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Abstract: In this paper, the power electronic interface 
between a spacecraft electrical power system with a 
photovoltaic main source and battery storage as the 
secondary power source is modelled based on the state 
space averaging method. Subsequently, a novel sliding 
mode controller (SMC) is designed for maximum power 
point tracking (MPPT) of the PV array and load voltage 
regulation. Asymptotic stability is guaranteed through 
Lyapunov stability analysis. Afterwards, common Linear 
Quadratic Regulator (LQR), PID and Passivity-Based 
controllers (PBC)are provided to compare the results with 
those of the proposed sliding mode controller responses. 
Simulation of the hybrid system is accomplished using 
MATLAB and results are very promising. 
  
Keywords: Sliding mode control, spacecraft EPS, 
PV/battery hybrid system, LQR, PID, PBC . 

 
1. Introduction 

The electrical power system (EPS) is the most critical 
system on any spacecraft. Power is used for 
communications, vehicle attitude control, guidance, 
propulsion, and in all equipments of the payload [1]. 
Spacecraft power subsystems typically comprise PV array, 
rechargeable batteries, and DC/DC converters. DC/DC 
converters are switched systems. It means that their 
operation is characterized by a switching of circuit 
topologies, which gives rise to a variety of nonlinear 
behavior. This nonlinear behavior is usually avoided by the 
engineers, who prefer to adjust system’s parameters so that 
the system operates on a well-behaved region where the 
linear approximations are applicable, and so they can use 
classical methods of stability analysis and control [2]. 

Linear Quadratic Regulator (LQR), which is a very 
significant theory in Modern Control [3]. The LQR method 
has its advantages as standard design, easy realization and 
being able to gain linear feedback structure [4]. LQR can be 
straightforwardly calculated from the  matrices of the 
small-signal state-space averaged model of the system[5]. 
Proportional Integral derivative (PID), which has 
dominated the practice for over 80 years [6]. The usefulness 
of PID controls lies in their general applicability to most 
control systems. In particular, when the mathematical 
model of the plant is not known and therefore analytical 
design methods cannot be used, PID controls prove to be 
most useful. 
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In the field of process control systems, it is well known 
that the basic and modified PID control schemes have 
proved their usefulness in providing satisfactory control, 
although in many given situations they may not provide 
optimal control [7]. Traditionally the PID controller is one 
of the mostly used to carry out control of the DC/DC 
converters[8]. 

Passivity-based control (PBC) was introduced by Ortega 
et al. as a controller design methodology that achieves 
stabilization by passivation. PBC methods are characterized 
by their robustness, a property that usually lacked in linear 
control methods such as PID and LQR. PBC also results in 
the simpler control laws[9]. 

Sliding mode control (SMC) is popular to converters 
[10]. The application of SMC to DC/DC converters can be 
traced back to 1983 [11]. The SMC design theory and 
application examples are available in [12]. SMC offers 
several benefits, namely, large signal stability, robustness, 
good dynamic response, system order reduction, and simple 
implementation [13]. A typical sliding mode control has 
two modes of operation. One is called the approaching 
mode, where the system state converges to a pre-defined 
manifold named sliding function in finite time. The other 
mode is called the sliding mode, where the system state is 
confined on the sliding surface and is driven to the origin 
[12]. SMC is compatible with a wide range of processors 
such as DSP, microcontroller, FPGA, etc.[14]. 

Tracking the maximum power point (MPP) of a 
photovoltaic (PV) array is usually an essential part of a PV 
system. As such, many MPP tracking (MPPT) methods 
have been developed and implemented. The methods vary 
in complexity, sensors required, convergence speed, cost, 
range of effectiveness, implementation hardware, 
popularity, and in other respects[15]. Common control 
approaches required reference current for control law 
synthesis and may lead to a lack of robustness to operation 
conditions[16]. This reference current comes from MPPT 
algorithms [17]. Moreover, the requirement for external 
MPPT algorithms may increase the weight, volume and 
complexity of the EPS. By deliberately defining the novel 
sliding surface a robust SMC approach was proposed in this 
paper. 

This study presents SMC control of a Pv/battery hybrid 
system for MPPT of the PV array, load voltage regulating, 
and charging or discharging the battery. The basic idea is 
that the sliding surfaces are defined as the slope of P-I 
curve and battery current error. Asymptotic stability of the 
proposed system is guaranteed through Lyapunov stability 
analysis. Afterwards, common controllers are provided to 
compare the results with those of the proposed sliding mode 
controller responses. 
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Since the range of duty cycle must lies in ( )0 , 1u up b< < , 

the real control signal is proposed as: 
 
 

u p

ub

 
=  
  

u
                                                                        

(15) 

 

where, u p  and bu  can be written as: 

 

0 0

0 1

1 1

u k speq p p

u u k s u k sp peq p p peq p p

u k speq p p

 + <
= + < + <
 < +               

(16) 

 

( )
( ) ( )

( )

0 0

0 1

1 1

beq b b

b beq b b beq b b

beq b b

u k Sat s

u u k Sat s u k Sat s

u k Sat s

φ
φ φ

φ

 + <
= + < + <
 < +   

(17) 

 
where k p  and bk are constant coefficients and are 

determined by trial and error method by using computer 
simulations, ( )Sat s  is the saturation function which is 

shown in Fig. 6, and φ  is a small constant and is selected 

for chattering avoidance [12]. 

 

 
 

Fig. 6. Saturation function. 
 
The existence of the approaching mode of the proposed 

sliding function s  is provided. A Lyapunov function is 
defined as: 

 

v v vM R= +                                                                   (18) 

 

where, v M  and v R are positive definite terms and defined 

as: 
 

1 12 2,
2 2

v s v spM R b= =                                       (19) 

 

The time derivative of v  can be written as: 

 

v v vM R= +                                                                     (20) 

 

The achievability of s 0= , will be obtained by 0v < . It can 
be shown that both v M  and v R  are negative definite. 

v R can be written as follow: 
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Three cases should be examined for the fulfillment of
0v R <  : 
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Since, ( )3 3x x d− always has same sign of 3 3( )
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and 02x kb > , the sign of (22) is negative definite. 

 
 

 FOR  u = 1b  

( ) 02v s V x LR b b b= − <
                                            

(23) 
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In this case, the load voltage ( 2x ) is higher than the battery 

voltage (Vb )and 0sb > . from (23) it results 0v R < . 

 

 FOR  u = 0b  
 

0v s V LR b b b= <                                                         (24) 

 

In this case, 0sb <  is obtained and 0v R < . From the 

discussion above 0v R <  is obtained. 

v M can also be written as: 
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The time derivative of s p  can be written as: 
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By (1), the following equations will be obtained: 
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Substitute (29) and (30) into 1ps x∂ ∂  yield: 
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According to the result of (29), (30) and ( ), 01V xp > , the 

sign of (31) is negative definite. The achievability of 
0v M <  will be obtained by 0p ps s < for all pu  discussed 

as follows. 
 
 

 FOR 0 < u < 1p  

( ) 11 1 2 2x V x x u k s L x k s Lp p p p p p pPeq
  = − − − =    


  

(32) 

Based on the result of (31) and (32) s p  always has inverse 

sign of s p . Therefore, 0s sp p <  is obtained for 

0 1u p< < . 
 

 

 FOR u = 1p  
 

( ) 01 1x V x Lp p= >
                                                      (33)   

 
 

By (31) and (32), 0s p < . with 1u p = , two cases should 

be examined for the fulfillment of 0s sp p < . 

A) 1u peq =  

If 1u peq = , it implies ( ) 01V xp = which means s p  is 

negative for this case. Therefore, u k speq p p+ will be 

less than 1, which contradicts to the assumption of 1u p = . 

B) 1 and 1peq peq p pu u k s< + ≥  

If 1u peq < , and 1u k speq p p+ ≥ , it implies 0s p >  and 

0s sp p < . 

It conclude that 0s sp p < for 1u p = . 
 

 

 FOR  u = 0p  
 

( )( )1 1 2x V x x Lp p= −
                                                (34)

 

          
 

In this case load voltage is higher than the PV voltage         
( ( ) x1 2V xp < ). From (31) and (33), it results that 0s p > . 

Two cases for 0u p =  are examined as follows. 

A) 0u peq =  

0u peq = implies ( )1 2V x xp = , which contradicts to the 

assumption of ( )1 2V x xp < . 

B) 0 and 0u u k speq peq p p> + ≤  

In this case, 0s p <  is obtained and 0s sp p < . 

It concludes that 0s sp p < for 0u p = . From the 

discussion above, the stability of the system can be 
guaranteed using the proposed control law (16) and (17). 

 
4. Common Control Methods 

In this study common LQR, PID and PBC approaches [16] 
provided to compare the results with those of the proposed 
sliding mode controller responses. Note that common 
control methods required reference current ( )1x d for 

control law synthesis and may lead to a lack of robustness 
to operation conditions. In the following equations, 3dx  is 
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the desired battery current and can be described by Eq. (11) 
and 2dx  is the reference of the load voltage. 

4.1. Linear Quadratic Regulator 

The design of a LQR controller is based on the average 
model of converters. Then, the linearized model of the 
converter around an equilibrium point and MATLAB 
functions are used to design LQR controller (see [21] for 
more details). The linearized model of the system can be 
written as Eq. (35): 
 

 

1 1
A2 2

3 3

1
1

2
2

3

x x
u p

x x B
ubx x

x
uy p

C x D
uy bx

= +

= +

   
    
    
     

   
 

    
    

       
 






                                             (35) 

 

Since the MATLAB LQR function is unable to solve the 
regulation problems, the following equations are used to 
convert regulation problem into stabilization problem [21]. 
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(36) 

 

By applying Eq.(36), Eq.(35) can be written as: 
 

11 11

12 12

13 13

21 21

22 22

3 3 3 2 ,
2 3 2 2

z z
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u p

z zA B
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A B
A B
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0
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(37) 

 

 
 

The feedback gain can be calculated by the following 
MATLAB command: 

 

(A ,B ,Q, R)K lqr ′ ′>> =                                              (38) 

                              
 

where R and Q are determined by trial and error method by 
using computer simulations. Finally, the LQR control can 
be written as: 
 

1 2 3 1 21 2 3
p

d d d
b

u T
K x x x x x x g g

u
= − − − −

 
    

     

(39) 

4.2. Proportional Integral Derivative 

PID control law can be calculated by Eq. (40): 
 

( )
( )

01 2 3

01 2 3

,1 31 3

t
u sat k e k e k e dtp p p pp p p

t
u sat k e k e k e dtb b b b b b b

e x x e x xp d b d

= + + 

= + + 

= − = −





             (40) 
 
where 1pk , 2pk , 3pk , 1bk , 2bk  and 3bk  are determined 

by trial and error method [22]. 
 

4.3. Passivity Based Control 

The design of the PBC controller is based on the Euler 
Lagrange model of the converters. The PBC control signals 
which proposed in [16] are shown in Eq. (41) and (42). 

( )( )1
1 ( )1 1 1 1

2
u V x r x xp p a dx d

= − + −
                       

(41) 

 

( )( )1
( )3 2 3 3

2
u V x r x xab b dx d

= + −
                          

(42) 

   
 

( ), 01 2r ra a >  are design parameters (see [16] for more 

details). 
 
5. Simulation 

MATLAB environment is used to investigate the 
performance of the novel SMC on a Spacecraft EPS.LQR, 
PID and PBCcontrollers are provided to compare the results 
with those ofthe proposedSMC responses. The simulation 
investigatesfour system characteristics: robustness against 
irradiance, temperature, load resistance,and load voltage 
reference changes. Unlike SMC,common approaches 
required reference current ( )1x d  for control law synthesis 

which comes from P&O algorithm[16]. It is assumed that 
optimal reference current ( )1x d  is available to common 

LQR, PID and PBC controllers.The parameters of the 
components are chosen to deliver maximum 55 W of power 
generated by SM-55 and battery.Simulation conditions with 
fourstep changes are shown in Table 1: 
 

Table 1. Parameters variations. 
 

Time 
(s) 

Irradiance 
(W/m2) 

Temperature 
(℃) 

Load 
(Ω) 

0-2400 10 70 

2-41000 10 70 

4-6 1000 50 70 
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6-8 1000 50 30 

In order to compare the proposed control method with 
other approaches, four performance functions have been 
defined as follow: 
1) Efficiency function ( EffJ ): This function is defined as 

Eq. (43). Lower EffJ  indicates higher PV array efficiency. 

 

( )1 1
2

0Eff d
t

J x x dt= −
                                                 

(43) 

  
 

2) Conditioning function ( RegJ ): This function is defined 

as Eq. (44). Lower RegJ  indicates better voltage 

regulation. 
 

( )2
Reg 0 2 2

t
J x x dtd= −

                                           
(44) 

 
 

3) Battery saving function: This function is defined as  
Eq. (45). Higher SoCΔ  indicates grater battery saving. 
 

( ) ( )0SoC SoC t SoC tfΔ = −                                         (45) 

                          
where ( )0SoC t  is the initial SoC and ( )SoC tf  is the final 

SoC. 
 

42.5(V) sun-regulated busses have been used on many small 

satellites [23], Therefore, load voltage reference ( 2dx ) is 

selected as 42.5(v). 
 

Fig. 7 shows PV array current. LQR controllershows 
long settling time and therefore lower transient efficiency. 
PID controller exhibits steady tracking error and therefore 
lower steady efficiency. Unlike the proposed controller, 
PBC and other common methods required reference current 
for control law synthesis and may lead to a lack of 
robustness. The comparison of PV array current based on 
SMC and other controllers demonstrates that the proposed 
controller exhibits a smooth and fast transient. According to 
Table 2 theproposed system has lower EffJ  and 

thereforehas higher efficiency. 

Fig. 8 shows load voltage. LQR controller exhibits 
overshoot which may damages the load. PID controller 
shows steady state error which is not desired. Unlike Linear 
methods, PBC and the proposed controller track the voltage 
reference well. According toTable 2. the proposed system 
has lower RegJ  and therefore has better tracking 

performance. 

Fig. 9 shows PV array efficiency. The proposed 
controller has sufficient efficiency. 

Fig. 10 demonstrates battery state of charge. The initial 
SoC is equal to 50%. According to Table 2. the proposed 
system has higher SoCΔ and therefore has better battery 
saving. 

 
 

Fig. 7. PV array current. 
 

 

 
 

Fig. 8. Load voltage. 
 
 

 
 

Fig. 9. PV array efficiency. 
 
 

 
 

Fig.10. Battery State of Charge (SoC). 
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Fig.11 and Fig. 12 show control signals. Due to use of 
the saturation function in the proposed control signal, the 
proposed sliding mode controller has no chattering problem 
of traditional variable structure sliding mode controller 
[12]. 

 

 
 

Fig.11. up control signal. 
 
 

 
 

Fig.12. ub control signal. 
 

 
Table 2. Performance of each control method. 

 

Control 
Method 

JEff
 JReg

 ΔSoC% 

LQR 0.8259 148.9197 +0.0680 

PID 1.1029 15.2294 +0.0300 

PBC 0.0059 11.2499 +0.0771 

The 
proposed 

SMC 
0.0030 9.3327 +0.0782 

 
6. Results 

In this paper, a state space averaging model of a stand-alone 
hybrid dc power source with a PV array as the main source, 
a battery storage as the secondary source and interfacing 
DC/DC converters which is used as the spacecraft EPS has 
been presented.Subsequently, sliding mode controller has 
been designed to control the interfacing DC/DC converters. 

Asymptotic stability of the proposed system is guaranteed 
through Lyapunov stability analysis 

To investigate the validity of the proposed system, 
common LQR, PID and PBC controllers were provided. 
Simulation results showLQR controller has high overshoot 
and long settling time. PID controller exhibits steady state 
error. Unlike the proposed SMC, PBC controller and other 
Common approaches required reference current for control 
law synthesis and may lead to a lack of robustness to 
operation conditions. 

The results of the proposed control system haslow 
overshoot, short settling time and zero steady-state 
errorcompared to those of the linear controller results. In 
other words, the proposed system has higher efficiency, 
better voltage regulating and better battery saving. 
Moreover, the aforementioned results demonstrate the 
robustness of the proposed control approach during the load 
resistance, battery voltage, solar irradiance, PV array 
temperature,andload voltage reference changes. 

 
Table 3. Nomenclature. 

 

Parameter Value 

pL  5( )mH  

bL  10( )mH  

C  500( )fμ  

pr  30( )mΩ  

n  36  

Maximum PV 
array power 

55( )w  

PV array short 
circuit current 

3.45( )A  

PV array open 
circuit voltage 

21.7( )v  

rT  25 C°  

ik  1.2( / )A k  

ri  85.98 10 ( )A−×  

gE  1.12( )ev  

A  1.2  

bocV  9( )v  

1β  0.9 

2β  1.1 

Battery Capacity 20( )wh  

LossW  10( )mw  

br  80( )mΩ  

bk  231.381 10 ( )J K−×  

q  191.6 10 ( )C−×  
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