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The block LSMR algorithm for solving
linear systems with multiple

right-hand sides

F. Toutounian∗ and M. Mojarrab

Abstract

LSMR (Least Squares Minimal Residual) is an iterative method for the

solution of the linear system of equations and least-squares problems. This
paper presents a block version of the LSMR algorithm for solving linear sys-
tems with multiple right-hand sides. The new algorithm is based on the block
bidiagonalization and derived by minimizing the Frobenius norm of the resid-

ual matrix of normal equations. In addition, the convergence of the proposed
algorithm is discussed. In practice, it is also observed that the Frobenius
norm of the residual matrix decreases monotonically. Finally, numerical ex-
periments from real applications are employed to verify the effectiveness of

the presented method.

Keywords: LSMR method; Bidiagonalization; Block methods; Iterative
methods; Multiple right-hand sides.

1 Introduction

This paper is concerned with the solution of linear system of the form

AX = B, A ∈ Rn×n, B ∈ Rn×s, s≪ n. (1)

If A is large and sparse or sometimes not readily available, then iterative
solvers may become the only choice. These solvers are categorized to the
following three classes:
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The first class is the global methods. The term global is due to Saad [34]
and has been further expanded by Jbilou et al. [21] with the global FOM and
GMRES algorithms for matrix equations. These methods are based on the
use of a global projection process onto a matrix Krylov subspace. References
on this class include [2, 7, 8, 12,13,13,21–23,25–27,32,33].

The second class is the seed methods. The main idea of this kind of
methods is briefed below. We first select a single system as the seed system
and generate the corresponding Krylov subspace. Then we project all the
residuals of the other linear systems onto the same Krylov subspace to find
new approximate solutions as initial approximations. See [3,5,7,18,20,30,35]
for details.

The last class is the block methods which are more suitable for dense
systems with preconditioner. The first block solvers are the block conjugate
gradient (Bl-CG) algorithm and the block biconjugate gradient (Bl-BCG) al-
gorithm proposed in [28]. Variable Bl-CG algorithms for symmetric positive
definite problems are implemented on parallel computers [19,29]. If the ma-
trix is symmetric, an adaptive block Lanczos algorithm and a block version of
Minres method are devised in [17]. For nonsymmetric problems, the Bl-BCG
algorithm [6, 28], the block generalized minimal residual (Bl-GMRES) algo-
rithm [1,1,4,7,9–11,36,37], the block quasi minimum residual (Bl-QMR) al-
gorithm [14], the block BiCGStab (Bl-BICGSTAB) algorithm [31], the block
Lanczos method [34] and the block least squares (Bl-LSQR) algorithm [15]
have been developed.

In this paper, we present a block version of LSMR algorithm [4] for solving
the problem (1). Our algorithm is based on the block bidiagonalization [9].
We construct a simple recurrence formula for generating the sequences of ap-
proximations {Xk} such that the Frobenius norm of ATRk decreases mono-
tonically, where Rk = B −AXk.

Throughout this paper, we use the following notations. For two n × s
matrices X and Y , we define the following inner product: ⟨X,Y ⟩ = tr(XTY ),
where tr(Z) denoted the trace of the square matrix Z. The associated norm
is the Frobenius norm denoted by ∥ · ∥F . We will use the notation ⟨·, ·⟩2 for
the usual inner product in Rn and the associated norm denoted by ∥ · ∥2.
Finally, 0s and Is will denote the zero and the identity matrices in Rs×s.

The remainder of this paper is organized as follows. In Section 2, we give
a sketch of the LSMR method and its properties. In Section 3, we present
the block version of the LSMR algorithm. In Section 4, the convergence of
the presented algorithm is considered. In Section 5, some numerical experi-
ments on test matrices from the University of Florida Sparse Matrix Collec-
tion(Davis [7]) are presented to show the efficiency of the method. Finally,
we make some concluding remarks in Section 6.
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2 The LSMR algorithm

In this section, we present a brief of the LSMR algorithm [4], which is an
iterative method for solving real linear system of the form

Ax = b,

where A is a matrix of order n and x, b ∈ Rn.

LSMR algorithm uses an algorithm of Golub and Kahan [10], which is
stated as procedure Bidiag 1 in [32] to reduce the augmented matrix [b A] to
the upper-diagonal form [β1e1 Bk], where e1 denotes the first column of the
identity matrix. The procedure Bidiag 1 can be described as follows.

Bidiag 1 (Starting vector b; reduction to lower bidiagonal form)

β1u1 = b, α1v1 = ATu1,

βi+1ui+1 = Avi − αiui,
αi+1vi+1 = ATui+1 − βi+1vi,

}
i = 1, 2, . . . (2)

The scalars αi ≥ 0 and βi ≥ 0 are chosen so that ∥ui∥2 = ∥vi∥2 = 1. With
the definitions

Uk ≡ [u1, u2, . . . uk] , Vk ≡ [v1, v2, . . . , vk] , Bk ≡


α1

β2 α2

. . .
. . .

βk αk

βk+1

 ,
Lk+1 = [Bk αk+1ek+1] , Vk+1 =

[
Vk vk+1

]
,

the recurrence relations (2) may be rewritten as

Uk+1(β1e1) = b,

AVk = Uk+1Bk,

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1 = Vk+1L

T
k+1.

ATAVk = ATUk+1Bk = Vk+1L
T
k+1Bk = Vk+1

[
BT

k

αk+1e
T
k+1

]
Bk,

= Vk+1

[
BT

k Bk

αk+1βk+1e
T
k

]
.

This is equivalent to what would be generated by the symmetric Lanczos pro-
cess with matrix ATA and starting vector AT b. As we observe the procedure
Bidiag1 will be stop if Avi − αiui = 0 or ATui+1 − βi+1vi = 0, for some i.
In exact arithmetic, we have UT

k+1Uk+1 = I and V T
k Vk = I, where I is the

identity matrix.
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Hence using procedure Bidiag 1 the LSMR method constructs an approxi-
mation solution of the form xk = Vkyk which solves the least-squares problem
minyk

∥AT rk∥, where rk = b−Axk. The main steps of the LSMR algorithm
can be summarized as follows.

Algorithm 1 LSMR algorithm

Set β1u1 = b, α1v1 = ATu1, α1 = α1, ζ1 = α1β1, ρ0 = 1, ρ0 = 1, c0 = 1,
s0 = 0, h1 = v1, h0 = 0, x0 = 0,
For k = 1, 2, . . ., until convergence Do:

βk+1uk+1 = Avk − αkuk,
αk+1vk+1 = ATuk+1 − βk+1vk,

ρk = (α2
k + β2

k+1)
1
2 ,

ck = αk/ρk,
sk = βk+1/ρk,
θk+1 = skαk+1,
αk+1 = ckαk+1,
θk = sk−1ρk,

ρk = ((ck−1ρk)
2
+ θ2k+1)

1
2 ,

ck = ck−1ρk/ρk,
sk = θk+1/ρk,
ζk = ckζk,
ζk+1 = −skζk,
hk = hk − (θkρk/

(
ρk−1ρk−1

)
)hk−1,

xk = xk−1 + (ζk/(ρkρk))hk,
hk+1 = vk+1 − (θk+1/ρk)hk,
If |ζk+1| is small enough then stop,

End Do.

More details about the LSMR algorithm can be found in [4].

3 The block LSMR method

We first recall the block Bidiag 1 algorithm [9]. This algorithm is the basis
for our block LSMR method.

The block Bidiag 1 procedure constructs the sets of the n×s block vectors
V1, V2, . . . and U1, U2, . . . such that V T

i Vj = 0s, U
T
i Uj = 0s, for i ̸= j, and

V T
i Vi = Is, U

T
i Ui = Is; and they form the orthonormal basis of Rn×ks.

Block Bidiag 1 (Starting matrix B; reduction to block lower bidiagonal
form)
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U1B1 = B, V1A1 = ATU1,

Ui+1Bi+1 = AVi − UiA
T
i ,

Vi+1Ai+1 = ATUi+1 − ViB
T
i+1,

}
i = 1, 2, . . . , k, (3)

where Ui, Vi ∈ Rn×s;Bi, Ai ∈ Rs×s, and U1B1, V1A1, Ui+1Bi+1, Vi+1Ai+1

are thin QR decompositions of the matrices B,ATU1, AVi−UiA
T
i , A

TUi+1−
ViB

T
i+1, respectively. With the definitions

Uk ≡ [U1, U2, . . . , Uk] , V k ≡ [V1, V2, . . . , Vk] , Tk ≡


AT

1

B2 A
T
2

. . .
. . .

Bk AT
k

Bk+1

 ,

the recurrence relations (3) may be rewritten as:

Uk+1E1B1 = B,

AV k = Uk+1Tk,

ATUk+1 = V kT
T
k + Vk+1Ak+1E

T
k+1,

where Ei is the (k + 1)s × s matrix which is zero except for the rows i to

i + s, which are the s × s identity matrix. We have also V
T

k V k = Iks and

U
T

k+1Uk+1 = I(k+1)s, where Il is the l × l identity matrix. We define

Lk+1 ≡
[
Tk Ek+1A

T
k+1

]
,

then

ATUk+1 = V k+1L
T

k+1,

ATAV k = ATUk+1Tk = V k+1L
T

k+1Tk = V k+1

[
TT
k

Ak+1E
T
k+1

]
Tk

= V k+1

[
TT
k Tk

Ak+1E
T
k+1Tk

]
. (4)

At iteration k we seek an approximate solution Xk of the form

Xk = V kYk, (5)

where Yk is an ks× s matrix. Let Bk ≡ AkBk for all k. Since

ATRk = ATB −ATAXk

= V1A1B1 −ATAV kYk,
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we have

ATRk = V1B1 − V k+1

[
TT
k Tk

Ak+1E
T
k+1Tk

]
Yk

= V k+1(E1B1 −

[
TT
k Tk

Bk+1E
T

k

]
Yk), (6)

where Ek is the ks× s matrix, which is zero except for kth s rows, which are
the s× s identity matrix.

In the block LSMR algorithm, we would like to choose Yk ∈ Rks×s which
minimizes the Frobenius norm of ATRk. From (6), ATRk can be written as

ATRk = V k+1

[
Ẽ1B1 − TT

k TkYk

−Bk+1E
T

k Yk

]
, (7)

where Ẽ1 is the matrix obtained from E1 by deleting its last block row. But
since the columns of the matrix V k+1 are orthonormal, it follows that:

∥ATRk∥2F =

∥∥∥∥∥
[
Ẽ1B1 − TT

k TkYk

−Bk+1E
T

k Yk

]∥∥∥∥∥
2

F

= ∥Ẽ1B1−TT
k TkYk∥2F +∥Bk+1E

T

k Yk∥2F .

(8)

We now define the linear operators χk and ψk as follows.

For Y ∈ Rks×s

χk(Y ) = TT
k TkY,

and

ψk(Y ) = Bk+1E
T

k Y.

Then the relation (8) can be expressed as

∥ATRk∥2F = ∥χk(Yk)− Ẽ1B1∥2F + ∥ψk(Yk)∥2F . (9)

Therefore, Yk minimizes the Frobenius norm of the quantity ATRk if and
only if it satisfies the following linear matrix equation

χT
k (χk(Yk)− Ẽ1B1) + ψT

k (ψk(Yk)) = 0s, (10)

where the linear operators χT
k and ψT

k are the transpose of the operators χk

and ψk, respectively. Therefore, (10) is also written as the following

(TT
k Tk)

T (TT
k TkYk − Ẽ1B1) + (Bk+1E

T

k )
T (Bk+1E

T

k Yk) = 0s. (11)

Hence, Yk is given by
Yk = T̂−1

k Fk,

where
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T̂k = (TT
k Tk)

2 + EkB
T

k+1Bk+1E
T

k , Fk = TT
k TkẼ1B1. (12)

We define the matrix T k as follows:

T k =

[
TT
k Tk

Bk+1E
T

k

]
=


A1 B

T

2

B2 A2
. . .

. . .
. . . B

T

k

Bk Ak

Bk+1

 ,

where Ai = AiA
T
i +BT

i+1Bi+1, for i = 1, 2, . . . , k. Therefore

T̂k = T
T

k T k, Fk = [(A1B1)
T (B2B1)

T 0s . . . 0s]
T , (13)

and the approximate solution of the system (1) is given by

Xk = V kT̂
−1
k Fk.

Suppose that using the QR decomposition [11], we obtain a unitary matrix
Qk such that

T k = Qk

[
Rk

0s×ks

]
, Rk =



α1 β2 θ3
α2 β3 θ4

. . .
. . .

. . .

αk−2 βk−1 θk
αk−1 βk

αk


, (14)

where Rk is upper triangular as shown and αi, βi, θi are the s× s matrices.
So,

Xk = V k(R
T

kRk)
−1Fk.

By setting

P k = V kR
−1

k ≡
[
P1 P2 . . . Pk

]
,

and
F k = R

−T

k Fk ≡
[
φT
1 φT

2 . . . φT
k

]T
,

we have

Pk = (Vk − Pk−2θk − Pk−1βk)α
−1
k ,

Xk = Xk−1 + Pkφk. (15)

From (15) the residual Rk is given by



18 F. Toutounian and M. Mojarrab

Rk = Rk−1 −APkφk, (16)

where APk can be computed from the previous APk’s and AVk by the simple
update

APk = (AVk −APk−2θk −APk−1βk)α
−1
k .

In addition, as [4], we show that the ∥Rk∥F can be estimated by a simple
formula. By transforming Tk to block upper-bidiagonal form using a QR

factorization:

[
R̂k

0

]
= Q̂k+1Tk with Q̂k+1 = P̂k . . . P̂1, we have

Rk = B −AXk

= U1B1 −AV kYk

= Uk+1(E1B1 − TkYk)

= Ǔk+1Q̂
T
k+1(Q̂k+1E1B1 −

[
R̂k

0

]
Yk).

Since the columns of the matrices Q̂k+1 and Uk+1 are orthonormal, we have

∥Rk∥F = ∥Q̂k+1E1B1 −
[
R̂k

0

]
Yk∥F . (17)

With definitions

Q̂k+1E1B1 = [β̃T
1 . . . β̃T

k−1 β̇
T
k β̈T

k+1]
T , R̂kY = [τ̃T1 . . . τ̃Tk−1 τ̇

T
k ]T , (18)

the following Lemma shows that we can estimate ∥Rk∥F from just the last

two blocks of Q̂k+1E1B1 and the last block of R̂kYk.

Lemma 1. In (17) and (18), β̃i = τ̃i for i = 1, 2, . . . , k − 1.

Proof. The proof is similar to that of Lemma 3.1 in [4] (see [28]).

For the Frobenius norm of ATRk, by using Theorem 1 (in section 4), we
can also obtain the following simple formula:

∥ATRk∥2F = ∥ATRk−1∥2F − ∥φk∥2F , with ∥ATR0∥F = ∥B1∥F = ∥φ0∥F .

Now we can summarize the above descriptions as the following algorithm.
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Algorithm 2 Algorithm (Bl-LSMR )

Set X0 = 0n×s,
Set a0 = 0s, b−1 = 0s, b0 = Is, c0 = 0s, d−1 = 0s, d0 = Is,
Set P−1 = P0 = 0n×s,
Compute U1B1 = B, V1A1 = ATU1 (QR decomposition of B and ATU1),
Set B1 = A1B1,
Set φ−1 = 0s, φ0 = −B1,
Set ∥ATR0∥F = ∥φ0∥F ,
For k = 1, 2, . . . , until convergence Do:
W k = AVk − UkA

T
k ,

Uk+1Bk+1 =W k (QR decomposition of W k),
Ak = AkA

T
k +BT

k+1Bk+1,

Sk = ATUk+1 − VkB
T
k+1,

Vk+1Ak+1 = Sk (QR decomposition of Sk),
Bk+1 = Ak+1Bk+1,

β̇k = dk−2B
T

k ,
α̇k = ck−1β̇k + dk−1Ak,
βk = ak−1β̇k + bk−1Ak,

θk = bk−2B
T

k ,
Compute an unitary matrix Q(ak, bk, ck, dk) such that[
ak bk
ck dk

] [
α̇k

Bk+1

]
=

[
αk

0

]
,

φk = −α−T
k (θ

T

k φk−2 + β
T

k φk−1),
Pk = (Vk − Pk−2θk − Pk−1βk)α

−1
k ,

Xk = Xk−1 + Pkφk,
Rk = Rk−1 −APkφk,
∥ATRk∥2F = ∥ATRk−1∥2F − ∥φk∥2F ,
If ∥ATRk∥F is small enough then stop,

End Do.

The Bl-LSMR algorithm will be break down at step k, if αk is singular.

This happens when the matrix

[
α̇k

Bk+1

]
is not full rank. So the Bl-LSMR

algorithm will not break down at step k, if Bk+1 is nonsingular. We will not
treat the problem of breakdown in this paper and we also assume that the
matrices Bk’s produced by the Bl-LSMR algorithm are nonsingular.

We mention that, we can use the Bl-LSMR algorithm for computing a
matrix solution X to the problem

minimize∥AX− B∥F, A ∈ Rm×n, B ∈ Rm×s, s ≪ min {m, n},

where m ≥ n or m ≤ n. In Section 5, we present the results of the Bl-LSMR
algorithm for this kind of problems.
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4 The convergence of the Bl-LSMR algorithm

In this section, we aim at studying the convergence behavior of the Bl-LSMR
method. We first give the following lemmas.

Lemma 2. Let Pi, i = 1, 2, . . . , k, be the n × s auxiliary matrices produced
by the Bl-LSMR algorithm and Rk be the residual matrix associated with the
approximate solution Xk of the matrix equation(1). Then, we have

(ATAPk)
TATRk = 0s.

Proof. Using P k = V kR
−1

k and equation(4), we have

ATAPk = ATAP kEk

= ATAV kR
−1

k Ek

= V k+1

[
TT
k Tk

Bk+1E
T

k

]
R

−1

k Ek. (19)

From (19), and (7), we have

(ATAPk)
T (ATRk) = E

T

kR
−T

k

[
TT
k Tk, (Bk+1E

T

k )
T
]
V

T

k+1V k+1

[
Ẽ1B1 − TT

k TkYk

−Bk+1E
T

k Yk

]
= E

T

kR
−T

k (TT
k Tk(Ẽ1B1 − TT

k TkYk)− (Bk+1E
T

k )
TBk+1E

T

k Yk)

= 0s. (from (11))

We note that V k+1 is orthonormal, thus V
T

k+1V k+1 = I(k+1)s.

Lemma 3. Let Pi, i = 1, 2, . . . , k, be the n × s auxiliary matrices produced
by the Bl-LSMR algorithm. Then we have the following property

PT
i A

TAATAPi = Is.

Proof. Using (19), (12), (13) and (14), we have
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(ATAPi)
T (ATAPi) = (V i+1

[
TT
i Ti

Bi+1E
T

i

]
R

−1

i Ei)
T (V i+1

[
TT
i Ti

Bi+1E
T

i

]
R

−1

i Ei)

= E
T

i R
−T

i

[
TT
i Ti B

T

i+1Ei

] [ TT
i Ti

Bi+1E
T

i

]
R

−1

i Ei

= E
T

i R
−T

i T
T

i T iR
−T

i Ei

= E
T

i R
−T

i

[
R

T

i 0ks×s

]
Q

T

i Qi

[
Ri

0s×ks

]
R

−1

i Ei

= E
T

i

[
Iks 0ks×s

] [ Iks
0s×ks

]
Ei

= E
T

i Ei = Is.

Theorem 1. Let Xk be the approximate solution of (1), obtained from the
Bl-LSMR algorithm. Then

∥ATRk∥F ≤ ∥ATRk−1∥F ,

where Rk = B −AXk.

Proof. From(16), we have

ATRk−1 = ATRk +ATAPkφk.

Using Lemma 2, since ATRk and ATAPk are orthogonal, we have

∥ATRk−1∥2F = ∥ATRk∥2F + ∥ATAPkφk∥2F .

Thus

∥ATRk∥2F = ∥ATRk−1∥2F − ∥ATAPkφk∥2F .

Using Lemma 3, we have

∥ATRk∥2F = ∥ATRk−1∥2F − ∥φk∥2F ,
∥ATRk∥F ≤ ∥ATRk−1∥F .

Theorem 1 is helpful in showing that if ∥φk∥F is not very small in each
iteration of the Bl-LSMR algorithm, then the Bl-LSMR algorithm will be
stopped after a finite number of iterations. Otherwise, it is possible to occur
stagnation. In this case, we can apply a reliable preconditioner for the block
linear system of equations (1).
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5 Numerical examples

In this section, we consider the system AX = B, where A ∈ Rm×n, B ∈
Rm×s, X ∈ Rn×s, and we present numerical results for several matrices taken
from the University of Florida Sparse Matrix Collection (Davis [7]). These
matrices with their properties are shown in Table 1. Our implementation is
done on MATLAB version 07 on a PC machine with 4 GB RAM. Moreover,
for the initial guess X0 = 0n×s and B = rand(m, s), where the function rand
creates an m × s random matrix with the coefficients uniformly distributed
in [0, 1]. The stopping criteria is set to ∥ATRk∥F /∥Rk∥F ≤ 10−10 × ∥A∥F .

Diagonal scaling was applied to the columns of [A, B] to give a scaled
problem AX = B, in which the columns of [A, B] have unit 2-norm. By
scaling, the number of iterations of Bl-LSMR for convergence reduced satis-
factorily.

In Table 2, we give the ratio t(s)/t(1), for s = 5, 10, 20, and 30, where t(s)
is the CPU time for Bl-LSMR algorithm and t(1) is the CPU time obtained
when applying LSMR for one right-hand side linear system. Note that the
time obtained by LSMR for one right-hand side depends on which right-hand
was used. So, t(1) is the average of the times needed for the s right-hand
sides using LSMR. The results of Table 2 show that the Bl-LSMR algorithm is
effective and less expensive than the LSMR algorithm, because the indicator
t(s)/t(1) is less than s.

To show that the Frobenius norm of residual matrix decreases monoton-
ically, we display the convergence history in Figure 1 for the systems corre-
sponding to the matrices of Table 2 and Bl-LSMR algorithm. In this figure,
the vertical axis and horizontal axis are the logarithm in base 10 of the Frobe-
nius norm of residual matrix and the number of iterations to convergence,
respectively. We observe that for all matrices the Frobenius norm of residual
matrix decreases monotonically.

We display the convergence history of Bl-LSMR and Bl-LSQR in Figure
2 for the system corresponding to the matrix LPnetlib/lp pilot. Figure 3
(left and right) shows both solvers reducing ∥ATRk∥F /∥Rk∥F and ∥Rk∥F
monotonically and similarly.
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Table 2: Effectiveness of Bl-LSMR algorithm measured t(s)/t(1)

Matrix\s 5 10 20 30
Hamm/add32 0.47 0.95 3.07 5.39
Simon/appu 1.24 1.89 3.21 5.13
HB/fs6801 0.27 0.38 0.97 1.19
HB/gre115 0.99 0.51 3.41 8.57
HB/gr-30-30 1.55 1.72 2.05 2.53
LPnetlib/lpadlittle 0.37 0.42 1.63 12.54
LPnetlib/lp maros 2.92 3.75 6.79 12.36
LPnetlib/lp pilot 2.40 4.95 15.90 22.92
LPnetlib/lp sc205 0.70 1.30 2.11 4.70
Bai/pde2961 0.33 0.52 0.98 1.14
Bai/pde900 0.49 0.72 1.10 1.47
Bai/rdb3200l 0.30 0.39 0.38 0.76
HB/sherman4 0.37 0.50 0.54 1.03
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Figure 1: Convergence history of the Bl-LSMR algorithm with s=20
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Figure 2: Bl-LSMR and Bl-LSQR solving a linear system AX = B with s = 20: problem
LPnetlib/lp pilot
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6 Conclusion

In this paper, we have presented a block version of LSMR algorithm for
solving linear systems with multiple right-hand sides. We derived a sim-
ple recurrence formula for generating the sequence of approximate solutions
{Xk} such that the Frobenius norm of the quantity ATRk decreases mono-
tonically. In addition, we studied the convergence of the presented method.
Besides, we showed that in absence of the break down condition, the pre-
sented algorithm always converges. Numerical results have shown that the
new algorithm obtains the results which are effective and less expensive than
the LSMR algorithm applied to each right-hand side.
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ثانی طرف چند با خطی معادلات دستگاه حل برای LSMRبلوکی الگوریتم

۳,۱ مجرب مریم و ۲,۱ توتونیان فائزه

کاربردی ریاضی گروه ریاضی، علوم دانشکده مشهد، فردوسی دانشگاه ۱

ها دستگاه کنترل و مدلسازی علمی قطب مشهد، فردوسی دانشگاه ۲

ریاضی گروه بلوچستان، و سیستان دانشگاه ۳

معادلات دستگاه حل برای تکراری روش یک دوم) توان�های کمترین مینیمال (مانده LSMR : چکیده
برای را LSMR الگوریتم از بلوکی نسخه یک مقاله این می�باشد. دوم توان�های کمترین مسائل و خطی
است بلوکی سازی دوقطری بر مبتنی جدید الگوریتم می�دهد. ارائه ثانی طرف چند با خطی دستگاه�های حل
الگوریتم همگرایی به�علاوه، می�شود. نتیجه مانده ماتریس نرمال معادلات فربینیوس نرم سازی مینیمم از و
به مانده ماتریس فربینیوس نرم که می�شود ملاحظه عمل در همچنین، می�گیرد. قرار بحث مورد پیشنهادی
سازی پیاده واقعی کاربردی مسائل روی بر که عددی آزمایش�های نهایت، در می�یابد. کاهش یکنواخت طور

کرد. خواهند تایید را شده ارائه روش کارایی شده�اند،

طرف چند تکراری؛ روش�های بلوکی؛ روش�های سازی؛ دوقطری ؛ LSMR روش : کلیدی کلمات
ثانی.


	Binder2
	Binder2
	مقالات
	complete



	Binder21 pdf
	inside


