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Two numerical methods for nonlinear
constrained quadratic optimal control

problems using linear B-spline
functions

Y. Edrisi-Tabriz, M. Lakestani∗ and A. Heydari

Abstract

This paper presents two numerical methods for solving the nonlinear con-
strained optimal control problems including quadratic performance index.
The methods are based upon linear B-spline functions. The properties of
B-spline functions are presented. Two operational matrices of integration

are introduced for related procedures. These matrices are then utilized to
reduce the solution of the nonlinear constrained optimal control to a non-
linear programming one to which existing well-developed algorithms may be
applied. Illustrative examples are included to demonstrate the validity and

applicability of the presented techniques.

Keywords: Optimal control problem; Linear B-spline function; Integration
matrix; Collocation method.

1 Introduction

Solving an optimal control problem is not easy. Because of the complexity
of most applications, optimal control problems are most often solved numer-
ically. Numerical methods for solving optimal control problems date back
nearly five decades to the 1950s with the work of Bellman [2–4]. Numeri-
cal methods for solving optimal control problems are divided into two major
classes: direct methods and indirect methods.
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In an indirect method, the calculus of variations [14, 24] is used to de-
termine the first-order optimality conditions of the original optimal control
problem. The indirect approach leads to a multiple-point boundary-value
problem that is solved to determine candidate optimal trajectories called ex-
tremals. Each of the computed extremals is then examined to see if it is
a local minimum, maximum, or a saddle point. Of the locally optimizing
solutions, the particular extremal with the lowest cost is chosen.

One of the widely used methods to solve optimal control problems is
the direct method. There is a large number of research papers that employ
this method to solve optimal control problems (see for example [5, 6, 10, 15,
25, 26, 28] and the references therein). This method converts the optimal
control problem into a mathematical programming problem by using either
the discretization technique [5, 6] or the parameterization technique [10, 25,
26,28].

The discretization technique converts the optimal control problem into a
nonlinear programming problem with a large number of unknown parameters
and a large number of constraints [6]. On the other hand, parameterizing
the control variables [10, 28] requires the integration of the state equations.
While the simultaneous parameterization of both the state variables and the
control variables [28] results in a nonlinear programming problem with a large
number of parameters and a large number of equality constraints.

In the last several years, various methods have been proposed to solve
these problems. Yen and Nagurka [32] proposed a method based on the state
parameterization, using Fourier series, to solve the linear-quadratic optimal
control problem (with equal number of state variables and control variables)
subject to state and control inequality constraints. Also Razzaghi and El-
nagar [30] proposed a method to solve the unconstrained linear-quadratic
optimal control problem with equal number of state and control variables.
Their approach is based on using the shifted Legendre polynomials to pa-
rameterize the derivative of each of the state variables. In [16] Jaddu and
Shimemura proposed a method to solve the linear-quadratic and the nonlinear
optimal control problems by using Chebyshev polynomials to parameterize
some of the state variables, then the remaining state variables and the control
variables are determined from the state equations. The approach proposed
in [28] is based on approximating the state variables and control variables
with hybrid functions.

In this paper, we present two computational methods for solving nonlin-
ear constrained quadratic optimal control problems by using linear B-spline
functions. The methods are based on approximating the state variables and
the control variables with a semiorthogonal linear B-spline functions [21].
Our methods consists of reducing the optimal control problem to a NLP one
by first expanding the state rate ẋ(t) and the control u(t) as a linear B-spline
functions with unknown coefficients. These functions are introduced. For
the approximation of the integral, the operational matrix of integration Iϕ is
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given. Two operational matrices of integration are calculated using (i) dual
basis functions and (ii) interpolation basis functions.

The paper is organized as follows: In Section 2 we describe the basic for-
mulation of the linear B-spline functions required for our subsequent devel-
opment. Section 3 is devoted to the formulation of optimal control problems.
Section 4 summarizes the application of these methods to the optimal control
problems, and in Section 5, we report our numerical findings and demonstrate
the accuracy of the proposed methods. Sections 6 completes this paper with
a brief conclusion.

2 Properties of B-spline functions

2.1 Linear B-spline functions on [0,1]

Themth-order cardinal B-splineNm(t) has the knot sequence {. . . ,−1, 0, 1, . . .}
and consists of polynomials of order m (degree m−1) between the knots. Let
N1(t) = χ[0,1](t) be the characteristic function of [0,1]. Then for each integer
m ⩾ 2, the mth-order cardinal B-spline is defined, inductively by [8, 13]

Nm(t) = (Nm−1 ∗N1)(t) =

∫ ∞

−∞
Nm−1(t− τ)N1(τ)dτ =

∫ 1

0

Nm−1(t− τ)dτ.

(1)
It can be shown [7] that Nm(t) for m ⩾ 2 can be achieved using the following
formula

Nm(t) =
t

m− 1
Nm−1(t) +

m− t

m− 1
Nm−1(t− 1),

recursively, and supp[Nm(t)] = [0,m].

The explicit expressions of N2(t) (linear B-spline function) are [7, 8, 13]

N2(t) =

 t t ∈ [0, 1],
2− t t ∈ [1, 2],
0 elsewhere.

(2)

Suppose Nj,k(t) = N2(2
jt − k), j, k ∈ Z and Bj,k = supp[Nj,k(t)] = clos{t :

Nj,k(t) ̸= 0}. It is easy to see that

Bj,k = [2−jk, 2−j(2 + k)], j, k ∈ Z.

To use these functions on [0, 1],

Sj = {k : Bj,k ∩ [0, 1] ̸= ∅}, j ∈ Z.

It is easy to see that min{Sj} = −1 and max{Sj} = 2j − 1, j ∈ Z.
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The support of Nj,k(t) may be out of interval [0,1], we need that these
functions intrinsically defined on [0,1] so we put

ϕj,k(t) = Nj,k(t)χ[0,1](t), j ∈ Z, k ∈ Sj . (3)

2.2 The function approximation

Suppose Φj(t) is a (2j + 1)-vector as

Φj(t) = [ϕj,−1(t), ϕj,0(t), . . . , ϕj,2j−1(t)]
T , j ∈ Z. (4)

For a fixed j =M , a function f(t) ∈ L2[0, 1] may be represented by the linear
B-spline functions as

f(t) ≃
2M−1∑
k=−1

skϕM,k(t) = STΦM (t), (5)

where
S = [s−1, s0, . . . , s2M−1]

T (6)

and

sk = f(
k + 1

2M
), k = −1, . . . , 2M − 1. (7)

Note that the functions ϕM,k(t) satisfy in the relation

ϕM,k(
i+ 1

2M
) = δk,i =

{
1, k = i,
0, k ̸= i,

i = −1, . . . , 2M − 1.

So we have

ΦM (ti) = ei, ti =
i+ 1

2M
, i = −1, . . . , 2M − 1, (8)

where ei is the ith column of unit matrix of order 2M + 1 [21].

2.3 Two operational matrices of integration

Suppose

Φ∫
M (t) =

∫ t

0

ΦM (τ)dτ, (9)

then the integration of vectors ΦM in (4) can be expressed as
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Φ∫
M = IϕΦM , (10)

where Iϕ is (2M + 1) × (2M + 1) operational matrix of integration for the
linear B-spline functions on [0, 1]. We construct Iϕ using the following two
methods:

Method 1.

Iϕ =

∫ 1

0

Φ∫
M (t)Φ̃T

M (t)dt, (11)

where Φ̃M is the vector of dual basis of ΦM which can be obtained using the
linear combinations of ϕj,k [22,23] as

Φ̃M = P−1ΦM , (12)

where

P =

∫ 1

0

ΦM (t)ΦT
M (t)dt = 2−M


1
3

1
6

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

1
6

1
3

. (13)

Replacing (12) in (11) we get

Iϕ =

(∫ 1

0

Φ∫
M (t)ΦT

M (t)dt

)
P−1 = E(P−1), (14)

where

E =

∫ 1

0

Φ∫
M (t)ΦT

M (t)dt. (15)

By using Eqs. (9) and (15) we obtain

E = 2−(2M+1)



1
4

11
12 1 · · · · · · 1 1

2
1
12 1 23

12 2 · · · 2 1
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 2

...
. . . 1 23

12 1
1
12 1 11

12
1
12

1
4


.

Method 2.

In this method, we approximate Φ∫
M using linear B-spline functions and

then construct Iϕ. Suppose

Φ∫
M =

[
L1(t) L2(t) · · · L2M+1(t)

]T
, (16)
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where using Eq. (4) we have

Li(t) =

∫ t

0

ϕM,i−2(τ)dτ, i = 1, . . . 2M + 1, M ∈ Z.

Finally from Eq. (7) we get

(Iϕ)ij = Li(
j − 1

2M
), i = 1, . . . 2M + 1, j = 1, . . . 2M + 1, (17)

where (Iϕ)ij denotes the ij-th element of matrix Iϕ. Final form of this matrix
is as follows:

Iϕ = 2−(M+1)



0 1 1 · · · 1
1 2 · · · 2

1
. . .

...
. . . 2

1

 . (18)

3 Problem statement

The problem we are treating is to find the optimal control u∗(t) and the
corresponding optimal state trajectory x∗(t) that minimizes the performance
index

J =
1

2
xT (tf )Zx(tf ) +

1

2

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt, (19)

subject to

ẋ(t) = f(x(t),u(t), t), (20)

Ψ(x(t0), t0,x(tf ), tf ) = 0, (21)

gi(x(t),u(t), t) ⩽ 0, i = 1, 2, . . . , w, (22)

where Z and Q(t) are positive semidefinite matrices, R(t) is a positive def-
inite matrix, t0 and tf are known initial and terminal time respectively,

x(t) = (xi(t))
l
i=1 is the state vector, u(t) = (uj(t))

q
j=1 is the control vector

and f ,gi (i = 1, 2, . . . , w) are nonlinear functions. This problem is defined on
the time interval t ∈ [t0, tf ]. Certain numerical techniques (like B-spline func-
tions) require a fixed time interval, such as [0, 1]. The independent variable
can be mapped to the general interval τ ∈ [0, 1] via the affine transformation

τ =
t− t0
tf − t0

. (23)
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Note that this mapping is still valid with free initial and final times. Using
Eq. (23), this problem can be redefined as follows:

Minimize the performance index

J =
1

2
xT (1)Zx(1) +

1

2
(tf − t0)

∫ 1

0

(
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

)
dτ,

(24)
subject to

dx

dτ
= (tf − t0)f(x(τ),u(τ), τ ; t0, tf ), (25)

Ψ(x(0), t0,x(1), tf ) = 0, (26)

gi(x(τ),u(τ), τ ; t0, tf ) ⩽ 0, i = 1, 2, . . . , w, τ ∈ [0, 1]. (27)

4 The proposed method

Let

Φ̂M,l(t) = Il ⊗ ΦM (t), (28)

Φ̂M,q(t) = Iq ⊗ ΦM (t), (29)

where Il and Iq are l × l and q × q dimensional identity matrices, ΦM (t) is

(2M + 1)-vector, ⊗ denotes Kronecker product [20] and Φ̂M,l(t) and Φ̂M,q(t)
are matrices of order l(2M + 1) × l and q(2M + 1) × q. Assume that each
of ẋi(t), i = 1, 2, . . . , l, and each of uj(t), j = 1, 2, . . . , q, can be written in
terms of linear B-spline functions as

ẋi(t) ≃ ΦT
M (t)Xi,

uj(t) ≃ ΦT
M (t)Uj .

Then using Eqs. (28) and (29) we have

ẋ(t) ≃ Φ̂T
M,l(t)X, (30)

u(t) ≃ Φ̂T
M,q(t)U, (31)

where X and U are vectors of orders l(2M + 1) and q(2M + 1), respectively,
given by

X =
[
XT

1 ,X
T
2 , . . . ,X

T
l

]T
,

U =
[
UT

1 ,U
T
2 , . . . ,U

T
q

]T
.

Similarly we have
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x(0) ≃ Φ̂T
M,l(t)A0, (32)

where A0 is a vector of order l(2M + 1) given by

A0 =
[
aT1 , a

T
2 , . . . , a

T
l

]T
.

By integrating Eq. (30) from 0 to t we get

x(t)−x(0) =

∫ t

0

Φ̂T
M,l(τ)Xdτ ≃ (Il⊗ΦT

M (t))(Il⊗ITϕ )X = Φ̂T
M,l(t)̂I

T
ϕX, (33)

where Iϕ is an operational matrix of integration given in Eq. (14). From
Eqs. (32) and (33) we obtain

x(t) ≃ Φ̂T
M,l(t)(A0 + ÎTϕX). (34)

4.1 The performance index approximation

By substituting Eqs. (31)-(34) in Eq. (24) we get

J =
1

2
(A0 + ITϕX)T (Φ̂M,l(1)ZΦ̂

T
M,l(1))(A0 + ITϕX)

+
1

2
(tf − t0)(A0 + ITϕX)T

(∫ 1

0

Φ̂M,l(t)Q(t)Φ̂T
M,l(t)dt

)
(A0 + ITϕX)

+
1

2
(tf − t0)U

T

(∫ 1

0

Φ̂M,q(t)R(t)Φ̂T
M,q(t)dt

)
U. (35)

Eq. (35) can be computed more efficiently by writing J as

J =
1

2
(A0 + ITϕX)T

(
Z⊗ ΦM (1)ΦT

M (1)
)
(A0 + ITϕX)

+
1

2
(tf − t0)(A0 + ITϕX)T

(∫ 1

0

Q(t)⊗ ΦM (t)ΦT
M (t)dt

)
(A0 + ITϕX)

+
1

2
(tf − t0)U

T

(∫ 1

0

R(t)⊗ ΦM (t)ΦT
M (t)dt

)
U. (36)

For problems with time-varying performance index, Q(t) and R(t) are
functions of time and∫ 1

0

Q(t)⊗ ΦM (t)ΦT
M (t)dt,

∫ 1

0

R(t)⊗ ΦM (t)ΦT
M (t)dt

can be evaluated numerically. For time-invariant problems, Q(t) and R(t)
are constant matrices and can be removed from the integrals. In this case,
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Eq. (36) can be rewritten as

J(X,U) =
1

2
(A0 + ITϕX)T

(
Z⊗ ΦM (1)ΦT

M (1)
)
(A0 + ITϕX)

+
1

2
(tf − t0)(A0 + ITϕX)T (Q⊗P) (A0 + ITϕX)

+
1

2
(tf − t0)U

T (R⊗P)U. (37)

4.2 The system constraints approximation

We approximate the system constraints as follows:

Using Eqs. (30), (31) and (34) the system constraints (25), (26) and (27)
became

Φ̂T
M,l(t)X = (tf − t0)f(Φ̂

T
M,l(t)(A0 + ÎTϕX), Φ̂T

M,q(t)U, t; t0, tf ), (38)

Ψ(Φ̂T
M,l(0)(A0 + ÎTϕX), t0, Φ̂

T
M,l(1)(A0 + ÎTϕX), tf ) = 0, (39)

gi(Φ̂
T
M,l(t)(A0 + ÎTϕX), Φ̂T

M,q(t)U, t; t0, tf ) ⩽ 0, i = 1, 2, . . . , w. (40)

We collocate Eqs. (38) and (40) at Newton-cotes nodes tk,

tk =
k − 1

2M
, k = 1, 2, . . . , 2M + 1. (41)

The optimal control problem has now been reduced to a parameter opti-
mization problem which can be stated as follows:

Find X and U so that J(X,U) is minimized (or maximized) subject to
Eq. (39) and

Φ̂T
M,l(tk)X = (tf − t0)f(Φ̂

T
M,l(tk)(A0 + ÎTϕX), Φ̂T

M,q(tk)U, tk), (42)

gi(Φ̂
T
M,l(tk)(A0 + ÎTϕX), Φ̂T

M,q(tk)U, tk; t0, tf ) ⩽ 0, (43)

i = 1, 2, . . . , w, k = 1, 2, . . . , 2M + 1.

Many well-developed nonlinear programming techniques can be used to solve
this extremum problem (see, e.g. [1, 9, 11]).

5 Illustrative examples

This section is devoted to numerical examples. All problems were pro-
grammed in MAPLE, running on a Pentium 4, 2.4-GHz PC with 4 GB of
RAM. Also we solved the obtained nonlinear programming that is minimize
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(or maximize) J(X,U) subject to Eqs. (39), (42) and (43), using ”NLPsolve”
command in MAPLE program. To illustrate our techniques, we present five
numerical examples and make a comparison with some of the results in the
literatures.
Example 1. This example is adapted from [18]. Find the control vector
u(t) which minimizes

J =
1

2

∫ 1

0

(
x21(t) + u2(t)

)
dt, (44)

subject to [
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (45)[

x1(0)
x2(0)

]
=

[
0
10

]
, (46)

and subject to the following inequality control constraint

|u(t)| ⩽ 1. (47)

In Table 1, the minimum of J using the rationalized Haar functions [29],
hybrid of block-pulse and Legendre polynomials [25], hybrid of block-pulse
and Bernoulli polynomials [28] and present two methods are listed. In Figure
1, the control and state variables with the absolute value of constraint’s errors
for M = 8, are reported.

Table 1: Estimated values of J for Example 1
Method J CPUTime

Rationalized Haar functions [29]
K = 4 8.07473 0.389
K = 8 8.07065 0.546

Hybrid of block-pulse and Legendre [25]
N = 4,M1 = 3 8.07059 1.592
N = 4,M1 = 4 8.07056 4.304

Hybrid of block-pulse and Bernoulli [28]
N = 4,M = 2 8.07058 0.858

N = 4,M = 3 8.07055 1.155

Present method 1
M = 6 8.07056208507474 1.075
M = 7 8.07056206359357 1.453

M = 8 8.07056204949560 1.722

Present method 2
M = 6 8.07043910532066 0.665
M = 7 8.07053132323846 1.009

M = 8 8.07055438812380 1.341
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Figure 1: State and control variables and the constraint errors |ẋ1(t)−x2(t)| and |ẋ2(t)+
x2(t)− u(t)| for Example 1 using Method 1 (left) and using Method 2 (right) with M = 8
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Example 2. Consider the Breakwell problem [12]. The performance index
to be minimized is given by

J =
1

2

∫ 1

0

u2(t)dt, (48)

subject to the state equations

ẋ1(t) = x2(t), ẋ2(t) = u(t), (49)

with the endpoint conditions

x1(0) = x1(1) = 0, x2(0) = −x2(1) = 1, (50)

and the state constraint
x1(t) ⩽ 0.1. (51)

The exact solution to this problem is given by

u∗(t) =


200
9 t− 20

3 , t ∈ [0, 0.3],
0, t ∈ [0.3, 0.7],
− 200

9 t+ 140
9 , t ∈ [0.7, 1] .

(52)

This example was studied by using pseudospectral method [12] and ChFD
scheme [27]. Here we applied the proposed method to solve this problem.
Absolute errors between approximation and exact value of the performance
index are reported in Table 2. The approximate solutions of x1(t), x2(t) and
u(t), obtained by linear B-spline functions using method 2 with M = 9 and
the exact solutions together error bounds |x∗1(t)− x1(t)|, |x∗2(t)− x2(t)| and
|u∗(t)− u(t)| are plotted in Figure 2. This results show that accuracy of our
method in comparison with ChFD scheme [27] whose result are plotted in
Figure 3.

Table 2: Errors of the estimated and exact values of the performance index, |J − J∗|, for
Example 2

Method 1 Method 2
M |J − J∗| CPUTime |J − J∗| CPUTime

6 3.67× 10−2 0.053 5.93× 10−3 0.163

7 1.86× 10−2 0.181 1.48× 10−3 0.401
8 9.34× 10−3 1.034 3.74× 10−4 1.377
9 4.68× 10−3 7.662 9.38× 10−5 7.400

Example 3. This example is adapted from [19] and also studied by using
rationalized Haar approach [26], hybrid of block-pulse and Legendre polyno-
mials [25], hybrid of block-pulse and Bernoulli polynomials [28] and interpo-
lating scaling functions [10]. Find the control vector u(t) which minimizes
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Figure 2: Exact value, approximation of optimal control, state variables and error bounds
using method 2 for Example 2 with M = 9
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Figure 3: Exact value and approximation errors of |x∗
1(t) − x1(t)| , |x∗

2(t) − x2(t)| and
|u∗(t)− u(t)| using ChFD scheme [27] for Example 2 with M = 35

J =

∫ 1

0

(
x21(t) + x22(t) + 0.005u2(t)

)
dt, (53)

subject to [
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (54)[

x1(0)
x2(0)

]
=

[
0
−1

]
, (55)

and the following state variable inequality constraint

x2(t) ⩽ r(t), (56)

where
r(t) = 8(t− 0.5)2 − 0.5, 0 ⩽ t ⩽ 1.

The computational result for x2(t) using method 2 for M = 8 together
with r(t) are given in Fig. 4. In Table 3, we compare the minimum of J using
the proposed two methods with other solutions in the literature.

Example 4. We consider the optimal maneuvers of a rigid asymmetric space-
craft [17]. This example is studied by using quasilinearization and Chebyshev
polynomials [15] and hybrid of block-pulse and Bernoulli polynomials [28].
The system state equations are



..

G
al
le
y
P
ro
of

Two numerical methods for nonlinear constrained ... 31

Table 3: Results for Example 3
Method J CPUTime

Rationalized Haar functions [26]
K = 64, w = 100 0.170115 1.877

K = 128, w = 100 0.170103 1.983

Hybrid of block-pulse and Legendre [25]
N = 4,M1 = 3 0.17013645 0.951
N = 4,M1 = 4 0.17013640 1.545

Hybrid of block-pulse and Bernoulli [28]

N = 4,M = 3 0.1700305 0.756
N = 4,M = 4 0.1700301 0.921

Interpolating scaling functions [10]
n = 4, r = 5 0.16982646 2.251

n = 5, r = 5 0.16982636 3.175

Present method 1
M = 6 0.169672402102247 1.512
M = 7 0.169782602033829 1.607
M = 8 0.169811048165412 1.985

Present method 2
M = 6 0.170071967582200 0.599
M = 7 0.169885295276034 1.003
M = 8 0.169837051920398 1.141

Figure 4: Control and state variables and constraint boundary for Example 3 using
method 2 with M = 8

ẋ1(τ) = −I3 − I2
I1

x2(τ)x3(τ) +
u1(τ)

I1
,

ẋ2(τ) = −I1 − I3
I2

x1(τ)x3(τ) +
u2(τ)

I2
,

ẋ3(τ) = −I2 − I1
I3

x1(τ)x2(τ) +
u3(τ)

I3
,

x1(τ)− (5× 10−6τ2 − 5× 10−4τ + 0.016) ⩽ 0,

x1(100) = x2(100) = x3(100) = 0,



..

G
al
le
y
P
ro
of

32 Y. Edrisi-Tabriz, M. Lakestani and A. Heydari

where I1 = 86.24, I2 = 85.07, I3 = 113.59. The performance index to be
minimized, starting from the initial states x1(0) = 0.01, x2(0) = 0.005 and
x3(0) = 0.001 is

J =
1

2

∫ 100

0

(
u21(τ) + u22(τ) + u23(τ)

)
dτ.

We use transformation τ = 100t, 0 ⩽ t ⩽ 1, in order to use our proposed
method. In Table 4, the results for J using linear B-spline functions, hy-
brid of block-pulse and Bernoulli polynomials [28] and quasilinearization and
Chebyshev polynomials [15] are listed. Optimal control and state variables
and constraint boundary using method 2, for M = 7, are shown in Figure 5.

Table 4: Results for Example 4

Method J CPUTime
Quasilinearization and Chebyshev polynomials [15]
N = 6 0.00536584 0.07
N = 8 0.00534427 0.10
N = 10 0.00534063 0.12
Quasilinearization and Chebyshev polynomials [15]
with using 2 subintervals

M2 = 10 0.00530902 0.36
Hybrid of block-pulse and Bernoulli [28]
N = 6,M = 3 0.00531097 1.89
N = 6,M = 4 0.00530263 2.12
N = 6,M = 5 0.00530213 2.74
Present method 1
M = 5 0.00527460682730895 0.55
M = 6 0.00529464663721832 0.67
M = 7 0.00530275422863559 0.71
Present method 2
M = 5 0.00530817821841613 0.06
M = 6 0.00530851397972318 0.10
M = 7 0.00530847110421464 0.13

Example 5. Consider the problem of transferring containers from a ship
to a cargo truck [31]. The container crane is driven by a hoist motor and a
trolley drive motor. The aim is to minimize the swing during and at the end
of the transfer. After appropriate normalization, we summarize the problem
as follows:

J = 4.5

∫ 1

0

(
x23(t) + x26(t)

)
dt

subject to
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Figure 5: Control and state variables and constraint boundary for Example 4 using

method 2 with M = 7

ẋ1(t) = 9x4(t),

ẋ2(t) = 9x5(t),

ẋ3(t) = 9x6(t),

ẋ4(t) = 9(u1(t) + 17.2656x3(t)),

ẋ5(t) = 9u2(t),

ẋ6(t) =
−9(u1(t) + 27.0756x3(t) + 2x5(t)x6(t))

x2(t)
,

where

x(0) = [0, 22, 0, 0,−1, 0]T ,

x(1) = [10, 14, 0, 2.5, 0, 0]T ,

and

|u1(t)| ⩽ 2.83374, t ∈ [0, 1],

− 0.80865 ⩽ u2(t) ⩽ 0.71265, t ∈ [0, 1],

with continuous state inequality constraints,

|x4(t)| ⩽ 2.5, t ∈ [0, 1],

|x5(t)| ⩽ 1.0, t ∈ [0, 1].

In Table 5, we compare the solution obtained using the proposed two
methods with the method of [9] and [28].
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Table 5: Results for Example 5

Method J CPUTime

Method of [9]

m = 5 0.5366× 10−2 2.589
m = 7 0.53614× 10−2 2.607
m = 9 0.53610895× 10−2 3.002
m = 11 0.5361102700× 10−2 3.021

Hybrid of block-pulse and Bernoulli [28]
N = 2,M = 2 0.593000× 10−2 1.904
N = 2,M = 3 0.528915× 10−2 2.125
N = 2,M = 4 0.521421× 10−2 2.305

N = 2,M = 5 0.521411× 10−2 2.663

Present method 1
M = 5 0.498574175174882× 10−2 1.815
M = 6 0.503885802644245× 10−2 1.963

M = 7 0.511514185733751× 10−2 2.025

Present method 2
M = 5 0.516049181578648× 10−2 1.579
M = 6 0.515021009757565× 10−2 1.708
M = 7 0.515021009428266× 10−2 1.869

6 Conclusion

In this paper we presented two numerical methods for solving nonlinear con-
strained quadratic optimal control problems. Two methods are based upon
the linear B-spline functions. Also several test problems were used to see
the applicability and efficiency of the method. The obtained results show
that when the state variables are unknown at the endpoints, then method
1 is more accurate than method 2 but in all problems method 2 is faster
than method 1. In total, our two methods are more accurate than existing
methods in the literature.
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توابع از استفاده با غیرخطی قیود با دوم درجه بهینه کنترل مسائل حل برای عددی روش دو
خطی بی-اسپلاین

۱ حیدری عقیله و لکستانی۲ مهرداد تبریز۱، ادریسی یوسف

ریاضی گروه تهران، نور پیام دانشگاه ۱

ریاضی علوم دانشکده تبریز، دانشگاه ۲

١٣٩۴ آذر ۶ مقاله پذیرش ،١٣٩۴ فروردین ٢٠ شده اصلاح مقاله دریافت ،١٣٩٣ آبان ۴ مقاله دریافت

تابع دارای که پردازد می ای بهینه کنترل مسائل حل برای عددی روش دو ی ارائه به مقاله این : چکیده
عملیاتی ماتریس دو گردد. می بیان بی-اسپلاین توابع های ویژگی همچنین باشند. می دوم درجه هدف
کنترل مسئله حل تا شود می استفاده ماتریسها این از سپس شوند. می معرفی ها روش با مرتبط انتگرال
مثال چندین انتها در گردد. تبدیل غیرخطی ریزی برنامه مسئله حل به غیرخطی قیود با دوم درجه بهینه

شود. می بیان مذکور روشهای آزمایی راستی و کارایی نمایش برای کاربردی

هم روش انتگرال؛ عملیاتی ماتریس خطی؛ بی-اسپلاین تابع بهینه؛ کنترل مسائل : کلیدی کلمات
. مکانی


