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RBFs meshless method of lines based
on adaptive nodes for Burgers’

equations

A.R. Soheili∗, M. Arab Ameri and M. Barfeie

Abstract

We introduce a RBFs mesheless method of lines that decomposes the

interior and boundary centers to obtain the numerical solution of the time
dependent PDEs. Then, the method is applied with an adaptive algorithm
to obtain the numerical solution of one dimensional problems. We show that
in the problems in which the solutions contain region with rapid variation,

the adaptive RBFs methods are successful so that the PDE solution can be
approximated well with a small number of basis functions. The method is
described in detail, and computational experiments are performed for one-
dimensional Burgers’ equations.

Keywords: Method of Lines; Radial basis functions; Adaptive Method;
Burgers’ Equations.

1 Introduction

The radial basis functions (RBFs) methods are one of the most attractive
meshless methods. These methods are easy to implement, very suitable for
problems in irregular geometries and the formulation for different dimensional
problems are similar. Also, this method can be spectrally accurate [11]. A set
of points called centers are needed to define the RBFs. Therefore, a RBF can
be defined anywhere in a given domain, independently to the other RBFs.
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Both the approximation quality and the stability of the RBFs interpolation
depend on the positions of the centers set [9].

The condition number of RBFs collocation methods becomes large when
the number of centers increases, while reducing the number of centers im-
proves the conditioning [9, 13]. In order to obtain numerical solution with
the minimal numbers of centers, we can use a set of adaptive nodes rather
than uniform ones. Especially in problems whose solutions contain regions of
rapid variation, adaptive methods are preferred over fixed grid methods, [17].
The goal of an adaptive method is to obtain a numerical solution such that
the error is less than a prescribed accuracy but with the minimal number
of grid points. By using adaptive methods, the computational grid should
reflect the profile of the solution. Clearly, grids with finer spacing should be
concentrated in regions, where high variations occur, and much coarser grids
can be used in other regions.

Some methods have been constructed to select centers of RBFs. In [6, 26],
the power function is used to iteratively obtain an optimal set of nodes. In
[25], an adaptive algorithm so-called residual sub-sampling is introduced such
that nodes can be added or removed based on residuals evaluated at a finer
set of nodes. Our goal is to move a fixed numbers of nodes in such a way that
nodes move with time and concentrate in region of domain that the solution
has rapid variations. To this goal in this paper, we use a simple adaptive
nodes generation method that is used for finite difference computations [24]
and RBFs method [23]. Also we introduce a RBFs meshless method of lines
to solve time dependent PDE with adaptive centers. In this method, we
divide centers to interior and boundary data centers and obtain the expansion
coefficients of boundary centers as a function of interior ones. This gives an
ODEs system that is only related to the expansion coefficients of the interior
data centers instead of all data centers. Actually after approximation spatial
derivatives of equation and boundary condition with RBFs, we have a system
of differential algebraic equations (DAEs) [5]. By decomposing centers and
replacing boundary coefficients as a function of interior ones we obtain a
smaller system of ODEs. The resultant system of ODEs can be solved with
a proper ODE solver. We use the function ode15s in Matlab for solving the
resulting system of ordinary differential equations.

In this paper, in order to combine the adaptive method and the RBFs
method of lines, we start with a set of uniform centers, then the adaptive
method is used to obtain new centers for initial condition. After obtaining
the adaptive centers, the PDE is advanced for a small time step. The ode15s
in Matlab is used for solving the resultant ODEs system. Then, the numer-
ical solution of the PDE is used to obtain adaptive centers for next time.
The procedure is repeated until the final time. We perform computational
experiment for unsteady Burgers’ equations and demonstrate the benefits of
adaptation in the numerical experiments.

The rest of the paper is organized as follows. In Section 2 at first the
RBFs method of lines is introduced, then adaptive method is extended for
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time dependent PDEs. Numerical experiment are given in Section 3. Finally,
the conclusion is given in Section 4.

2 Meshless method of lines with adaptive RBFs

In this section, we introduce a RBFs mesheless method of lines that decom-
poses the interior and boundary centers to obtain the numerical solution of
the time dependent PDEs. Then, apply the method with an adaptive algo-
rithm to obtain the numerical solution of one dimensional Burgers’ equations.

2.1 RBFs meshless method of lines

There are two classes of RBFs, known as globally supported and locally
supported [22, 16]. Globally supported RBFs are infinitely smoothed and
contain a free parameter ϵ, called shape parameter. This parameter affects
both accuracy of the solutions and conditioning of the collocation matrix. As
ϵ decreases, numerical solution of PDEs gets more accurate and the condition
number of the resulting matrix gets larger. If the shape parameter becomes
too small, the ill-conditioned matrix leads to numerical instabilities and loss
of precision. Thus it is important to select a good values for ϵ. There are
some paper related to select an optimal value for RBFs shape parameter
[21, 1, 14].

Generally a radial basis function is a function ϕi(x, ϵ) = ϕ (ϵ∥x− xi∥2),
which depends solely on the distance between x ∈ R and a fixed center xi ∈ Ω.
ϕi : R+ → R is a continuous function and ∥·∥2 represents the Euclidean norm.
The multiquadrics (MQ) RBF proposed by Hardy [3], is one of the most
used globally supported RBFs because of its spectral convergence property.
In [4], Franke showed that the MQ RBF is one of the best methods among
29 scattered data interpolation schemes. We here use MQ RBF defined as
ϕ(r, ϵ) =

√
1 + (ϵr)2.

Let a set of N distinct centers {xi}Ni=1 is given in Ω
∪
∂Ω, where Ω is a

bounded domain in R. We assume that the arrangement of the centers is in
such a way that the first NI centers and the last NB centers lie in Ω and ∂Ω,
respectively, N = NI +NB . Consider the following time dependent PDE of
the general form

∂u(x, t)

∂t
− Lu(x, t) = f(x, t), x ∈ Ω, Bu(x, t) = g(x, t), x ∈ ∂Ω,

(1)
with the initial condition

u(x, 0) = u0(x). (2)



52 A.R. Soheili, M. Arab Ameri and M. Barfeie

L and B are differential and boundary operators respectively. We approxi-
mate the solution of equation (1) by

uN (x) =

NI∑
i=1

ci(t)ϕ (∥x− xi∥) +
N∑

i=NI+1

ci(t)ϕ (∥x− xi∥) . (3)

Using collocation method to ensure that the approximation uN (x) satisfies in
equations (1), one obtains the following system of equations for the expansion
coefficients

A1,1Ċ1 +A1,2Ċ2 = F + Lϕ(C1, C2), (4)

0 Ċ1 + 0 Ċ2 = G(t)− (A2,1C1 +A2,2C2) , (5)

where

A1,1(i, j) = ϕ(∥xi − xj∥), i = 1, . . . , NI , j = 1, . . . , NI ,

A1,2(i, j) = ϕ(∥xi − xj∥), i = 1, . . . , NI , j = NI+1, . . . , N,

A2,1(i, j) = Bϕ(∥xi − xj∥), i = NI+1, . . . , N, j = 1, . . . , NI ,

A2,2(i, j) = Bϕ(∥xi − xj∥), i = NI+1, . . . , N, j = NI+1, . . . , N,

Lϕ(C1, C2)
T = [L1ϕ(C1, C2), . . . ,LNIϕ(C1, C2)],

Liϕ(C1, C2) =

NI∑
j=1

cj(t)Lϕ (∥xi − xj∥) +
N∑

j=NI+1

cj(t)Lϕ (∥xi − xj∥) ,

FT = [f(x1, t), . . . , f(xNI , t)],

and

G(t)T = [g(xNI+1 , t), . . . , g(xN , t)].

Equations (4) and (5) are distinct from ODEs because the coefficient matrix
of the ĊT = [Ċ1, Ċ2] is singular and are referred to as differential-algebraic
equations (DAEs). DAEs differ in many ways from ordinary differential
equations and there are some problems to be expected in solving these sys-
tems. More information about differential-algebraic equations can be found
in [10, 12]. In order to reach a system of ODEs, we obtain C2 and Ċ2 from
equation (5) as follows:

C2 = A−1
2,2 (G(t)−A2,1C1) , (6)

Ċ2 = A−1
2,2

(
Ġ(t)−A2,1Ċ1

)
. (7)

Note that unlike the interpolation problem the invertibility of A2,2 may failed
for some special centers arrangements. However, numerical experiments show
that the cases of singularity for Kansa method is rare [19]. We substitute C2
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and Ċ2 into equation (4) to obtain a NI ×NI nonlinear system of ordinary
differential equation for CI as follows:(

A1,1 −A1,2A
−1
2,2A2,1

)
Ċ1 = F + Lϕ(C1)−A1,2A

−1
2,2Ġ(t), (8)

where

Lϕ(C1)
T = [L1ϕ(C1), . . . ,LNIϕ(C1)],

Liϕ(C1) =

NI∑
j=1

cj(t)Lϕ (∥xi − xj∥) +
N∑

j=NI+1

dj(t)Lϕ (∥xi − xj∥) ,

and dj(t) is jth component of the vector C2 = A−1
2,2 (G(t)−A2,1C1).

After solving the reduced system using a proper ODE solver, its solu-
tion vector C1 is applied to obtain C2 and C, using the relations C2 =
A−1

2,2 (G(t)−A2,1C1) and C = [C1, C2]. This method can be used for high
dimensional problems. In case of one dimensional problem, we have only two
boundary nodes x1 and xN .

2.2 Adaptive method

In this section, the proposed mesheless method of lines that decomposes
the interior and boundary centers to reach a smaller system of equations is
combined with an adaptive algorithm that is used for finite difference and
RBFs computations [24, 23]. In this method, at first the arclength of the
numerical solution is computed. Then, the total length is divided into (N−1)
equal part and the projection of each part onto x-axis determines the position
of adaptive centers. The selected nodes on x-axis are such that the variation
of the solution is equi-distributed on each section.

Suppose that the approximate solution and the centers are given at the
time step tn. The adaptive method is generalized for RBFs and introduced
in the following algorithm:

1) S1 = 0, Sj = Sj−1 +
√
(hnj )

2 + (unj − unj−1)
2, j = 2...N,(

unj = u(xnj , t
n), hnj = xnj − xnj−1

)
.

This step compute the arclength of solution u at time step tn.

2) δ = SN
N−1 , k = 2, x̄n1 = xn1 , x̄

n
N = xnN .

In this step the total length is divided into (N − 1) equal part.
3) For j = 2, · · · , N − 1,∆ = (j − 1)δ.

- while ∆ > Sk put k = k + 1,

- x̄nj = xnk−1 +
(∆−Sk−1)h

n
k

Sk−Sk−1
, Next j.

These steps project each part on solution onto x-axis.
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The set x̄j , j = 2, · · · , (N − 1) are adaptive interior nodes and x̄1, x̄N are
the boundary nodes which are fixed. In using adaptive centers in region with
rapid variations, nodes are close to each other and hence a larger value of
shape parameter is needed. In order to obtain results with a smaller shape
parameter, the final set of centers are selected as .9x̄j + .1xj .

In solving PDE problems, at first we apply the above adaptive algorithm
for the initial condition to obtain the adaptive centers at t = 0. Then,
adaptive centers are used for the RBFs method of lines to advance the PDE
for a small time step. Next, the approximate solution at this time is used
to obtain the adaptive centers again. Note that in each step we need to
interpolate u at the adaptive centers to obtain initial condition for next time.
The procedure is repeated until approximate solution is obtained at the final
time.

3 Numerical experiments

In this section, the proposed method is applied to obtain numerical solution
of Burgers’ equation as follows:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, x ∈ (0, 1), (9)

where Re is the Reynolds number. Equation (9) has shock wave behavior
when the coefficient of kinematic viscosity ν = 1/Re is small. Also, it is
a useful model for many interesting physical problems such as modeling of
fluid dynamics, turbulence, boundary layer behavior, shock wave formation,
traffic flow and is an interesting test problem for establishing the efficiency
of different methods [8, 20].
Example 1. We consider Equation (9) with the following exact solution [15]

u(x, t) =
α+ µ+ (µ− α)exp(η)

1 + exp(η)
, (10)

where η = α.Re.(x− µt− β), α, µ and β are arbitrary constant.

In this example α, µ and β are .4, .6 and .125 respectively. The boundary
conditions are

u(0, t) = 1, u(1, t) = .2 t > 0. (11)

Initial condition is taken from the exact solution. In order to measure the
error, root mean square error (rms) is computed at M evaluation nodes zi
as:
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rms error =

√√√√√√
M∑
i=1

(
uN (zi)− u(zi)

)2
M

.

Table 1 shows the rms error at t = .2, .4, .6, .8 and t = 1 for Re = 100 and
Re = 500. The results are computed for N = 50 adaptive centers. When Re
increases, the gradient of solution become sharper and consequently a larger
values of shape parameter is needed. In this example, the values of shape
parameters for Re = 100 and Re = 500 are 50 and 150, respectively.

The numerical solution in Example 1 at t = .1, t = .5 and t = 1 for
Re = 100 and Re = 500 are shown in Figures 1.a and 2.a respectively.
Figures 1.b and 2.b show the corresponding nodes trajectories. Figures show
that the nodes move with time and are concentrated in region with rapid
variations. When Re increases, the gradient become sharper and the nodes
are more concentrated in region with rapid variations.

The numerical and exact solutions of Example 1 at t = 1 are plotted in
Figure 3. In order to obtain numerical solution with a set of uniform centers a
larger number of nodes is needed [23]. Figure 4 shows the numerical solutions
and absolute errors for N = 50 uniform and adaptive centers. In the case
of using uniform centers, the numerical solution with some oscillations is
obtained for Re = 500 and ϵ = 50 at t = .1. As Figure 5 shows in order
to obtain an acceptebale solution at this time, we need to use more uniform
nodes or a set of adaptive centers.

Table 1: rms error values corresponding to Example 1

Re rms error (t=.2) rms error (t=.4) rms error (t=.6) rms error (t=.8) rms error (t=1)
100 2.121018e-003 3.149610e-003 4.023452e-003 4.826538e-003 5.599954e-003

500 1.485532e-003 1.840686e-003 2.517397e-003 4.152420e-003 6.497818e-003

Example 2. We consider Burgers’ equation (9) with the initial condition

u(x, 0) = sin(πx),

and the boundary conditions

u(0, t) = u(1, t) = 0, t > 0.

The exact solution for this example is given by [15]

u(x, t) =
2πν

∑∞
i=1 iAi sin(iπx)exp(−i2π2νt)

A0 +
∑∞
i=1Ai cos(iπx)exp(−i2π2νt)

, (12)

with the Fourier coefficients
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Figure 1: The numerical solution and corresponding nodes trajectories for N = 50 and

Re = 100
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Figure 2: The numerical solution and corresponding nodes trajectories for N = 50 and
Re = 500

A0 =

∫ 1

0

exp
{
−(2πν)−1(1− cos(πx)

}
dx, (13)

Ai = 2

∫ 1

0

exp
{
−(2πν)−1(1− cos(πx))

}
cos(iπx)dx, i ⩾ 1. (14)

In this example, N = 50 nodes are used. The computation are performed
for a final time t = 3. The numerical solution at t = .01, t = .1, t = 1, t = 2
and t = 3 for Re = 100 and Re = 500 are shown in Figures 6.a and 7.a
respectively. Initial condition in Example 2 does not have rapid variation,
but the variation of the solution increases with time. The variation increases
until a time t0 less than t = .75. After this time, the variation of the solution
decreases. Nodes trajectories also have such behavior. The nodes trajectories
are shown in Figures 6.b and 7.b. Nodes are moved with time and concen-
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Figure 3: The numerical and exact solutions at t = 1 for (a) Re = 100, (b) Re = 500
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Figure 4: The numerical solutions (a) and absolute errors (b) in the case of using uniform
and adaptive centers at t = .1 for Re = 500

trated in region with rapid variations. For t < t0, the variation increases and
nodes are concentrated in region with rapid variation. For t ⩾ t0, the varia-
tion of the solution decreases with the time and hence the nodes trajectories
diverge.

Figure 8 shows the numerical solution, exact solution and the absolute
error at t = 3 when Re = 100, ϵ = 50 and N = 50. We can see that, the
error of the proposed method method is as small as 10−4.

The numerical solution for Re = 500 are obtained for ϵ = 110. In this
case, obtaining numerical results with N = 50 and Re = 500 uniform centers
is not possible as well.
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Figure 5: The numerical and exact solution and absolute error at t = .1 when Re = 500

for N = 100 uniform centers (top) and N = 50 adaptive centers (down)

4 Conclusion

The adaptive MQ RBF method of lines has been proposed for obtaining the
numerical solution of Burgers’ equations. In the method of lines, centers
in the domain were portioned into the interior and the boundary centers.
By portioning centers and obtaining the expansion coefficients for boundary
centers as a function of interior ones, the DAEs system was converted to a
smaller ODEs system. The resulting ODE system was solved with ode15s
in Matlab. Also, we have used a simple adaptive nodes generation method
to enable the method for obtaining numerical solution of the problem with
high gradient. In the adaptive method, the nodes moved with time and
concentrated in region with rapid variation. When the gradient of solution
increases the nodes become more closer in region with rapid variation. In
this case numerical solution can be obtained with less number of centers in
comparison with using uniform centers.

Numerical experiments have been performed for one-dimensional Burgers’
equations. Numerical results show that the proposed adaptive method are
preferred over fixed grid methods. For example, the adaptive method is able
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Figure 6: (a) The numerical solutions at different times for Re = 100 and (b) correspond-

ing nodes trajectories in Example 2
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Figure 7: (a) The numerical solutions at different times for Re = 500 and (b) correspond-
ing nodes trajectories in Example 2

to solve Burgers’ equation for Re = 500 and N = 50 whereas the numerical
solution could not be obtained for N = 50 uniform centers.
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برگرز معادلات حل براي شده تعديل نقاط برمبناي شعاعي پايه توابع شبکه بدون خطوط روش

برفه�اي۲ مهديار و ۲ عامري عرب مريم ،۱ سهيلي عليرضا

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه ۱

خطی غیر و خطی های سیستم محاسبات و مدلسازی علمی قطب مشهد، فردوسی دانشگاه ۱

ریاضی دانشکده بلوچستان، و سیستان دانشگاه ۲

مي�شود معرفي جزيي مشتقات با معادلات حل براي شعاعي پايه توابع مبناي بر خطوط روش يک : چکیده
تعديل الگوريتم يک با همراه روش اين مي�کند. جدا را دروني و مرزي نقاط جواب، آوردن بدست براي که
تعديل نقاط هستند، مواجه جواب در شديد تغييرات با که مسايلي براي مي�دهيم نشان مي�رود. بکار نقاط
با را جواب مي�توان کمتر نقاط تعداد با که گونه�اي به دارند بهتري عملکرد يکنواخت نقاط به نسبت شده

است. رفته بکار برگرز معادله حل براي روش آورد. بدست نظر مورد دقت

برگرز. معادلات تعديل؛ روش�هاي شعاعي؛ پايه توابع خطوط؛ روش : کلیدی کلمات
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