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Abstract: Electrocardiogram (ECG) signal is widely used 
in the diagnosis of heart diseases. Since the amplitude of 
this signal is very low, a high-gain low-noise amplifier with 
a high common mode rejection ratio (CMRR) is needed. In 
portable applications a battery provides the required power 
for the ECG device. Hence, ECG amplifiers should have 
low area and power consumption. In this paper, an 
instrumentation amplifier for ECG application is proposed 
in which MOSCAPs are used to reduce the circuit area. 
MOSCAPs are inherently nonlinear and a technique is 
presented to reduce the impact of this non-linearity. In ECG 
systems, a driven right-leg circuit is used to increase the 
CMRR of the amplifier. In this paper a class AB buffer is 
employed to implement this circuit. The simulation results 
show that the gain of the proposed amplifier is 46.18 dB 
and its input referred noise is 7.8 µVrms over the frequency 
range of 0.3 Hz to 150 Hz. The total power consumption of 
the designed amplifier is 72 nW. The amplifier CMRR is 96 
dB and its total harmonic distortion (THD) is 0,68%  
(at 60 Hz). 
 
Keywords: Electrocardiogram(ECG), instrumentation 
amplifier, driven right-leg circuit, CMRR, MOSCAP. 

 
1.  Introduction 

With ever increasing demand for portable biomedical 
instruments, the power consumption and area of these 
equipments should be decreased as much as possible. One 
of the widely used portable biomedical systems is the 
electrocardiogram (ECG) recording device. One of the main 
building blocks of this system is the ECG amplifier. The 
amplitude of the ECG signal is less than 5 mV and its 
frequency is between 0.5 to 200 Hz. Since this signal is 
very weak, in the first stage it should be amplified with a 
very low noise amplifier [1]. 
An ECG amplifier should be able to reject noise, offset and 
common mode voltage. Since the ECG signal contains low 
frequency components, the flicker noise has a major impact 
on the performance of the amplifier. Moreover, the ECG 
signal is taken from biopotential electrodes and passes 
through the electrode-skin interface, hence, a very large 
offset (>10 mV) exists at the input of the amplifier [1]. 
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 Therefore for the ECG signal to be amplified properly, 
the amplifier should omit this offset voltage; otherwise the 
amplifier may be saturated. Another unwanted signal is the 
common mode voltage that has the largest amplitude in 
50/60 Hz frequency (coming from the power lines). Since 
the amplitude of this signal is much higher than that of the 
ECG signal, the amplifier should have a very high common 
mode rejection ratio (CMRR) to reduce the negative impact 
of this signal. However, ECG amplifiers with very high 
CMRR are power hungry and hence they are not suitable 
for portable applications. One solution is the utilization of 
driven-right-leg circuit. This circuit helps to reject the 
common mode voltage. Using the driven-right-leg circuit, 
amplifiers with moderate CMRR can be used and therefore, 
the overall power consumption of the system can be 
decreased. In portable applications, the right leg electrode is 
placed on the chest [2]. 
 Different structures have been proposed for 
implementing ECG amplifier. These structures generally 
can be categorized into conventional and chopper 
amplifiers. Chopper amplifiers are able to reduce 1/f and 
DC noises considerably. However, since these structures are 
wide band, their power dissipation is high [1, 3]. Current 
mode amplifiers are one of the conventional biomedical 
structures. These amplifiers use folded cascode technique 
and are very power hungry. Gm-C filters are employed to 
omit offset and noise signals, but the drawback of these 
circuits is their high power dissipation [4, 5].  
 Typically, the gain of conventional instrumentation 
amplifiers is provided by resistor dividers. These amplifiers 
are noisy and power consuming. Also, due to the poor 
matching of resistors, the CMRR of this circuit is inherently 
low. However, the input impedance of this structure is high 
and the common mode voltage is generated without any 
peripheral circuit [2, 4]. Even if the resistors of these 
amplifiers are implemented using transistors, its power 
consumption is still a problem [6]. In [2] resistors are 
replaced with capacitors and the behavior of the circuit is 
improved with regard to noise and power [2]. However, 
since the low cut-off frequency of the ECG amplifier should 
be less than 0.5 Hz, the capacitors have become very large. 
Therefore this structure is not area efficient and suitable for 
portable applications.  
 In this paper a new ECG amplifier is presented in which 
capacitors are replaced with MOSCAPs. Using this 
technique the occupied area of the circuit on silicon is 
reduced. MOSCAPs are inherently nonlinear and 
techniques have so far been presented to solve this problem. 
In the proposed circuit input transistors are biased in      
sub-threshold region to save power. Also, a class AB buffer 
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Table 5. Comparison of the proposed circuit with prior works. 

 

Techn
ology 

CMRR 
(dB) 

BW 
(Hz)  

Noise   
(µVrms)

Gain 
(dB) 

Power 
(W) 

 

65nm 110 0.5-1006.7 20 2.1 µ [1] 

0.5µm 90  

at 60 Hz
290 8.1 45.3 2.8 µ [2] 

0.18µm107 0.1-1500.68 46 46.8 µ [3] 

0.18µm127 0.2-2000.27 45 138 µ [4] 

0.18µm80 0.1-1501.6 38 110 µ [5] 

0.13µm>80 7-280 42 48-59 233 n [11]

0.18µm96  

at 60 Hz
0.3-1507.8 43-48 72 n 

T
h

is
 

w
or

k
 

 

5.  Conclusion 

In this paper we use instrumentation structure for ECG 
application. In the proposed architecture we employ 
MOSCAPs instead of capacitors to reduce the area of the 
amplifier. As a result of replacing the MIM capacitors with 
MOSCAPs, the total area of the ECG amplifier is reduced 
by a factor of 10. We also use techniques for linearization 
of MOSCAPs and the amplifier provides output voltage 
swing of 0.4 VP-P with total harmonic distortion of -50.17 
dB at 100 Hz. The total power consumption of the amplifier 
and driven-right-leg circuit is reduced to 72 nW while the 
important parameters of the amplifier are kept comparable 
to similar works. This result is achieved using class AB 
buffer and biasing transistors of the OTA in the sub-
threshold region. The input referred noise of the amplifier is 
equal to 7.8 µVrms and the amplifier CMRR is 96 dB at 
frequency 60 Hz. 
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