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1 Introduction

Recently, there has been great interest in improving both operators and cri-
teria of Global Optimization techniques [19, 34]. Genetic algorithm (GA)
which is probably the most famous Global optimization technique, still suf-
fers from not having a reliable automatic termination criterion. In other
words, GA is usually unable to decide when or where it should terminate the
optimization computations [16]. In practice, some pre-specified maximum
number of generations is usually used as the termination criterion. In many
practical applications, the stopping criteria can significantly influence both
the final optimal solution and the overall duration of the entire optimization
process [17].

Genetic algorithm is originally rooted in Hollands work [15] which pre-
sented a new approach in early sixties for problem solving that finally became
widely popular. Afterwards, in late 60s, his students, Bagley [3], Rosen-
berg [29], and Cavicchio [6] paved the way for new generations. At the
present, GA has found extensive applications in many fields of science, econ-
omy and engineering.

Many engineering design, modeling and planning problems are inherently
quite complex and usually they can’t be solved via conventional optimization
methods. On the other hand, GA can overcome these issues and is able to
successfully solve optimization problems with complex merit functions. GA
has simple operators, low storage requirements, and its parallel and global
outlook has been applied successfully in a wide variety of problem domains
[10, 22], such as control system design [9], chemical kinetics [8] and robotic
manipulator design [4].

All steps of GA are usually well defined except the number of stopping
criterion iterations [5]. Several termination criteria, such as Generation Num-
ber, Evolution Time, Fitness Threshold, Fitness Convergence, Population
Convergence and Gene Convergence are introduced to stop the evolutionary
algorithms like GA [32]. However, the most commonly used stopping crite-
rion for GA is Generation number which is usually determined via trial and
error.

In 1992, Nix and Vose modeled a simple genetic algorithm as Markov chain
[24]. They have not preserved the knowledge of previous best in their model.
In the mid-90s, Rudolph [30] and Suzuki [33] preserved the knowledge of
the previous best chromosomes in their model and proved faster convergence
of GAs to the optimal string. In 1994, Meyer and Feng [21] developed the
concept of a fuzzy stop criterion to provide a useful evaluation of GA’s real-
time performance. Their method is not based on a global or fixed value but
it works on achieving a pre-specified user-defined level of performance for the
given problem. Previously computed performances of earlier GAs were used
as a frame of reference for estimation of the current GA performance.

In 1996 Aytug and Koehler [2] derived a theoretical bound on the number
of iterations. They showed that a level of confidence is required to guarantee
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that the GA can find an optimal solution. They reported that the bound on
GA running time is a function of the mutation rate, size of the population
strings and the population size but it is independent of the crossover rate and
the fitness function. They used Markov chain formulation to find the bound.
In a similar work, Aytug et al. [1] have also modeled run time behavior of
GA using cardinality representation, as Markov chain.

In 1998 Murthy et al. [23] introduced concept of ε-optimal stopping time of
Genetic algorithm. They showed that the probability of performing mutation
play an important role in estimation of optimal stopping time of GA. They
have provided an estimate for the number of iterations that a GA has to run
to obtain an ε-optimal global solution. In 2002 Greenhalgh and Marshall [11]
examined how long a genetic algorithm should run to ascertain that it can
reach a reasonable optimal solution. They solved this problem by looking at
the effect of mutation on the convergence of genetic algorithm.

In 2007 Hedar et al. [14] modified a genetic algorithm with new termina-
tion criteria and acceleration elements. They named the proposed method
”Genetic Algorithm with Automatic Accelerated Termination (G3AT)”. This
method is based on some directing strategies: a) The Gene Matrix (GM)
that assist the exploration process, b) The Mutagenesis a new type of mu-
tation that accelerate the exploration and exploitation processes and c) The
Memetic Algorithm in order to achieve faster convergence.

In 2011 Ong and Fukushima [25] developed another genetic algorithm
that was called Genetic Algorithm with Automatic Termination and Search
Space Rotation (GATR). This algorithm can terminate the search without
conventional predefined criteria such as the maximum number of generations
or Function evaluations. They attempted to improve performance of Hedar’s
work [14] more accurately and more versatile.

In 2012 Bhandari et al. [5] introduced a new stop criterion based on
variance (ε) ) for the best optimal solutions of the problem at hand. The
proposed criterion uses only the fitness function values and takes into account
the inherent properties of the objective function. They didnt suggest any
automatic procedure for choosing the value of ε. Instead, the ε criterion
should be chosen sufficiently small to ensure the required accuracy.

In the present article, a new stopping criterion based on the new con-
cept of approximate number of decisive iterations (ANDI ) and approximate
degrees of freedom (Adf ) of the merit function at hand is proposed. For a
previously defined and explicitly known cost function (which are used as typ-
ical examples in this work), the maximum value of absolute error (MAEy)
which is readily computable from the uncertainties of the input variables, can
be used as a simple criterion for selecting the proper value of (ANDI ).

In real optimizations, where the ordinary least square is used as the merit
function, the above approach is extremely time consuming. For these cases, a
convenient procedure is introduced to find the appropriate value of (ANDI )
using the approximate degrees of freedom (Adf ) for the least square objective
function under consideration. A certain class of artificial neural network will
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be used to compute the Adf for both discrete and continuous cost functions.
It is clearly shown that a straightforward correlation exists between ANDI
and Adf which can be used to estimate the GA termination criterion for any
global optimization problem.

In the next sections, initially our in-house algorithm for GA, ANDI and
Adf will be presented briefly. Afterwards, the so called ”Regularization net-
work” of Poggio and Girosi [26] is introduced as a vehicle to compute the
approximate degrees of freedom for any desired cost function. Several simple
and relatively complex case studies (merit functions) are used to propose a
new correlation between our so called ”ANDI ” criterion and the ”Adf ” of
the objective function at hand.

2 A brief overview of our in-house GA algorithm

Genetic algorithm is based on the survival of better solutions evolved from
previous generations until a near optimal solution is acquired. It uses the
main three operations of selection, crossover and mutation to produce new
generations from the old ones [7].

The initial population is formed of N chromosomes that covers search
domain and is usually generated in a random manner. Selection operation
is performed by considering individual and cumulative probabilities, at this
step stronger and better chromosomes have a greater chance of being selected.
The Crossover operator works by selecting two chromosomes at random that
will exchange genetic features [20]. In nature, mutation rarely happens but
in a conventional GA, it happens frequently producing a new generation in
each iteration.

A modified version of GA is presented here which uses a new termina-
tion criterion parameter known as ANDI. Figure 1 depicts our in-house GA
algorithm which combines the standard GA with ANDI concept.

As shown in Figure 1, all conventional steps of a standard GA such as
initialization, parent selection, cross over and mutation are used in our in-
house algorithm. To ensure preserving the best solution throughout the entire
optimization calculations, the best fitness is saved in each iteration and this
chromosome is expected to bypass any GA operation (crossover or mutation).
As Figure 1 depicts, our in-house algorithm stops when the best solution does
not change after two consecutive approximate number of decisive iterations
(ANDI ). In other words, GA runs ANDI times initially and saves the best
optimal solution. Afterwards, it runs ANDI times again and compares new
best fitness with previous one. If the difference between these two fitnesses
is smaller than a very small pre-specified tolerance, then GA is converged.
Otherwise the old fitness is replaced by the new fitness and the process will
continue as long as the above condition is satisfied.
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Figure 1: The in-house GA flowchart using ANDI concept as the termination criterion.
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3 Description of ANDI and approximate df

As mentioned before, the approximate number of decisive iterations (ANDI )
is defined as the minimum number of iterations that provides proper perfor-
mance. This parameter has a crucial role in defining the termination criterion
of our in-house algorithm. In practical optimization problems, it is essential
to choose appropriate number of iterations (generations) which provides op-
timal answers with required accuracy in a reasonable time.

A simple but tedious way for selection of proper ANDI value is to plot
the best optimal solution obtained after two consecutive successful number
of iterations versus the corresponding number of iterations. Afterwards, a
specific criterion is required to select the approximate number of decisive it-
erations (ANDI ) based on difference between two optimal solutions obtained
for two successive iterations. The maximum value of absolute error (MAE)
which is readily computable from the uncertainties of the input variables, is
a good candidate to be used as the above criterion for selecting the proper
value of ANDI. The following section briefly explains a typical method which
can be used to find MAE as an appropriate criterion for selection ANDI.

For a multivariate differentiable cost function the absolute error (AE) of
the output variable (y) for a given set of inputs can be readily computed from
the following equation provided that sufficiently small errors exist in input
variables [18]:

AEy =

p∑
i=1

|∂f/∂xi|∆xi (1)

where (∆xi, i = 1, ..., p) are the uncertainties of the p input variables1. In
GA, a vast domain of input variables is usually exist instead of fixed input
values. Therefore, the value of objective function can drastically change with
variations of inputs inside corresponding domain. In this work, the value of
absolute error for a given cost function is initially computed when the input
variables vary inside their domain. The maximum value of the absolute error
encountered is then selected as the desired criteria (MAEy) for selection of
the required ANDI. Figure 2 illustrates a typical plot of AE for the following
objective function:

f(x1, x2) = 100(1− 3.3x1 + 2.9x2
1)exp(((x1 − 0.5)/0.25)2(1− 3.3x2 + 2.9x2

2)

exp(−((x2 − 0.5)/0.25)2)

(2)

As can be seen, the four distinct hills with different heights shown in 3D
plot section of Table 1 can be distinguished in Figure 2. Furthermore, the

1 For discrete functions with known singularities, the finite difference method can be used

to obtain the approximate values of partial derivatives
∂f

∂xi
=

f+ − f−

∂xi
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Figure 2: A typical plot of absolute error (AE) for various combinations of input variables
inside input domain for cost function of equation (2).

maximum value of absolute error for the merit function described by equa-
tion (2) is around 0.022. This value will be used as the required criterion
in the following sections to select the optimal value of ANDI for the given
cost function. Figure 3 shows a typical plot of the best fitness values found
after convergence versus the corresponding number of successive iterations
for the given cost function inside the corresponding input domain. Assuming
that the uncertainties for both input variables to be equal to 0.001, then
the maximum value of absolute error (MAEy) for the given cost function
is around 0.006, when computed from equation (1). After determining the
value of (MAEy) and returning to Figure 3, sufficient number of consecutive
successive iterations should be found which the variations in the correspond-
ing best fitness values is less than (MAEy). The square boxes shown in
Figure 3 belong to different number of consecutive successive iterations (2-5)
which the corresponding best fitnesses variations inside those number of con-
secutive iterations are smaller than the MAEy. As can be seen in Figure 3,
after 3 consecutive successive iterations, the value of best fitness approaches
its ultimate optimal value of around 2.95. It means that, at least 14 succes-
sive iterations are required to ensure that the optimal solution is successfully
approximated. In this work, the above number of successive iterations (i.e.
14) is selected as the ANDI which can be used as the termination crite-
rion for GA optimization method. To guarantee that sufficiently large values
for ANDI is chosen, 5 consecutive successive iterations are used for all case
study examples presented in latter sections. To the best of our knowledge,
this procedure has not been addressed previously.

Evidently, selection of ANDI via the above simple but tedious procedure
requires extensive computations which can be alleviated by resorting to the
following technique.
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Figure 3: A typical plot of best fitness values (for the corresponding cost function) versus
numbers of successive iterations.

A very useful concept usually known as approximate degrees of freedom
(Adf ) is borrowed from the literature [13] which depends on the complexity of
the cost function at hand. As an example, the Adf is around 2 for a univariate
linear function and it is around 4 for a bivariate linear objective function (in
the absence of input interactions). For complex multivariate (cost) functions,
the value of Adf can be computed by using various multivariate expansion
series, which requires too many terms for successful reconstruction of the orig-
inal (merit) function. In an another approach, the smoother matrix concept
can be used when a linear smoother (e.g. Regularization network) is replaced
for the original (cost) function [13, 27]. For a linear smoother model in the
form of f(x) = S(x)y, the effective or approximate degrees of freedom (Adf )
is defined as the trace of the smoother matrix S(x). As we know the trace
of a square matrix is its sum of diagonal elements which is equal to the sum
of its eigenvalues. In this work, a certain class of linear smoother known as
Regularization Network (RN) is used to successfully mimic the original cost
function. Then the trace of the so called smoother matrix of the trained RN,
learning from various samples (exemplars) provided by the true cost function
will be used as the Adf of the original merit function [13].

4 A brief review of RN used as a linear smoother to
mimic the true nonlinear cost function

Poggio and Girosi [26] illustrated that the solution of Euler-Lagrange partial
differential equation (PDE) for the multivariate linear regularization problem
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Figure 4: Schematic representation of Regularization network

leads to:
(G+ IN )wλ = y (3)

where G is N × N symmetric green matrix with elements G(i,j) = (xi, xj)
and λ is the regularization level. The parameter λ should be sufficiently large
to ensure that the matrix (G + IN ) is well behaved and hence invertible.
Equation (3) can be shown as the network illustrated in Figure 4. The so
called Regularization network (RN) contains N neurons or centers (xj , j =
1, ..., N) positioned exactly over training data points (xi, i = 1, ..., N). The
influence of the regularization parameter, λ, is embedded in the unknown
synaptic weights, w′

js.
Using the appropriate differential operator in Euler-Lagrange PDE, the

infinitely differentiable factorizable multidimensional Gaussian function in
the following form will be final solution and denotes the shape of the basis
functions:

G(xi, xj) = exp(∥ xi − xj ∥2/σ2
j ) =

∏
k=1

p
exp[−(xi,k − xj,k)

2/(σ2
j )] (4)

The performance of the RN strongly depends on both the appropriate
choice of the isotropic spread (σ) and the proper level of regularization (em-
bedded in the synaptic weights) [31]. By resorting to the leave-one out cross
validation (LOOCV or CV) criterion efficient and automatic computation of
the optimum level of regularization (λ∗) can be achieved for any given value
of σ.

CV (λ) = 1/N

N∑
k=1

[(eTk (IN −H(λ))y)/(eTk (IN −H(λ))ek)]
2 (5)

where ek is the kth unit vector of size N, IN is the N × N unit matrix and
H(λ) is the smoother matrix originally defined by Hastie and Tibshirani [13]
for a linear smoother such as RN. As mentioned in the previous section,
the trace of H(λ) denoted the approximate degrees of freedom of the linear
smoother. By definition, the smoother matrix for the RN can be computed
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from the following relation:

H(λ) = S = G(G+ λI)−1 (6)

5 Predictions of Adf via RN for different synthetic
merit functions

Several synthetic merit functions are used (as shown in 3D plot section of
Table 1), to demonstrate the ability of the RN to successfully estimate the
Adf of the original (merit) function and effectively reconstruct it.

A set of distinct exemplars are generated from the original (objective)
function and then contaminated with a pre-specified level of noise. These
data are initially normalized and then used to train and validate the cor-
responding optimized RNs with fixed spread of unity (to ensure sufficient
overlap between adjacent centers). In practice, a set of distinct exemplars
are usually replaces the merit function. In such cases, data generation step
is not required anymore but other stages (as well as the initialization of the
input variables) should be followed as they will be described in the following
section.

For each merit function of Table 1, one hundred equispaced exemplars
(on a 10 × 10 grid) are inside the corresponding domain and then contam-
inated with 10 percent noise level. These data sets are then used to train
the equivalent optimized RNs for all functions. As the first step, all input
variables are normalized and then the so called 100 × 100 Green matrix is
constructed using equation (4) (with centers positioned on normalized train-
ing exemplars) and (σ = 1). Then equation 5 is used to find the optimum
value of regularization parameter by minimizing the LOOCV criterion. The
LOOCV criterion uses all training data for both training and validation pur-
poses. Finally the trace of the smoother matrix (H(λ)) and linear weights
of RN are computable from equations (6) and (3), respectively. These linear
weights along with both maximum and minimum values of all training in-
put data can then be used to compute the generalization performance of the
optimally trained RN with optimum level of regularization.

A set of distinct exemplars are generated from the original (objective)
function and then contaminated with a pre-specified level of noise. These
data are initially normalized and then used to train and validate the cor-
responding optimized RNs with fixed spread of unity (to ensure sufficient
overlap between adjacent centers). In practice, a set of distinct exemplars
are usually replaces the merit function. In such cases, data generation step
is not required anymore but other stages (as well as the initialization of the
input variables) should be followed as they will be described in the following
section.
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Table 1: Typical bivariate non-linear functions

No. Cost(merit)function 3D plot Domain and Range

1
100(1 − 3.3x1 + 2.9x2

1)exp(−((x1 − 0.5)/0.25)2

(1 − 3.3x2 + 2.9x2
2)exp(−((x2 − 0.5)/0.25)2))

X1 = (0, 1)
X2 = (0, 1)
Y = (0, 2.061)

2 10cos(x1)sin(x2) + 10
X1 = (−5, 5)
X2 = (−5, 5)
Y = (1.7, 20)

3 x3
1 − x3

2 + 3x1 − 3x2 + 4

X1 = (−2, 2)
X2 = (−2, 2)
Y = (0, 8)

4 exp(−1/3x3
1 + x1 − x2

2)

X1 = (−2, 2)
X2 = (−2, 2)
Y = (1, 2.95)

5 −5(x2
1 + x2

2) + 20

X1 = (−1, 1)
X2 = (−1, 1)
Y = (10, 20)

6 1 + 1/(1 + x2
1 + x2

2)

X1 = (−5, 5)
X2 = (−5, 5)
Y = (1, 2)

7

f(x) =
∑D

i=1(ti + 200D) + 5000

ti =



−200 + x2
i if xi < 0

−80(2.5 − xi) if 0 < xi < 2.5

−64(7.5 − xi) if 2.5 < xi < 5

−64(xi − 2.5) if 5 < xi < 7.5

−28(xi − 7.5) if 7.5 < xi < 12.5

−28(17.5 − xi) if 12.5 < xi < 17.5

−32(17.5 − xi) if 17.5 < xi < 22.5

−32(27.5 − xi) if 22.5 < xi < 27.5

−80(xi − 27.5) if 27.5 < xi < 30

−200 + (xi − 30)2 if 30 < xi

X1 = (−50, 50)
X2 = (−50, 50)
Y = (0, 5000)

8
20exp(−.2

√
1
D

∑D
i=1 x2

i )

+exp( 1
D

∑D
i=1 cos(2πxi)) + 40

X1 = (−10, 10)
X2 = (−10, 10)
Y = (5.56, 22.72)
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For each merit function of Table 1, one hundred equispaced exemplars (on
a 10× 10 grid) are inside the corresponding domain and then contaminated
with 10 percent noise level. These data sets are then used to train the equiva-
lent optimized RNs for all functions. As the first step, all input variables are
normalized and then the so called 100×100 Green matrix is constructed using
equation (4) (with centers positioned on normalized training exemplars) and
(σ = 1). Then equation 5 is used to find the optimum value of regularization
parameter by minimizing the LOOCV criterion. The LOOCV criterion uses
all training data for both training and validation purposes.

Finally the trace of the smoother matrix (H(λ)) and linear weights of
RN are computable from equations (6) and (3), respectively. These linear
weights along with both maximum and minimum values of all training input
data can then be used to compute the generalization performance of the
optimally trained RN with optimum level of regularization. Figure 5 shows
the generalization performances of all 6 trained networks (RNs) on 100×100
grids inside the corresponding training domains.

Comparison of these generalizations performances with the original plots
of Table 1 reveals that the optimal RNs provided impressive performances on
reconstructing the true hyper-surface embedded in limited and noisy training
data sets.

6 Predictions of ANDI values for various synthetic
examples

The 3D case studies shown in Table 1 will be ultimately used to find a
relatively simple correlation between Adf and ANDI. As mentioned earlier in
section 3, the maximum value of absolute error (MAEy) is used to select the
proper value of ANDI for each and every (cost) function. The uncertainties
in input values and the corresponding MAEy values are depicted in Table 2.

As previously mentioned, the MAEy values provide proper criteria for
estimation of the ANDI values or the number of successive iterations that
the GA requires to provide the optimum value of cost function, as described
in the calculation procedure shown in Figure 1. In our present approach, the
Genetic Algorithm is initially executed with different number of successive
iterations (2 to 100) and the best fitness values are found for each and every
iteration (after convergence) and plotted against the number of successive it-
erations as shown in Figure 6 for all (merit) functions of Table 1. Afterwards,
the MAEy values for the each (merit) function is used to select the proper
value for ANDI for corresponding (merit) function.

Table 3 shows the corresponding best fitness values at different number of
successive iterations for various numbers of consecutive successive iterations
for all (merit) functions of Table 1. As mentioned before, to guarantee that
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Figure 5: Generalization Performances of RNs (σ = 1) for all merit functions of Table 1
trained with 100 equi-spaced exemplars contaminated with 10 percent noise.

Table 2: MAE values for functions depicted in Table 1.

Function No. MAEX1 MAEX2 MAEy

1 .001 .001 .022
2 .001 .001 .010
3 .001 .001 .018
4 .001 .001 .006
5 .001 .001 .014
6 .001 .001 .010
7 .001 .001 .200
8 .001 .001 .070
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Figure 6: Plots of best fitness values versus number of successive iterations for all merit
functions of Table 1.
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Table 3: Best fitness values (BFV) at different number of successive iterations (NCSI)
for various numbers of consecutive successive iterations (NCSI).

Function No.
in Table 1 NCSI=2 NCSI=3 NCSI=4 NCSI=5

NSI BFV NSI BFV NSI BFV NSI=ANDI BFV
1 21 2.055 22 2.050 24 2.042 71 2.060
2 27 19.997 53 19.998 78 19.999 79 19.999
3 2 7.982 3 7.981 18 7.996 19 7.997
4 11 2.907 14 2.929 36 2.948 37 2.947
5 2 19.947 3 19.947 5 19.947 10 19.994
6 2 1.666 3 1.666 4 1.666 33 1.999
7 14 4959.90 108 4988.29 137 4998.14 175 4998.42
8 38 21.98 71 22.71 135 22.65 148 22.72

sufficiently large values for ANDI is chosen, five consecutive successive iter-
ations (CSI) are used for all (merit) functions as depicted in the left (NSI:
number of successive iterations) column of the NCSI=5 of Table 3. For ex-
ample, ANDI value for the first (merit) function of Table 1 is 71 where the
corresponding best fitness value is around 2.060.

Evidently, the above procedure seems quite complex and can be avoided
by resorting to the approximate degrees of freedom (Adf ). In the absence
of an explicit cost function, a linear smoother model such as RN can be
used (as discussed in the previous section) to reconstruct the hyper-surface
representing the original merit function and compute the Adf of the cost
function at hand. The final goal is to present a relatively simple correlation
between, ANDI and Adf. This approach has not been addressed previously.

In some cases the cost function is sufficiently simple and the exact df can
be easily computed. For example, the exact degrees of freedom for the third
and 5th (merit) functions of Table 1 are exactly eight and six, respectively.
In the cases, no input interactions exist and two cubic or quadratic models
(f1(x1) and f2(x2)) can successfully reconstruct the true cost functions, re-
spectively. In other cases, the Regularization network can be used to find
the Adf for the complex cost function at hand. The following procedure is
used to train six fully optimized RNs and compute the Adf values for all cost
functions of Table 1.

1. Generate N training exemplars with sufficient noise level from the cost
function at hand.

2. Normalize input variables values.

3. Compute the N×N elements of the Green matrix by positioning all the
network centers on the normalized inputs and assuming a pre-specified
value for the Gaussian isotropic spreads.

4. Compute the optimal value of regularization parameter (λ∗) by resort-
ing to LOOCV criterion.

5. Calculate the Adf value as the trace of N ×N smoother matrix H(λ∗),
which is already defined by equation (6).
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Table 4: Approximate Degrees of freedom (Adf ) for all merit functions of Table 1.

Func. No. 1 2 3 4 5 6 7 8
Adf 45 48 12 31 8 24 228 217
ANDI 71 79 19 37 10 33 175 148

Figure 7: Two simple correlations introduced between ANDI and Adf values.

The second row of Table 4 shows the values of Adf for all merit functions of
Table 1 computed via the above procedure. As can be seen, the approximate
values for the degrees of freedom (Adf ) of both third and 5th (merit) functions
of Table 1 (which are: 12 and 8) are sufficiently close to their exact values
(which are: 8 and 6). Other merit functions are too complex to directly
compute their Adf values and the above procedure should be used to calculate
the corresponding Adf values. The third row contains the ANDI values which
are exactly transferred from the last column of Table 3.

7 Presenting simple correlations between ANDI and
Adf

The data of Table 4 are used to plot the variations of ANDI values versus
the corresponding Adf values, as depicted in Figure 7. Two linear and cubic
correlations are extracted by fitting the data of Table 4. Although, the cubic
equation almost passes from each and every point, however we prefer to use
the linear fit because it is quite simpler and it should also be remember that
the horizontal axis represents the approximate (not exact) degrees of freedom.
Both of these correlations will be used in the following section to compute
ANDI values for a relatively complex optimization problem.
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Table 5: Comparison of best fitness and maximum values found via linear and cubic
correlations for 2 different cost functions of Fig. 8.

Function Adf Correlation ANDI Best Fitness value True Maximum
8.a 14 Linear 30 2.1479 2.1481

Cubic 21 2.1471
8.b 30 Linear 41 13.5842 13.5846

Cubic 43 13.5836

8 Validation of the proposed correlations

Various synthetic 2 and 5 dimensional in input domains case studies are used
to validate the applicability of the proposed correlations for the termination
criterion of the optimal genetic algorithm method. As the results clearly
shows, the proposed heuristics successfully predicts the approximate number
of decisive iterations (ANDI ) for all 3D and 6D hyper-surfaces.

8.1 Two 3D hyper-surfaces synthetic case studies

Figure 8 illustrates two different 3D synthetic cost functions which are used
to validate the effectiveness of the proposed correlations (shown on Figure
7). The first merit function (Figure 8.a) has no input interactions and the
corresponding value for its degrees of freedom can be readily obtained as 14
by adding the maximum orders of each input plus number of input variables.
Using both linear and cubic correlations, the ANDI values are computed
and fixed at 18 and 22, respectively. Table 5 illustrates the same results
for the second cost function (Figure 8.b). For such complex function, the
exact degrees of freedom is not readily known because large interactions exist
between two input variables. The fully optimized RN is used to estimate its
approximate degrees of freedom around 30. Table 5 shows that both ANDI
values computed from correlations of Figure 7 can successfully pinpoint the
true maximum (optimum) point. As before, the linear correlation is much
simpler and provides almost the same result as the cubic one.

8.2 Two 6D hyper-surface synthetic case studies

To demonstrate the robustness of the proposes algorithm and the excellent
performance of the Regularization Network on filtering large noise levels and
extracting the true underlying hyper-surface from a bunch of noisy data, two
6D synthetic examples are introduced in this section. Figure 9 depicts two
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Figure 8: 3D plots and corresponding equations for two bivariate cost functions used for
validation purposes.

typical contour maps of these case studies (borrowed from literature [28]). As
can be seen, both functions are quite complex with relatively large oscillations
and have sufficiently sizable degrees of freedom. To reduce the computational
time while preserving the accuracy of the network predictions, 5 randomly
spaced exemplars are generated in each input dimensions. To emphasize the
excellent noise filtering capability of the Regularization network, the true
generated hyper-surfaces is then contaminated with extremely large noise
level of 50 percent .

The noisy data set is then used to train the optimal RN and Figure 10
illustrates the impressive performance of such fully optimized RN on captur-
ing the true hyper-surface from heavily contaminated noisy data. The leave
one out cross validation technique is used to select the optimum level of reg-
ularization [12]. Figure 10 clearly illustrates that the optimal RN which uses
linear reqularization theory (also known as Tikhonov or Phillips and Twomey
method [27]) with optimum level of regularization can successfully pull away
the fitted hyper-surface from the noisy training data and reconstruct the
true multidimensional surface by filtering out the large noises available in
that data set. As table 6 shows, the RN predicts that the fitted hyper-
surfaces have Adf s of 53 and 154 respectively, which are quite reasonable
for such sophisticated functions. As before, both equations of Figure 7 can
provide excellent maximums compared to the real maximum values of the
cost functions at hand.

Figure 11 shows that both values of approximate numbers of decisive
iterations computed from correlations of Figure 7 provide same results for
the fitness values of both functions. Although, several oscillations may occur
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Figure 9: Typical two dimensional contour maps of two 5D synthetic case studies.

Figure 10: Effectiveness of RN on filtering the noise and reconstructing the true hyper
surface in large multi-dimensional case studies.

Table 6: Comparison of best fitness and maximum values found via linear and cubic

correlations for 2 different cost functions of Fig. 9.

Function Adf Correlation ANDI Best Fitness value True Maximum
9.a 53 Linear 54 642.7 642.8

Cubic 72 642.6
9.b 154 Linear 121 1.993 1.993

Cubic 152 1.993



..

G
al
le
y
P
ro
of

102 L. LotfiKatooli and A. Shahsavand

Figure 11: Plots of best fitness values versus number of successive iterations for all both
6D hyper-surfaces.

after the predicted ANDI values, however the maximum value of the cost
function remains essentially constant. In other words, practically no better
maximum exists for any iterations greater than ANDI values.

All above 3D and 6D hyper-surfaces case studies clearly demonstrate that
the proposed method can successfully be used to predict the maximum value
of any large dimensional cost function via genetic algorithm technique by
resorting to approximate number of decisive iterations computable from cor-
relations of Figure 7.

9 Conclusion

A new concept was introduced as the approximate number of decisive iter-
ations (ANDI ) which could be used as the termination criterion for genetic
algorithm global optimization method. Two simple correlations were pre-
sented which related the novel ANDI value with the approximate degrees of
freedom. A convenient method based of linear smoother concept was used
to predict the approximate degrees of freedom for complex merit functions.
The proposed approach was successfully tested for 4 different case studies.
It was clearly illustrated that the Regularization Network (RN) can success-
fully filter out large noise levels and reconstruct the true hyper-surface from
noisy data. The proposed approach has not addressed previously and can
drastically reduce the computation time for complex optimization problems.
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ژنتیک الگوریتم سازی بهینه روش اختتام برای اطمینان قابل رویکردی

شاهسوند اکبر و کتولی لطفی لیلا

شیمی مهندسی گروه مهندسی، دانشکده مشهد، فردوسی دانشگاه

١٣٩۵ مهر ٧ مقاله پذیرش ،١٣٩۴ آبان ٣٠ شده اصلاح مقاله دریافت ،١٣٩۴ مرداد ۴ مقاله دریافت

سازی بهینه مسائل از بسیاری حل برای ای گسترده شکل به ژنتیک الگوریتم اخیر، های دهه در : چکیده
تنها تکرارها تعداد موارد اکثر در است. گرفته قرار استفاده مورد مهندسی و علوم مختلف های زمینه در
شدن طولانی موجب معیار این از استفاده عمل، ذر باشد. می ژنتیک الگوریتم کردن متوقف برای معیار
عنوان با جدیدی رویکرد مقاله، این در گردد. می مطلوب نتیجه به رسيدن جهت الگوریتم اجرای زمان
بهینه روش آمیز موفقیت توقف موجب تواند می که است شده ارائه ضروری” های تکرار تقریبی ”تعداد
پارامتر ارتباط جهت ساده کاربردی رابطه دو همچنين، شود. ممکن زمان کمترین در ژنتیک الگوریتم سازی
می تر پیچیده هدف توابع برای است. گردیده ارایه نظر مورد هدف توابع برای تقریبی آزادی درجه با جدید
درجه تقریبی مقدار محاسبه جهت رگولاريزاسيون به موسوم عصبی شبکه مانند خطی برازشگر یک از توان
مناسب موردی مثال چهار از شده مطرح رویکرد موفق منظوراعتبارسنجی به نمود. استفاده مربوطه آزادی
بهینه نقطه یافتن به قادر مذکور روابط از استفاده با پیشنهادی روش موارد تمامی در که است گرديده استفاده
تقریبی مقدار نشانگر افقی محور شده، ارائه خطی رابطه در آنجایی از و سادگی بدلیل است. شده مربوطه
شبکه که دید توان می وضوح به رسد. می نظر به تر ارجح آن از استفاده باشد، می آزادی درجه دقیق) (نه
چند سطح و نموده حذف را واقعی های داده در موجود خطای موفقیت با تواند می رگولاريزاسيون عصبی

نماید. بازسازی خطا به آغشته های داده از ای مجموعه میان از را حقيقی بعدی

برازشگر ضروری؛ های تکرار تقریبی تعداد تقریبی؛ آزادی درجه اختتام؛ شرط ژنتیک؛ : کلیدی کلمات
رگولاریزاسیون. عصبی شبکه خطی؛




