = 15

Maximal Error for Chebyshev Tau Maximal Error for Legendre Tau
x β = −2 β = −2.2 β = −2.4 β = −2 β = −2.2 β = −2.4

0.2 9.92× 10−6 3.38× 10−6 5.74× 10−7 1.29× 10−5 4.27× 10−6 7.01× 10−7

0.4 7.45× 10−6 2.57× 10−6 4.41× 10−7 1.02× 10−5 3.46× 10−6 5.80× 10−7

0.6 4.39× 106 1.44× 10−6 2.38e× 10−7 7.77× 10−6 2.61× 10−6 4.31× 10−7

0.8 3.47× 10−6 1.12× 10−6 1.82× 10−7 5.41× 10−6 1.70× 10−6 2.63× 10−7

1 2.00× 10−6 5.10× 10−7 9.23× 10−8 5.20× 10−6 1.67× 10−6 2.64× 10−7
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Figure 2: An illustration of the rate of convergence for the Tau method with various

β. We observe the errors of Example 3 using Chebyshev bases (left) and Legendre bases

(right)

4 Conclusion

In this paper, we presented a numerical scheme for solving nonlinear multi-
order fractional differential equations. The operational Tau method was em-
ployed. Also, several test problems were used to show the applicability and
efficiency of the method. The obtained results indicate that the new approach
can solve the problem effectively.
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ای مرتبه چند کسری دیفرانسیل معادلات برای عملیاتی تاو روش

مختاری پیام

ریاضی گروه سهند، صنعتی دانشگاه

معادلات عددی حل برای را متعامد ایهای چندجمله بر مبتنی عملیاتی تاو روش مقاله این : چکیده
است این روش این اصلی مشخصه دهد. می ارائه خطی غیر ای مرتبه چند کسری مشتقات با دیفرانسیل
از برخی آورد. می بدست جبری خطی غیر دستگاه حل از استفاده با را نظر مورد معادله عددی جواب که

است. شده ارائه روش بودن کاربردی و کارایی نمایش منظور به عددی های مثال
عملیاتی. تاو روش کاپاتو؛ مشتق کسری؛ مشتقات با دیفرانسیل معادلات : کلیدی کلمات
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