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The block LSMR algorithm for solving
linear systems with multiple
right-hand sides

F. Toutounian* and M. Mojarrab

Abstract

LSMR (Least Squares Minimal Residual) is an iterative method for the
solution of the linear system of equations and least-squares problems. This
paper presents a block version of the LSMR algorithm for solving linear sys-
tems with multiple right-hand sides. The new algorithm is based on the block
bidiagonalization and derived by minimizing the Frobenius norm of the resid-
ual matrix of normal equations. In addition, the convergence of the proposed
algorithm is discussed. In practice, it is also observed that the Frobenius
norm of the residual matrix decreases monotonically. Finally, numerical ex-
periments from real applications are employed to verify the effectiveness of
the presented method.

Keywords: LSMR method; Bidiagonalization; Block methods; Iterative
methods; Multiple right-hand sides.

1 Introduction

This paper is concerned with the solution of linear system of the form

AX =B, AeR"™" BeR"™® s<n. (1)
If A is large and sparse or sometimes not readily available, then iterative
solvers may become the only choice. These solvers are categorized to the
following three classes:
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The first class is the global methods. The term global is due to Saad [34]
and has been further expanded by Jbilou et al. [21] with the global FOM and
GMRES algorithms for matrix equations. These methods are based on the
use of a global projection process onto a matrix Krylov subspace. References
on this class include [2,7,8,12,13,13,21-23,25-27,32, 33].

The second class is the seed methods. The main idea of this kind of
methods is briefed below. We first select a single system as the seed system
and generate the corresponding Krylov subspace. Then we project all the
residuals of the other linear systems onto the same Krylov subspace to find
new approximate solutions as initial approximations. See [3,5,7,18,20,30,35]
for details.

The last class is the block methods which are more suitable for dense
systems with preconditioner. The first block solvers are the block conjugate
gradient (BI-CG) algorithm and the block biconjugate gradient (BI-BCG) al-
gorithm proposed in [28]. Variable BI-CG algorithms for symmetric positive
definite problems are implemented on parallel computers [19,29]. If the ma-
trix is symmetric, an adaptive block Lanczos algorithm and a block version of
Minres method are devised in [17]. For nonsymmetric problems, the BI-BCG
algorithm [6, 28], the block generalized minimal residual (BI-GMRES) algo-
rithm [1,1,4,7,9-11,36,37], the block quasi minimum residual (BI-QMR) al-
gorithm [14], the block BiCGStab (BI-BICGSTAB) algorithm [31], the block
Lanczos method [34] and the block least squares (BI-LSQR) algorithm [15]
have been developed.

In this paper, we present a block version of LSMR algorithm [4] for solving
the problem (1). Our algorithm is based on the block bidiagonalization [9].
We construct a simple recurrence formula for generating the sequences of ap-
proximations { X} such that the Frobenius norm of A7 Ry decreases mono-
tonically, where Ry = B — AX}.

Throughout this paper, we use the following notations. For two n X s
matrices X and Y, we define the following inner product: (X,Y) = tr(XTY),
where tr(Z) denoted the trace of the square matrix Z. The associated norm
is the Frobenius norm denoted by || - ||p. We will use the notation (-,-)o for
the usual inner product in R™ and the associated norm denoted by || - ||2.
Finally, 05 and I, will denote the zero and the identity matrices in R%*%.

The remainder of this paper is organized as follows. In Section 2, we give
a sketch of the LSMR method and its properties. In Section 3, we present
the block version of the LSMR algorithm. In Section 4, the convergence of
the presented algorithm is considered. In Section 5, some numerical experi-
ments on test matrices from the University of Florida Sparse Matrix Collec-
tion(Davis [7]) are presented to show the efficiency of the method. Finally,
we make some concluding remarks in Section 6.
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2 The LSMR algorithm

In this section, we present a brief of the LSMR algorithm [4], which is an
iterative method for solving real linear system of the form

Az = b,

where A is a matrix of order n and z,b € R™.

LSMR algorithm uses an algorithm of Golub and Kahan [10], which is
stated as procedure Bidiag 1 in [32] to reduce the augmented matrix [b A] to
the upper-diagonal form [31e; By|, where e; denotes the first column of the
identity matrix. The procedure Bidiag 1 can be described as follows.

Bidiag 1 (Starting vector b; reduction to lower bidiagonal form)
Brur =b, ayvy = Aluy,

Bir1uit1 = Av; — ouy, .
— 7 i=102,... 2)
Qi41Vi1 = A" i1 — Big1vi,

The scalars o; > 0 and 3; > 0 are chosen so that ||u;|ly, = |lvil|, = 1. With
the definitions

(€3]
B2 az
Uy = [uy,ug, ... ug], Vi=[vi,v9, ... ,0], Bp= ,
Br o
Bre+1
Lit1 = [Be owsiers1], Vigr = [Vi vrs1]
the recurrence relations (2) may be rewritten as
Uk+1(Bre1) = b,
AVy, = Up11 By,
ATUk+1 = VkBg + ak+1vk+1e£+1 = Vk+1Lg+1'
BT
ATAVk = ATUk_HBk = Vk+1L£_~_1Bk - Vk+1 kT Bka
Ok+1€k41
BB,
=V k .
i |:Oék+16k+1€£:|

This is equivalent to what would be generated by the symmetric Lanczos pro-
cess with matrix AT A and starting vector ATb. As we observe the procedure
Bidiagl will be stop if Av; — ayu; = 0 or ATu;yq — Biy1v; = 0, for some i.
In exact arithmetic, we have U;?+1Uk+1 =1 and VkTVk = I, where [ is the
identity matrix.
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Hence using procedure Bidiag 1 the LSMR method constructs an approxi-
mation solution of the form x; = Vjyi which solves the least-squares problem
miny, [|ATry|, where rj, = b — Azj. The main steps of the LSMR algorithm
can be summarized as follows.

Algorithm 1 LSMR algorithm

Set fruy = b, cnvy = ATuy, @1 =y, G = a1fr, po =1, P9 =1,0 =1,
50=0, hy =v1, hg =0, zg =0,
For k =1,2,..., until convergence Do:
Br+1Ur+1 = Avg — gy,
Q1 V1 = ATule = Br+1Vks
Pk = (a% + Bl%+1)§7
Cr = Qi /pr,
5k = Brt1/Pk,
Or+1 = SpQg41,
Qg1 = CLQk41,
O = Sk—1p%,

Pr = ((6k—1pk>2 + 9%4-1) )

Cr = Cr—1Pk/Pr

Sk = Ok41/Py

Ck = CiCry

Cht1 = —5kCp _

i = hie — Orpr/ (Pk—1Pp—1) ) -1,

zp = wp-1 + (Cu/ (PkPR)) Pk

Pit1 = vkt — (Ok+1/pr) Ik,

If [}y 1] is small enough then stop,
End Do.

[N

More details about the LSMR algorithm can be found in [4].

3 The block LSMR method

We first recall the block Bidiag 1 algorithm [9]. This algorithm is the basis
for our block LSMR method.

The block Bidiag 1 procedure constructs the sets of the n x s block vectors
Vi,Va,... and Uy, Us,... such that V;'V; = 05, UFU; = 05, for i # j, and
VZ«TVZ- = I, UiTUi = I,; and they form the orthonormal basis of Rnxks

Block Bidiag 1 (Starting matrix B; reduction to block lower bidiagonal
form)
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U\B, =B, V1A, =ATU,,

Uis1Biy1 = AV, — U; AT :

L = 1’ 2, ’k7 3
VinrAips = ATUiy ~ ViBLy, [ ®)
where U;,V; € R"*%; B;,; A; € R¥*®, and Uy By, V1 A1, Ui1Big1, Vig14in

are thin QR decompositions of the matrices B, ATUy, AV, —U; AT, ATU, 11 —
VZ-B;{H, respectively. With the definitions

A7

By AT
Uk = [Ul, UQ, ..

(I Uk]7vkE[V1, ‘/'27 cee Vk:])Tk::

Bp AT
By
the recurrence relations (3) may be rewritten as:
U1 E1B, = B,
AV = Upy1 Ty,
ATUi1 = Vi + Viep1 Ae B,
where FE; is the (k 4+ 1)s x s matrix which is zero except for the rows i to
i + s, which are the s X s identity matrix. We have also vak = Is and
7T J—
Uk+1Uk+1 = I(k+1)s, where Il

is the [ x [ identity matrix. We define

ka = [Tk Ek+1A£+1} s
then

T* ¥ 5 7T
A Ukt1=Vi1 Ly,

_ _ _ _ TT
ATAV, = ATU 1Ty = Vs Leo Te = V k T
k k+14Lk k+1ltpy14k k+1 Ak+1Eg+1 k

T
=Vin |:Ak+2:’b§ilTk:| - @
At iteration k we seek an approximate solution X}, of the form
Xy, = ViYa,
where Y}, is an ks x s matrix. Let By = A By, for all k. Since
ATR, = ATB — AT AX,,
=V1A1B, — ATAV Y3,
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we have
ATRy =ViBy — Vi T Ti Yy
A BL L T
_ _ TI'T,
=Vig1 (BB — | " o Vi), (6)
k+1Ey

where E}, is the ks x s matrix, which is zero except for kth s rows, which are
the s x s identity matrix.

In the block LSMR algorithm, we would like to choose Y}, € RF** which
minimizes the Frobenius norm of AT Ry. From (6), AT R), can be written as

E\B) — TI'T},Y:

ATRy = Vi —
—Bi1EL Y

; (7)

where E, is the matrix obtained {rom F; by deleting its last block row. But
since the columns of the matrix V1 are orthonormal, it follows that:

~ 2
E\ B, — TIT.Y, - _ 7
A Rel3 = ||| 75 L | = BB T T+ [ Bisa By Yl -
BB Yy »
(8)
We now define the linear operators xj and vy as follows.
For Y € RFsxs
xx(Y) =T T,Y,
and
B
Vr(Y) = Brs1 B Y.
Then the relation (8) can be expressed as
IAT Ryl = [Ixe(Ye) — E1Ball3 + [l (Vi) 13- (9)

Therefore, Y}, minimizes the Frobenius norm of the quantity AT Ry if and
only if it satisfies the following linear matrix equation

XF (e (Yi) — ExBy) + f (¥n (Vi) = 0s, (10)

where the linear operators Xf and w,z are the transpose of the operators
and 1)y, respectively. Therefore, (10) is also written as the following

~ S A —
(T To) (T ThYy — EvBa) + (B By (Brir Ey Vi) = 05 (11)

Hence, Y}, is given by R
Yy, = T, ' Fy,

where



The block LSMR algorithm for solving linear systems with ...

Ty = (T Ty)? + ExByy1 Bin By, Fr, =T TE1\By.

We define the matrix T, as follows:

A, By
_ 7T, By Ay
BB, - gk
By Ay
Bit1

where A; = A; AT + B;ﬂ_lBiH, fori=1,2,..., k. Therefore

~ J P P

Ty =TT, F,=[A41B1)"(B2B1)"05...04]",
and the approximate solution of the system (1) is given by

X = kal;le'

(13)

Suppose that using the QR decomposition [11], we obtain a unitary matrix

@}, such that

(@1 B, §3 B
s B3 64
. . R, . . .
Tk: = Q l: :| Rk - — —
Osxks Q2 B Ok
Qp—1 By
Qg |

)

where Ry, is upper triangular as shown and @;, 3;, 0; are the s x s matrices.

So,
= —=T= \_1
X =Vi(R, Ry) " Fy.

By setting

= = =1

P,=ViR, =[P P,... P,
and . .

Fro=R, Fe=[el 93 ...0f]",

we have

Py = (Vi — P20y, — Pr_1B),)a;, ",
Xp = Xp—1+ Prop.

From (15) the residual Ry, is given by
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Ry = Rg—1 — APy, (16)

where AP can be computed from the previous AP;’s and AV} by the simple
update 3 B
AP, = (AVk — APy _50), — APk_lﬁk)agl.

In addition, as [4], we show that the |Rg||r can be estimated by a simple
formula. By transforming T} to block upper-bidiagonal form using a QR

factorization: []f)k] = @kHTk with @k—H = ﬁk ... ]31, we have

R, =B — AX,
=U;B; — AV .Y,
=Upt1(E1 By — Ty Ys)

~

= Uk+1@£+1(@k+lE1Bl - {%k} Yi).

Since the columns of the matrices Q41 and ﬁk_H are orthonormal, we have

~

A R
IRullr = 1Qun sy~ | | vl (17)
With definitions
@kHElBl = [B}F ngl 51{ BkTH]Ta EkY = [7~'1T Nka1 7"kT]T7 (18)

the following Lemma shows that we can estimate ||Ry||r from just the last
two blocks of Q11 E1 B and the last block of RY.

Lemma 1. In (17) and (18), B; = 7; fori=1,2,... k— 1.

Proof. The proof is similar to that of Lemma 3.1 in [4] (see [28]). O

For the Frobenius norm of AT Ry, by using Theorem 1 (in section 4), we
can also obtain the following simple formula:

IAT Re||% = |A" Ry ||F = llellE,  with [|ATRo|lp = [[Billr = [lvoll -

Now we can summarize the above descriptions as the following algorithm.
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Algorithm 2 Algorithm (BI-LSMR )
Set XO = On><s7
Set ag = 0Oy, 5_1 = 0y, Bo = I, ¢g = 04, 3_1 = 0y, 30 = I,
Set P_1 = PO = Onxsa
Compute U; B; = B, V1 A; = ATU; (QR decomposition of B and ATU;),
Set El = AlBl,
Set Y—-1 = OS, $o = —El,
Set || AT Rollr = llol| 7,
For k =1,2,..., until convergence Do:
Wi = AVy, — U, AT,
Urt1Bri1 = Wi (QR decomposition of Wy),
Ap = ARAL + Bl | Brs1,
S = ATUysq — Vi BT, 4,
Vir1Ars1 = Sk (QR decomposition of Sy),
By = Akt}BkJm
By =dp—2By,
A = Ch—18k + di—14y,
Br = Ar—1Bk + bp—1 A4k,
O = bi_2By, -
Compute an unitary matrix Q(ay, bg, ¢k, dx) such that
il ) - 15
Cp di| [Bey1] [ 0]
o = —5;T(95¢@—2 + 55%—1)7
P, = (Vi, = Py—20y — P18,
Xk = Xp—1 + Puypy,
Ry = Ri_1 — APy,
JAT Rel[% = IIAT Re 113 — lonll3
If | AT Ry.||F is small enough then stop,
End Do.

The BI-LSMR algorithm will be break down at step k, if @y is singular.
This happens when the matrix {Bak ] is not full rank. So the BI-LSMR
E+1
algorithm will not break down at step k, if By is nonsingular. We will not
treat the problem of breakdown in this paper and we also assume that the
matrices Bj’s produced by the BI-LSMR algorithm are nonsingular.

We mention that, we can use the BI-LSMR algorithm for computing a
matrix solution X to the problem

minimize||AX — B|lp, A €R™" BeR™® s< min{m,n},

where m > n or m < n. In Section 5, we present the results of the BI-LSMR
algorithm for this kind of problems.
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4 The convergence of the BI-LSMR algorithm

In this section, we aim at studying the convergence behavior of the BI-LSMR,
method. We first give the following lemmas.

Lemma 2. Let P;,i = 1,2,...,k, be the n X s auxiliary matrices produced
by the BI-LSMR algorithm and Ry, be the residual matriz associated with the
approzimate solution Xy, of the matriz equation(1). Then, we have

(ATAP)T AT Ry, = 0,.

Proof. Using P, = VkEIZl and equation(4), we have

AT AP, = AT APE,

= ATAV,R,, E,
_ T, | ——1—
| g B | (19)

From (19), and (7), we have

E\B, — TTT,Yy

—=T—=-T — —T —T —
(ATAP)T(ATRy) = By Ry [T T (Bini )T | Vil Vi |2 7
BB Yy

—T——T ~ —  =T.p= =T
= Ey Ry, (T) To(E1 By = T}, TiYy) — (Bi1 By ) Bri1 By Vi)

= 0. (from (11))
We note that V41 is orthonormal, thus VZHVI@—H = I(kt1)s- O
Lemma 3. Let P;,i = 1,2,...,k, be the n X s auziliary matrices produced

by the BI-LSMR algorithm. Then we have the following property

PTATAAT AP, = I,.

Proof. Using (19), (12), (13) and (14), we have
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——1

(ATAP)T(ATAP)) = (Vi1 R, E)" (Vi

— =T
BiE;
TIT,

K3
S —

Bit1E;

771Ei

)

R;

B [ o) @0 || R,

—T I s —
= Ei [Iks Oksxs] |:O kk :| Ez
sxks
—E B =1,
O

Theorem 1. Let X, be the approzimate solution of (1), obtained from the
BI-LSMR algorithm. Then

IAT Ri|lp < [|AT Rl
where R, = B — AX},.
Proof. From(16), we have
ATRy, 1 = ATRy, + AT APy,

Using Lemma 2, since AT Ry, and AT AP, are orthogonal, we have

IAT Ri—1]|E = [IA" Rl + [ A" APegr| 7
Thus

IAT Ri|[5 = | AT Rye—1|I% — [ AT APeg |3
Using Lemma 3, we have

IATRe||% = AT Ri—1 |7 — Il
IAT Rillp < | AT Ry |-

O

Theorem 1 is helpful in showing that if ||k ||F is not very small in each
iteration of the BI-LSMR algorithm, then the BI-LSMR algorithm will be
stopped after a finite number of iterations. Otherwise, it is possible to occur
stagnation. In this case, we can apply a reliable preconditioner for the block
linear system of equations (1).
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5 Numerical examples

In this section, we consider the system AX = B, where A € R™*", B €
R™*s X € R™"*% and we present numerical results for several matrices taken
from the University of Florida Sparse Matrix Collection (Davis [7]). These
matrices with their properties are shown in Table 1. Our implementation is
done on MATLAB version 07 on a PC machine with 4 GB RAM. Moreover,
for the initial guess Xy = 0,,xs and B = rand(m, s), where the function rand
creates an m X s random matrix with the coefficients uniformly distributed
in [0, 1]. The stopping criteria is set to || AT Ry||r/||Rellr < 10710 x ||A| p.

Diagonal scaling was applied to the columns of [A, B] to give a scaled
problem AX = B, in which the columns of [A, B] have unit 2-norm. By
scaling, the number of iterations of BI-LSMR for convergence reduced satis-
factorily.

In Table 2, we give the ratio ¢(s)/t(1), for s = 5,10, 20, and 30, where ¢(s)
is the CPU time for BI-LSMR algorithm and #(1) is the CPU time obtained
when applying LSMR for one right-hand side linear system. Note that the
time obtained by LSMR for one right-hand side depends on which right-hand
was used. So, t(1) is the average of the times needed for the s right-hand
sides using LSMR. The results of Table 2 show that the BI-LSMR algorithm is
effective and less expensive than the LSMR algorithm, because the indicator
t(s)/t(1) is less than s.

To show that the Frobenius norm of residual matrix decreases monoton-
ically, we display the convergence history in Figure 1 for the systems corre-
sponding to the matrices of Table 2 and BI-LSMR algorithm. In this figure,
the vertical axis and horizontal axis are the logarithm in base 10 of the Frobe-
nius norm of residual matrix and the number of iterations to convergence,
respectively. We observe that for all matrices the Frobenius norm of residual
matrix decreases monotonically.

We display the convergence history of BI-LSMR and BI-LSQR in Figure
2 for the system corresponding to the matrix LPnetlib/Ip_pilot. Figure 3
(left and right) shows both solvers reducing ||AT Ry | r/|Rk||r and ||Ri| r
monotonically and similarly.
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Table 2: Effectiveness of BI-LSMR, algorithm measured #(s)/t(1)

Matrix\s 5 10 20 30
Hamm/add32 0.47 0.95 3.07 5.39
Simon/appu 1.24 1.89 3.21 5.13
HB/fs6801 0.27 0.38 0.97 1.19
HB/grellb 0.99 0.51 3.41 8.57
HB/gr-30-30 1.55 1.72 2.05 2.53
LPnetlib/lpadlittle 0.37 0.42 1.63 12.54
LPnetlib/lp_maros 2.92 3.75 6.79 12.36
LPnetlib/lp_pilot 2.40 4.95 15.90 22.92
LPnetlib/lp_sc205 0.70 1.30 2.11 4.70
Bai/pde2961 0.33 0.52 0.98 1.14
Bai/pde900 0.49 0.72 1.10 1.47
Bai/rdb32001 0.30 0.39 0.38 0.76
HB/sherman4 0.37 0.50 0.54 1.03
T [p
e 56801 . i = = =p pilot
et e
oo}

Figure 1:
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— BI-LSMR
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Convergence history of the BI-LSMR algorithm with s=20
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Figure 2: BI-LSMR and BI-LSQR solving a linear system AX = B with s = 20: problem
LPnetlib/1p_pilot
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6 Conclusion

In this paper, we have presented a block version of LSMR algorithm for
solving linear systems with multiple right-hand sides. We derived a sim-
ple recurrence formula for generating the sequence of approximate solutions
{X}} such that the Frobenius norm of the quantity AT R, decreases mono-
tonically. In addition, we studied the convergence of the presented method.
Besides, we showed that in absence of the break down condition, the pre-
sented algorithm always converges. Numerical results have shown that the
new algorithm obtains the results which are effective and less expensive than
the LSMR algorithm applied to each right-hand side.
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