
Iranian Journal of Numerical Analysis and Optimization

Vol 4, No. 2, (2014), pp 73-83

Solving nonlinear Volterra
integro-differential equation by using
Legendre polynomial approximations

M. Gachpazan∗, M. Erfanian and H. Beiglo

Abstract

In this paper, we construct a new iterative method for solving nonlinear

Volterra Integral Equation of the second kind, by approximating the Legendre
polynomial basis. Error analysis is worked using property of interpolation.
Finally, some examples are given to compare the results with some of the

existing methods.

Keywords: Nonlinear Volterra integro-differential equation; Legendre poly-
nomial; Error analysis.

1 Introduction

The area of orthogonal polynomials is an active research area in mathe-
matics as well as with applications in mathematical physics, engineering,
and computer science [6, 16]. Several numerical methods were used to
solve integro-differential equations such as successive approximation method,
Adomian decomposition method, Chebyshev and Taylor collocation meth-
ods, Haar Wavelet method, Wavelet Galerkin method, monotone iterative
technique, Tau method, Walsh series method and Bezier curves method
[2, 3, 4, 6, 13, 22]. One of the most common set of orthogonal polynomi-
als is the set of the Legendre polynomials L0(x), L1(x), ..., LM (x), which are
orthogonal on [−1, 1] with respect to the weight function w(x) = 1. The
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Legendre polynomials Ln(x), for −1 ≤ x ≤ 1 and n ≥ 0, are given by the
forms [6, 7, 11, 12, 21]

Ln(x) =
1

2n

[n/2]∑
k=0

(−1)k
(
n
k

)(
2n− 2k

n

)
xn−2k, n = 0, 1, . . . , (1)

where [n/2] = n/2 if n is even, otherwise n−1
2 . To use the Legendre poly-

nomials for our purposes, it is preferable to map this to [0, 1]. Then we can
also define them by the following recursive formula [11, 12]: L0(x) = 1; and
L1(x) = 2x− 1 and for n = 1, 2, ...

(n+ 1)Ln+1(x) = (2n+ 1)(2x− 1)Ln(x)− nLn−1(x). (2)

On the other hand, the methods based on Legendre polynomials may be
more appropriate for solving linear and nonlinear differential and Fredholm-
Volterra integral and integro-differential-difference equations [5, 6, 7, 15, 18,
21]. Legendre polynomials are examples of eigen functions of singular Strum
Liouville problems and have been used extensively in the solution of the
boundary value problems and in computational fluid dynamics [5, 20] . Sev-
eral ways for solving nonlinear integro differential equations are exist, for
example Ghasemi et al. [8] with homotopy perturbation method and in [9]
with wavelet Galerkin method and in [10] with sine−cosine wavelet method,
Zhao and Corless in [23] adopted finite difference method, Lepik and Tamme
in [19] with Haar wavelet method. In this paper, by means of the matrix
relations between the Legendre polynomials and their derivatives, the men-
tioned methods above are modified and developed for solving the following
nonlinear Volterra Integro-differential equation with variable coefficients

f1(x)u(x) + f2(x)u
′(x) = g(x) +

∫ x

0

K(x, t, u(t))dt, (3)

where u ∈ X := C([0, 1],R), f : [0, 1] → R, K : [0, 1]2 × R → R, also
is assumed K is a continuous function, and u : [0, 1] → R is an unknown
function. We have obtained a solution expressed in the form

u(x) ≈
M∑
n=0

anLn(x). (4)

Next sections of this paper are organized as follows. In Section 2, expansion
of Legendre basis properties and matrix relations, and its discretization of a
integro-differential equation are given. In Section 3, the convergence of the
method is described. In Section 4, the efficiency of the method by solving
some examples and comparison of the numerical solutions with some other
existing methods, is shown. A short conclusion is given in Section 5.
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2 Expansion of Legendre basis and method of solution

If we define L(x) = [L0(x) L1(x) ... LM (x)] and A = [a0 a1 ... aM ]T then

u(x) ≈
M∑
n=0

anLn(x) = L(x)A. (5)

Simillary if we define L′(x) = [L′
0(x) L

′
1(x) ... L

′
M (x)] we have

u′(x) ≈
M∑
n=0

anL
′
n(x) = L′(x)A, (6)

where ′ denotes the derivative with respect to x. By using Legendre recursive
formula (1) for n = 0, 1, 2, ...,M , we can also obtain the matrix form of the
equation as follows

L′(x) = L(x)ΩT, (7)

where Ω has two forms different for odd and even values of M , that is,
for odd values of M we have

Ω =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 3 0 7 · · · 2M − 3 0 0
1 0 5 0 · · · 0 2M − 1 0


,

and for even values of M

Ω =



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
1 0 5 0 · · · 2M − 3 0 0
0 3 0 7 · · · 0 2M − 1 0


.

From (6) and (7) we get

u′(x) ≈ L(x)ΩTA.

We use this method to approximate left hand side of Volterra integro-
differential equation (3) as follows
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f1(x)u(x) + f2(x)u
′(x) ≈ f1(x)L(x)A+ f2(x)L(x)Ω

TA
= (f1(x)L(x) + f2(x)L(x)Ω

T)A.
(8)

Thus
f1(x)u(x) + f2(x)u

′(x) ≈ S(x)A, (9)

where S(x) = [s0(x) s1(x) ... sM (x)], and for i = 0, 1, ...,M , we define

si(x) = f1(x)Li(x) + f2(x)L(x)(Ω
T)i.

To obtain a solution of the problem (3), for each x, t ∈ [0, 1] we define

K(x, t, u(t)) ≈ L(x)K∗LT(t)

where K∗ = [knm], and

knm =
< Ln(x), < K(x, t, u(t)), Lm(t) >>

∥Ln∥2∥Lm∥2
.

We use this method to approximate the right hand side of Volterra integro-
differential equation (3) as follows

g(x) +

∫ x

0

L(x)K∗LT(t)dt = g(x) + L(x)K∗
∫ x

0

LT(t)dt.

By using Legendre formulas∫ x

0

L(t)dt = (L(x)− L(0))(ΩT)−1,

we have

g(x) +

∫ x

0

K(x, t, u(t))dt = g(x) + L(x)K∗(Ω)−1(L(x)T − L(0)T). (10)

Let
h(x) = g(x) + L(x)K∗(Ω)−1(L(x)T − L(0)T), (11)

then from (9) and (11) we have

S(x)A = h(x). (12)

We can use a matrix method based on Legendre collocation points defined
by

xi =
i

M
i = 0, 1, . . . ,M. (13)

Now, by substituting the collocation points into Eq. (12) we have the follow-
ing system

S(xi)A = h(xi) i = 0, 1, . . . ,M. (14)
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Thus, we use this numerical method to approximate the solutions of nonlinear
Volterra integro-differential equation, which correspond to a system of (M+1)
algebraic equations for (M +1) unknown Legendre coefficients a0, a1, ..., aM .
Briefly, Eq. (14) in the matrix form is as follows

SA = H, (15)

where for i = 0, 1, ...,M

S = [S(x0) S(x1) ... S(xM )]T ,

and
H = [h(x1) h(x2) ... h(xM )].

3 Error analysis

We assume that u(x) is a sufficiently smooth function and PM (x) is the
polynomial that interpolates u at points xi, i = 0, 1, ...,M that are the roots
of M + 1 degree shifted Chebyshev polynomial in [0, 1]. Then we have

u(x)− PM (x) =
dM+1u

dxM+1
(ξ)

∏M
i=0(x− xi)

(M + 1)!
, (16)

where ξ ∈ [0, 1], therefore

|u(x)− PM (x)| ≤ max|d
M+1u(x)

dxM+1
|
∏M

i=0(x− xi)

(M + 1)!
. (17)

If we assume that c is an upper bound for maxdM+1u(x)
dxM+1 , then

|u(x)− PM (x)| ≤ c
1

(M + 1)!22M+1
. (18)

Theorem 3.1. Let uM (x) = UT
ML(x) where UM = [u0 u1 ... uM ]T and

um = (2m+ 1)

∫ 1

0

u(x)Lm(x)dx,

then, there exists a real number c′ such that

∥u(x)− uM (x)∥2 ≤ c′
1

(M + 1)!22M+1
. (19)

Proof. Suppose f : [0, 1] → R be an arbitrary continuous function. We define
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||f ||2 =

∫ 1

0

|f(x)|2dx. (20)

Let XM be the space of all polynomials that their degrees are equal or less
than M and f(x) be an arbitary function. Since XM is a finite dimensional
vector space, f has an uniqe best approximation uM , such that

∥u(x)− uM∥2 ≤ ∥u− g∥2 ∀g ∈ XM . (21)

In particular, we have

∥u(x)− uM (x)∥22 =

∫ 1

0

|u(x)− uM (x)|2dx ≤
∫ 1

0

|u(x)− PM (x)|2dx, (22)

where PM interpolates f . Thus

∥u(x)− uM (x)∥22 =

∫ 1

0

(c
1

(M + 1)!22M+1
)2dx, (23)

so

∥u(x)− uM (x)∥2 ≤ c
1

(M + 1)!22M+1
. (24)

4 Numerical examples

In this section, several numerical examples are given to show the efficiency
of our proposed method for approximating the solution of Volterra integro-
differential equation by comparing with other methods. In all examples N
denotes the number of itereations

Example 4.1. Consider the following nonlinear Volterra integro-differential
equation of the second kind with the exact solution u(x) = x3

(x−1)u′(x)+xu(x) = 3(x−1)x2− 1

3
x+

1

3
xcos(x3)+

∫ x

0

xt2sin(u(t))dt. (25)

Comparison of the absolute errors between Block-Pulse functions method
[1] and the proposed method for N = 7 is shown in Table 2 . Also, Figure
2 shows the comparison between exact and approximate solutions for N = 2
and N = 7.

Example 4.2. Consider the following nonlinear Volterra integro-differential
equation of the second kind with the exact solution u(x) = x− x2

3(x− 1)u(x) + x2u′(x) = f(x) +

∫ x

0

(x− t)u(t)dt, (26)
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Table 1: Absolute errors for Example 4.1

t BPFs method [1] proposed method
for N=7 for N=7

0.0100 4.654× 10−4 3.585× 10−6

0.3537 8.098× 10−5 1.726× 10−7

0.6101 6.675× 10−5 6.052× 10−7

0.9500 3.581× 10−5 2.138× 10−7

Figure 1: Comparison between exact and approximate solutions for Example 4.1

where
f(x) = 3(x− 1)(x− x2) + x2(1− 2x)− 1

4x
4 + 1

3 (x+ 1))x3 − 1
2 (1/2)x

3.

Comparison of absolute errors between CAS wavelet method [3] and the
proposed method for N = 7 is shown in Table 2 . Also, Figure 2 shows the
comparison between exact and approximate solutions for N = 2 and N = 7.

Example 4.3. Consider the following nonlinear Volterra integral equation
of the second kind with the exact solution u(x) = ln(x+ 1)

u′(x) = f(x) +

∫ x

0

xt2(u(t))2dt, (27)

where

f(x) =
1

x+ 1
+(

11

9
+
2

3
x−

1

3
x2+

2

9
x3)x ln(x+1)−

1

3
(1+x3)x(ln(x+1))2−

1

9
x2(11−

5

2
x+

2

3
x2).

(28)
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Table 2: Absolute errors for Example 4.2

t CAS wavelet method [3] proposed method
for N=7 for N=7

0.0100 3.37× 10−3 4.8× 10−4

0.3446 4.72× 10−3 5.7× 10−5

0.7075 5.87× 10−3 3.4× 10−4

0.9178 3.42× 10−2 2.13× 10−6

1.0000 6.20× 10−2 5.8× 10−5

Figure 2: Comparison between exact and approximate solutions for Example 4.2

Comparison of absolute errors between DT wavelet method [4] and pro-
posed method for N = 7 is shown in Table 3 . Also, Figure 3 shows the
comparison between exact and approximate solutions for N = 2 and N = 7.

5 Conclusion

In this paper, we have solved nonlinear Volterra integro-differential equation
of the second kind by using Legendre polynomial. A considerable advantage
of this method is to find the approximation of analytical solution that is a
polynomial of degree up to N . An other advantage of the method is that Leg-
endre coefficients of the solution can be found very easily by using computer
programs. The convergence of this method has been presented by Theorem
3.1.
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Table 3: Absolute errors for Example 4.3

t DT wavelet method [4] proposed method
for N=7 for N=7

0.054 3.29× 10−2 3.90× 10−6

0.600 1.49× 10−2 1.83× 10−6

0.851 1.82× 10−1 2.88× 10−5

1.000 4.71× 10−1 7.52× 10−6

Figure 3: Comparison between exact and approximate solutions for Example 4.3
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لژاندر های ای چندجمله از استفاده با خطی غیر انتگرال دیفرانسیل معادلات تقریبی حل

بیگلو حسین و عرفانیان، مجید پزان، گچ مرتضی

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه

ولترای انتگرالی دیفرانسیل معادلات جوابهای آوردن بدست برای تکراری روش یک مقاله، این در : چکیده
انجام درونیابی از استفاده با خطا تحلیل است. شده ساخته لژاندر های ای چندجمله اساس بر دوم نوع
مقایسه موجود های روش برخی با و حل پیشنهادی روش از استفاده با مثال چند سرانجام است. گرفته

است. شده
خطا. تحلیل لژاندر؛ های ای چندجمله خطی؛ غیر ولترای انتگرال دیفرانسیل معادله : کلیدی کلمات
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