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Strong approximation for Itô
stochastic differential equations

M. Namjoo∗

Abstract

In this paper, a class of semi-implicit two-stage stochastic Runge-Kutta
methods (SRKs) of strong global order one, with minimum principal er-
ror constants are given. These methods are applied to solve Itô stochas-

tic differential equations (SDEs) with a Wiener process. The efficiency of
this method with respect to explicit two-stage Itô Runge-Kutta methods
(IRKs), Itô method, Milstien method, semi-implicit and implicit two-stage
Stratonovich Runge-Kutta methods are demonstrated by presenting some

numerical results.

Keywords: Stochastic differential equations; Strong approximation; Runge-
Kutta methods.

1 Introduction

In recent years, a great deal of concern has been raised regarding the study of
SDEs as an important area of research. Many phenomena in science and en-
gineering have been modeled by deterministic ordinary differential equations
(DODEs). However, some of the parameters and initial data are not known
with complete certainty due to lack of information. Therefore, to represent a
more accurate model of the behavior of such phenomena they usually should
be modeled by SDEs. Some areas where SDEs have been used extensively in
modeling phenomena include chemistry, physics, engineering, mathematical
biology and finance (see, for example, [5], [7]). Since explicit solutions are
known only for a few equations, the study of numerical methods have become
more important and these must be designed to be implemented with a certain
order of accuracy. Consider the autonomous Itô SDE given by

dy(t) = g0(y(t))dt+ g1(y(t))dW (t), y(t0) = y0, t ∈ [t0, tf ], (1)

∗Corresponding author
Received 6 April 2014; revised 21 July 2014; accepted 11 August 2014
M. Namjoo

Department of Mathematics, School of Mathematical Sciences, Vali-e-Asr University of
Rafsanjan, Rafsanjan, Iran. e-mail: namjoo@vru.ac.ir

1



2 M. Namjoo

where g0 and g1 are real-valued functions which are called the drift coeffi-
cient and the diffusion coefficient, respectively, andW (t) is a one-dimensional
standard Wiener process, whose increment ∆W (t) =W (t+ h)−W (t) has a
Gaussian distribution with mean 0 and variance h, i.e. W (t + h) −W (t) ∼
N(0, h) =

√
h N(0, 1), and the solution y(t) is an Itô process. A Wiener pro-

cess (named after N. Wiener) is sometimes called Brownian Motion, which is
a term used to describe the phenomenon of the erratic behaviour of a particle
in a liquid, acted on by random impulses, in the absence of friction. Equation
(1) can also be written as a stochastic integral equation

y(t) = y0 +

∫ t

t0

g0(y(s))ds+

∫ t

t0

g1(y(s))dW (s),

where the first integral is a mean square Riemann-Stieltjes integral and the
second integral is a stochastic integral which can be interpreted in many
ways (see [10]). The two most studied interpretations are due to Itô and
Stratonovich that depend on the points of the partitioning in which the inte-
grand is evaluated. If the lower end point tn is chosen, it leads to Itô integral
and if midpoint (tn + tn+1)/2 is chosen, it leads to Stratonovich integral.
The Stratonovich interpretation follows the common rules of integral calcu-
lus, while the Itô formulation has the advantage of preserving the martingale
property of Wiener process. It is always possible to switch from one interpre-
tation to the other, because an Itô SDE can be converted to a Stratonovich
SDE (and vice versa) by means of the following formula (see [5])

ḡ0(y) = g0(y)−
1

2
g′1(y)g1(y),

where equation (1) is in the Stratonovich form when ḡ0 is used in place of g0.
There are different numerical methods for solving these kinds of differential
equations (see, for example, [1], [6], [8]). Numerical methods for SDEs are
recursive methods where trajectories, in other words, the sample paths of
solution are computed at discrete time steps. These methods are classified
to strong and weak. Only strong convergence will be considered in this
paper. Strong convergence is required, when each trajectory of the numerical
method must be closed to the exact solution. Formally, if yN is the numerical
approximation to y(tN ) after N steps with constant stepsize h = (tf − t0)/N ,
then yN is said to converge strongly to y(tN ) with strong order p if there
exists C > 0 (independent of h) and δ > 0 such that

E(|yN − y(tN )|) ≤ Chp, h ∈ (0, δ).

An outline of this paper is as follows: In Section 2, the semi-implicit SRKs for
SDEs are introduced, moreover order conditions for a class of SRKs with order
one are stated. In particular, the new class of semi-implicit two-stage SRKs
for SDEs with minimum principal error constants is constructed and the fixed
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point iteration algorithm will be used to improve the semi-implicit method.
In Section 3 we have some numerical results which show the efficiency of this
method.

2 The semi-implicit Itô Runge-Kutta methods for SDEs

The most famous numerical method that can be obtained from a stochastic
Taylor expansion is Milstein method. This method for the SDE problem (1)
is given by

yn+1 = yn + hg0(yn) + J1g1(yn) +
1

2
(J1

2 − h)g′1(yn)g1(yn),

where J1 =W (tn+h)−W (tn) with h = (tf−t0)/N for some integer N . This
method converges with strong order one as long as E(y20) < ∞, and g0, g

′
0,

g1, g
′
1 and g′′1 satisfy a uniform Lipschitz condition. Higher order numerical

methods can be obtained by truncating farther terms of the stochastic Taylor
expansion. This technique involves considerable complexities in implementa-
tion because of the approximation of higher order stochastic integrals and
the evaluation of high order derivatives of both the drift and diffusion coef-
ficients. Thus, it is important to be able to derive derivatives free numerical
methods and this leads to SRKs. For the SDE (1) SRKs is given by (see [2]):

Yi = yn +
s∑
j=1

Z
(0)
ij g0(Yj) +

s∑
j=1

Z
(1)
ij g1(Yj), i = 1, 2, . . . , s, (2)

yn+1 = yn +

s∑
j=1

z
(0)
j g0(Yj) +

s∑
j=1

z
(1)
j g1(Yj),

which can be represented in tableau form as

Z(0) Z(1)

z(0)
T

z(1)
T ,

where Z(k) = (Z
(k)
ij ) for i, j = 1, 2, . . . , s and z(k)

T
= (z

(k)
1 , . . . , z

(k)
s ) repre-

sents for k = 0, 1. Here Y1, . . . , Ys represent the internal stage of the method,
and yn+1 is the update of the numerical solution at the end of the current
step. Since (2) is a generalization of the class of Runge-Kutta methods in
deterministic case, for consistency the stepsize will be included in the param-
eter matrix associated with the deterministic components, so Z(0) = hA and

z(0)
T
= hαT , while Z(1) and z(1)

T
have elements that are arbitrary random

variables. In order to derive methods with strong global order one, the ex-
istence of stochastic Taylor series expansion of the SRK method in the Itô
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case and the Itô Taylor series expansion of the exact solution is necessary.
By comparing these two expansions, the local truncation error over one step
with an exact initial value can be written as (see [3]):

L(t0 + h) = y(t0 + h)− Y (t0 + h) =
∑
t∈T⋆

e(t) F (t)y0,

where e(t) and F (t)y0 are called the local truncation error coefficients and the
elementary differential for tree t, respectively and T ⋆ is the set of bi-coloured
rooted trees . Assuming certain conditions on the cofficients of the method
and satisfying Lipschitz condition for the drift and diffusion cofficients SDE, a
method will have strong global convergence of order one if it has strong local
order one and mean local order one (see [3]). In [9] the order one conditions
for a class of IRKs in the form

Z(0) = hA, z(0)
T
= hαT , Z(1) =

√
hB(1) + J1B

(2), (3)

z(1)
T
=
√
hγ(1)

T
+ J1γ

(2)T ,

are given, where A, B(1) and B(2) are s × s real matrices, and αT =

(α1, . . . , αs), γ
(1)T = (γ

(1)
1 , γ

(1)
2 , . . . , γ

(1)
s ) and γ(2)

T
= (γ

(2)
1 , γ

(2)
2 , . . . , γ

(2)
s )

are row s-dimensional vectors. In fact a SRK method of the form (3) will
have strong global order one if (see [9])

αT e = 1,

γ(1)
T
e = 0,

γ(2)
T
e = 1,

γ(1)
T
B(1)e = −1

2 ,

γ(1)
T
B(2)e+ γ(2)

T
B(1)e = 0,

γ(2)
T
B(2)e = 1

2 ,
αTB(1)e = 0,

γ(1)
T
Ae = 0,

γ(1)
T
(B(1)e)2 + γ(1)

T
(B(2)e)2 + 2γ(2)

T
(B(1)e)(B(2)e) = 0,

γ(1)
T
B(1)2e+ γ(1)

T
B(2)2e+ γ(2)

T
(B(1)B(2)e+B(2)B(1)e) = 0.

(4)

Here e = (1, . . . , 1)T ∈ Rs and multiplication of vectors are componentwise.
If the matrices A, B(1) and B(2) are strictly lower triangular, then the method
(3) is said to be explicit, while if A, B(1) and B(2) are lower triangular, then
the method (3) is said to be semi-implicit. A family of two-stage explicit
SRKs of the form (3) with minimum principal error terms can be presented
by the following tableau (see [9]):

0 0 0 0

0 0 − 1
2 (
√
h− J1) 0

h 0 −
√
h

√
h+ J1
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which is called ‘EM1’, and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

1

16
h3,

and the other family of two-stage explicit methods satisfying (4) with mini-
mum principal error constants can be presented by (see [9]):

0 0 0 0

0 0 1
2 (
√
h+ J1) 0

h 0
√
h −

√
h+ J1

which is called ‘EM2’, and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

1

16
h3.

Also the Itô method (see [2]) that is a derivative free version of the Mil-
stein method with strong global order one, can be presented by the following
tableau:

0 0 0 0

0 0
√
h 0

h 0 J1 −
√
h
2 (( J1√

h
)
2 − 1)

√
h
2 (( J1√

h
)
2 − 1)

This method is called ‘IRK’ and has the principal error constants

1

3
h3,

1

3
h3,

1

6
h3,

3

8
h3.

In [1] a class of semi-implicit and implicit Stratonovich Runge-Kutta meth-
ods of strong order one with minimum principal error constants for SDEs is
constructed. More precisely, this class of semi-implicit and implicit two-stage
Stratonovich Runge-Kutta methods with minimum principal error cofficients
can be presented, by the following tableau (see [1])

3+
√
3

6 h 0 3+
√
3

6 J1 0

−
√
3
3 h

3+
√
3

6 h −
√
3
3 J1

3+
√
3

6 J1
1
2h

1
2h

1
2J1

1
2J1

and

1
4h

3−2
√
3

12 h 1
4J1

3−2
√
3

12 J1
3−2

√
3

12 h 1
4h

3−2
√
3

12 J1
1
4J1

1
2h

1
2h

1
2J1

1
2J1

which are called ‘SIM1’ and ‘IM ’, respectively. In order to generalize the
above explicit IRKs to semi-implicit case, consider s = 2, hence the matrices
A, B(1) and B(2) will have the following forms:
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A =

(
a11 0
a21 a22

)
, B(1) =

(
b
(1)
11 0

b
(1)
21 b

(1)
22

)
, B(2) =

(
b
(2)
11 0

b
(2)
21 b

(2)
22

)
.

Now by system equations (4) and according to the structure of matrices A,
B(1) and B(2) of the above form and by MAPLE, we have the following
system equations of ten equations with fifteen unknowns:

α1 + α2 = 1,

γ
(1)
1 + γ

(1)
2 = 0,

γ
(2)
1 + γ

(2)
2 = 1,

γ
(1)
1 b

(1)
11 + γ

(1)
2 b

(1)
21 + γ

(1)
2 b

(1)
22 = − 1

2
,

γ
(1)
1 b

(2)
11 + γ

(1)
2 b

(2)
21 + γ

(1)
2 b

(2)
22 + γ

(2)
1 b

(1)
11 + γ

(2)
2 b

(1)
21 + γ

(2)
2 b

(1)
22 = 0,

γ
(2)
1 b

(2)
11 + γ

(2)
2 b

(2)
21 + γ

(2)
2 b

(2)
22 = 1

2
,

α1b
(1)
11 + α2b

(1)
21 + α2b

(1)
22 = 0,

γ
(1)
1 a11 + γ

(1)
2 a21 + γ

(1)
2 a22 = 0,

γ
(1)
1 b

(1)
11

2
+ γ

(1)
2

(
b
(1)
21 + b

(1)
22

)2
+ γ

(1)
1 b

(2)
11

2
+ γ

(1)
2

(
b
(2)
21 + b

(2)
22

)2
+ 2γ

(2)
1 b

(1)
11 b

(2)
11

+2γ
(2)
2

(
b
(2)
21 + b

(2)
22

)(
b
(1)
21 + b

(1)
22

)
= 0,

2γ
(2)
1 b

(1)
11 b

(2)
11 + γ

(2)
2

(
b
(1)
21 b

(2)
11 + b

(1)
22 b

(2)
21 + 2b

(1)
22 b

(2)
22 + b

(2)
21 b

(1)
11 + b

(2)
22 b

(1)
21

)
+γ

(1)
1 b

(1)
11

2
+ γ

(1)
2

(
b
(1)
21 b

(1)
11 + b

(1)
22 b

(1)
21

)
+ γ

(1)
2 b

(1)
22

2
+ γ

(1)
1 b

(2)
11

2

+γ
(1)
2

(
b
(2)
21 b

(2)
11 + b

(2)
22 b

(2)
21

)
+ γ

(1)
2 b

(2)
22

2
= 0.

(5)

Moreover, by system equations (4), since αTB(1)e = 0 and γ(1)
T
Ae = 0,

hence we can minimize the error constants corresponding to trees [τ1]0 and
[τ0]1, that are given by

E[I10 − z(0)
T
Z(1)e]

2
=
(

1
3 −

(
αTB(2)e

)
+
(
αTB(2)e

)2
+
(
αTB(1)e

)2)
h3

=
(

1
3 −

(
αTB(2)e

)
+
(
αTB(2)e

)2)
h3,

E[I01 − z(1)
T
Z(0)e]

2
=

(
1
3 −

(
γ(2)

T
Ae
)
+
(
γ(2)

T
Ae
)2

+
(
γ(1)

T
Ae
)2)

h3

=

(
1
3 −

(
γ(2)

T
Ae
)
+
(
γ(2)

T
Ae
)2)

h3.

These error constants are minimized with the minimum value 1
12 if

αTB(2)e =
1

2
, γ(2)

T
Ae =

1

2
,

or equivalently, if {
α1b

(2)
11 + α2b

(2)
21 + α2b

(2)
22 = 1

2 ,

γ
(2)
1 a11 + γ

(2)
2 a21 + γ

(2)
2 a22 = 1

2 .
(6)

By augmenting equations (6) to system (5) and solving the new system by
MAPLE it is observed that the new system has a three parameters solution
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that are given by
a11 = 1

2 , a21 = 1
2 − a22, α1 = α2 = 1

2 ,

b
(1)
11 = 1

4γ
(1)
2

, b
(1)
21 =

2b
(2)
22 −1

4γ
(1)
2

, b
(1)
22 = − b

(2)
22

2γ
(1)
2

, γ
(1)
1 = −γ(1)2 ,

b
(2)
11 = 1

2 , b
(2)
21 = 1

2 − b
(2)
22 , γ

(2)
1 = γ

(2)
2 = 1

2 , γ
(1)
2 ̸= 0.

(7)

In order to determine the free parameter of the deterministic part, i.e. a22,
we choose the deterministic part of SRK method (2) to be the Runge –Kutta
method given by

1
2

1
2 0

1
2

1
4

1
4

1
2

1
2

that is, it has order 2 (see [4]). This ensures that the semi-implicit method
works well in the case of small stochastic influence. From (7) we can assume

A = B(2), and consequently for γ
(1)
2 ̸= 0, a one-parameter solution can be

represented by the following tableau

1
2h 0

√
h

4γ
(1)
2

+ 1
2J1 0

1
4h

1
4h −

√
h

8γ
(1)
2

+ 1
4J1 −

√
h

8γ
(1)
2

+ 1
4J1

1
2h

1
2h −γ(1)2

√
h+ 1

2J1 γ
(1)
2

√
h+ 1

2J1

In order to choose γ
(1)
2 , one can use the minimum of the error constants

corresponding to trees [[τ1]1]1 and [τ1, τ1]1, that are given by
E[I111 − z(1)

T
Z(1)2e]

2
=

(
3+96γ

(1)
2

2
+560γ

(1)
2

4

3072γ
(1)
2

4

)
h3,

E[I111 +
1
2I01 −

1
2z

(1)T
(
Z(1)e

)2 − 1
2z

(1)TZ(0)e]
2
=

(
1+8γ

(1)
2

2
+48γ

(1)
2

4

1024γ
(1)
2

4

)
h3.

By introducing two functions f and g in the following form

f(λ) =
3 + 96λ2 + 560λ4

3072λ4
, g(λ) =

1 + 8λ2 + 48λ4

1024λ4

it can be shown that these are decreasing functions on the interval (0,+∞),
and moreover

lim
λ→+∞

f(λ) =
35

192
, lim

λ→+∞
g(λ) =

3

64
.

Now by choosing γ
(1)
2 = 3, this class of methods can be represented by the

following tableau
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1
2h 0

√
h

12 + 1
2J1 0

1
4h

1
4h −

√
h

24 + 1
4J1 −

√
h

24 + 1
4J1

1
2h

1
2h −3

√
h+ 1

2J1 3
√
h+ 1

2J1

which is named ‘SIM2’, and has principal error constants

1

12
h3,

1

12
h3,

15409

82944
h3,

3961

82944
h3.

Note that the principal error coefficients corresponding to trees [[τ1]1]1 and
[τ1, τ1]1, are very close to the limits of f and g as λ → +∞, respectively.
Since f and g are even functions, the above analysis shows that the choice

γ
(1)
2 = 3 is suitable. If we use the 1-norm to estimate the contribution of all

error terms to the principal error term, then, Table1 represents the following
values for methods ‘IRK’ , ‘EM1’ , ‘EM2’ and ‘SIM2’.

Table 1: 1-norm of principal error coefficients

IRK EM1 EM2 SIM2
∥principal error∥1 1.2083 0.89583 0.89583 0.40019

From Table1, it follows that the 1-norm principal error of the method ‘SIM2’
is less than the 1-norm principal error of ‘EM1’ and ‘EM2’ methods. In order
to improve the results of employing the ‘SIM2’ method at each step, we can
solve the system for stage-variables Y1 and Y2 by the fixed-point iteration
scheme with starting values for these variables coming from the ‘EM1’ or
‘EM2’ methods. In fact, for the stage-variable Y1 in the ‘SIM2’ method let

G1(Y1) ≡ yn +
1

2
h g0(Y1) +

1

12
(
√
h+ 6J1) g1(Y1),

and hence the fixed-point iteration for solving Y1 is given by

Y1
[s+1] = G1(Y1

[s]), s = 0, 1, 2, . . . , (8)

with stopping criteria

|Y [s+1]
1 − Y [s]

1 | < ϵ, (9)

where ϵ is a positive known tolerance value. In order to consider the conver-
gence property of fixed point iterations (8), it is sufficient to have

| G′
1(Y ) |=| 1

2
h g′0(Y ) +

1

12
(
√
h+ 6J1) g

′
1(Y ) |< 1.

Also for the stage-variable Y2, let
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G2(Y2) ≡ yn +
1

4
h (g0(Y1

[s+1]) + g0(Y2)) +
1

24
(−
√
h+ 6J1) (g1(Y1

[s+1]) + g1(Y2)),

such that Y
[s+1]
1 satisfy condition (9). Consequently the fixed-point iteration

for solving Y2 is given by

Y2
[t+1] = G2(Y2

[t]), t = 0, 1, 2, . . . , (10)

with stopping criteria

|Y [t+1]
2 − Y [t]

2 | < ϵ. (11)

Note that iterations (10) is convergent if

| G′
2(Y ) |=| 1

4
h g′0(Y ) +

1

24
(−
√
h+ 6J1)g

′
1(Y ) |< 1.

Finally yn+1 for the ‘SIM2’ method will be evaluated by

yn+1 = yn +
1

2
h
(
g0

(
Y

[s+1]
1

)
+ g0

(
Y

[t+1]
2

))
+

(
−3
√
h+

1

2
J1

)
g1

(
Y

[s+1]
1

)
+

(
3
√
h+

1

2
J1

)
g1

(
Y

[t+1]
2

)
,

where Y
[s+1]
1 and Y

[t+1]
2 satisfy conditions (9) and (11).

3 Numerical results and conclusion

In this section, the numerical results from the implementation of the above
seven methods are compared. These methods are ‘IRK’, ‘Milstein’, ‘EM1’,
‘EM2’, ‘SIM1’, ‘IM ’ and ‘SIM2’. They will be implemented with constant
stepsize on two problems taken from [5], for which the exact solution in terms
of a Wiener process is known. Since J1 ∼ N(0, h), hence for generating the
Wiener increments J1 in MATLAB environment of random numbers genera-
tor randn (#traj,#step) is used, such that each call to randn (#traj,#step)
creates a #traj×#step matrix of independent N(0, 1) samples. When these
methods are simulated, the same sequence of random numbers for the Wiener
increment J1 are used for the stepsize under consideration. The average error
for each stepsize at the end of the interval of integration is defined by

AE =
1

K

K∑
i=1

| y(i)N − y
(i)(tN ) |,
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where y
(i)
N is the numerical approximation and y(i)(tN ) is the exact solution of

SDE at tN in the i-th simulation over all K simulations. All of the numerical
results are based on 1000 simulated trajectories. The results appear in Tables
2-4.
Test problem 1. Consider

dy(t) = −a2y(t)(1− y2(t))dt+ a(1− y2(t))dW (t), y(0) = 0, t ∈ [0, 1]

with the exact solution

y(t) = tanh(aW (t) + arctanh(y0)).

This problem is solved numerically with the choice of parameter a = 1.

Table 2: Global errors for Test problem 1, with a = 1, K = 1000 and ϵ = 0.001

h 1
25

1
50

1
100

1
200

1
400

IRK 0.21400e-1 0.10299e-1 0.51948e-2 0.24299e-2 0.12254e-2
Milstein 0.16276e-1 0.82454e-2 0.42156e-2 0.19930e-2 0.10127e-2
EM1 0.12121e-1 0.59344e-2 0.30475e-2 0.14587e-2 0.70585e-3
EM2 0.12043e-1 0.57056e-2 0.29270e-2 0.13901e-2 0.71060e-3
SIM1 0.55857e-2 0.21190e-2 0.96207e-3 0.45136e-3 0.22157e-3
IM 0.13035e-3 0.64121e-4 0.34962e-4 0.17710e-4 0.81462e-5
SIM2 0.80715e-4 0.44013e-4 0.21736e-4 0.10551e-4 0.51995e-5

Test problem 2. Consider

dy(t) = −(α+β2y(t))(1−y2(t))dt+β(1−y2(t))dW (t), y(0) = 0.5, t ∈ [0, 1]

with the exact solution

y(t) =
(1 + y0) exp(−2αt+ 2βW (t)) + y0 − 1

(1 + y0) exp(−2αt+ 2βW (t)) + 1− y0
.

This problem is solved numerically with α = −1 and for β = 1 and 0.01.
Comparing the numerical results in Tables 2-4, it follows that the ‘SIM2’
method is more accurate than the ‘EM1’, ‘EM2’, ‘SIM1’ and ‘IM ’ methods.
Also for problems in which the deterministic term dominates (Test problem
2 with β = 0.01) the improvement of the ‘SIM2’ method becomes noticeable
as the stepsize is reduced. This is because the deterministic component of
the ‘SIM2’ method is the second order Runge-Kutta method. On the other
hand, for problems in which deterministic term dominates (Test problem 2
with β = 0.01) the global errors for two-stage explicit methods are the same.
This is because these methods the deterministic components are the same.
The future work should be based on the construction of implicit IRKs for
SDEs with two or more Wiener processes.
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Table 3: Global errors for test problem 2, with α = −1, β = 1, K = 1000 and ϵ = 0.001.

h 1
25

1
50

1
100

1
200

1
400

IRK 0.12763e-1 0.58682e-2 0.29961e-2 0.15034e-2 0.74495e-3
Milstein 0.11513e-1 0.51633e-2 0.27770e-2 0.13806e-2 0.68995e-3
EM1 0.96413e-2 0.41781e-2 0.21225e-2 0.10660e-2 0.54324e-3
EM2 0.93988e-2 0.42298e-2 0.20985e-2 0.10210e-2 0.52317e-3
SIM1 0.65238-3 0.32108e-3 0.15186-3 0.65537e-4 0.30367e-4
IM 0.79517e-4 0.42130e-4 0.21167e-4 0.10561e-4 0.51995e-5
SIM2 0.57845e-4 0.30499e-4 0.15806e-4 0.79504e-5 0.37761e-5

Table 4: Global errors for test problem 2, with α = −1, β = 0.01, K = 1000 and ϵ = 0.001

h 1
25

1
50

1
100

1
200

1
400

IRK 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
Milstein 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
EM1 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
EM2 0.50778e-2 0.25193e-2 0.12544e-2 0.62592e-3 0.31264e-3
SIM1 0.70238e-5 0.34182e-5 0.17423e-5 0.52895e-6 0.25624e-6
IM 0.55102e-5 0.26426e-5 0.13193e-5 0.58242e-6 0.29121e-6
SIM2 0.62103e-6 0.15741e-6 0.40441e-7 0.10595e-7 0.28838e-8
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ایتو تصادفی دیفرانسیل معادلات برای قوی تقریب

نامجو مهران

ریاضی گروه ریاضی، علوم دانشکده رفسنجان، عصر ولی دانشگاه

قوی مرتبه از ضمنی نیمه ی ا مرحله دو تصادفی رانگ–کوتا روشهای از ای خانواده مقاله این در : چکیده
رود، می بکار وینر فرایند یک با ایتو تصادفی دیفرانسیل معادلات حل برای که خطا ثابتهای مینیمم با یک
ایتو، روش صریح، ای مرحله دو ایتو رانگ–کوتا روشهای به نسبت روش این کارایی است. شده معرفی
نتایج از استفاده با ضمنی و ضمنی نیمه ای مرحله دو استراتنویچ رانگ–کوتا روشهای و مایلشتن روش

است. شده داده نشان عددی

رانگ–کوتا. روشهای قوی؛ تقریب تصادفی؛ دیفرانسیل معادلات : کلیدی کلمات
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