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solving three-dimensional linear

Fredholm integral equations on the
cubic domains
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Abstract

The main purpose of this article is to describe a numerical scheme for
solving three-dimensional linear Fredholm integral equations of the second
kind on the cubic domains. The method is based on interpolation by radial
basis functions (RBFs) based on Gauss-Legendre nodes and weights. Error

analysis is presented for this method. Finally, several examples are given and
numerical examples are presented to demonstrate the validity and applica-
bility of the method.
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1 Introduction

Consider the following three-dimensional linear Fredholm integral equation
of the second kind

u(x, y, z)− λ

∫ f

e

∫ d

c

∫ b

a

K(x, y, z, r, s, t)u(r, s, t)drdsdt = h(x, y, z), (x, y, z) ∈ D, (1)
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where h and K are known functions, u(x, y, z) is the unknown function to
be determined, λ is a constant and D is an cubic domain.

Integral equations occur in a wide variety of physical applications. They
are encountered in various fields of science and numerous applications such as:
elasticity, plasticity, heat and mass transfer, oscillation theory, fluid dynam-
ics, filtration theory, electrostatics, electrodynamics, game theory, control,
queuing theory, electrical engineering, economics, medicine, etc. There are
many different numerical methods for solving integral equations. Computa-
tional complexity of mathematical operations is the most important obstacle
for solving integral equations in higher dimensions. The Nystrom method [15]
and collocation method [5, 14, 29] are the most important approaches of the
numerical solution of these integral equations.

To avoid the mesh generation, in recent years meshless techniques have
attracted attention of researchers. In a meshless method, a set of scattered
nodes are used instead of meshing the domain of the problem [6,7, 26].

Among meshless methods, the radial basis functions (RBFs) method has
become known as a powerful tool for the scattered data interpolation prob-
lem. The main advantage of radial basis functions is that they involve a single
independent variable regardless of the dimension of the problem. One of the
domain-type meshless methods, the so-called Kansa’s method developed by
Kansa in 1990 [20,21], is obtained by directly collocating RBFs, particularly
the multiquadric (MQ), for the numerical approximation of the solution.
Kansa’s method was recently extended to solve various ordinary and partial
differential equations including the one-dimensional nonlinear Burgers equa-
tion [18] with shock wave, shallow water equations for tide and currents sim-
ulation [17], heat transfer problems [30], and free boundary problems [19,23].

Furthermore, the RBFs have been applied on the one-dimensional do-
mains for solving linear second kind Fredholm and Volterra integral equa-
tions in [12], linear integro-differential equations in [13], nonlinear Volterra-
Fredholm-Hammerstein integral equations in [25] and systems of nonlinear
integral equations in [11]. Also, a numerical solution of two-dimensional Fred-
holm integral equations of the second kind on the square domains by Gaussian
radial basis functions without the error analysis is introduced in [1].

In this paper, we will use the radial basis functions (RBFs) approxima-
tion for solving three-dimensional linear Fredholm integral equations of the
second kind on cubic domains. The remainder of the paper is organized as
follows: in Section 2, we show that how the radial basis functions are used
to approximate the solution. In Section 3, we present a numerical method
for solving the linear Fredholm integral equations of the second kind by the
RBF approximation. In Section 4, error analysis for the proposed method is
presented. Numerical examples are given in Section 5. Finally, we conclude
the article in Section 6.
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2 An outline of RBFs

The radial basis function (RBF) method for multivariate approximation is
one of the most often applied tools in modern approximation theory due to
spectral accuracy, flexibility with respect to geometry, dimensional indepen-
dence and ease of implementation especially when the task is to interpolate
scattered data in multi dimensions. The multiquadric (MQ) method was
originally introduced by Hardy in 1968 for the interpolation of two dimen-
sional scattered data to solve a problem from cartography [16]. The problem
was to construct a continuous function from a set of sparse, scattered mea-
surements from some source points on a topographic surface, which exactly
fit to the given data and provides a good approximation of the features of
the surface such as location of hilltops, saddles, breaks in slope, and drainage
junctions. In fact the MQ method is a special version of the radial basis func-
tions method. In 1982 Franke tested a large number of interpolation methods
for two dimensional scattered data, and found that MQ method was one of
the most impressive [10].

Table 1: Some well-known functions that generate RBFs.

Name of function Definition

Multiquadrics (MQ) ϕ (x) =
√
∥x∥22 + c2

Inverse multiquadrics (IMQ) ϕ (x) =

(√
∥x∥22 + c2

)−1

Inverse quartics (IQ) ϕ (x) =
(
∥x∥22 + c2

)−1

Gaussian (GA) ϕ (x) = exp
(
−c∥x∥22

)
Thin plate splines (TPS) ϕ (x)=(−1)k+1∥x∥2k2 log ∥x∥2
Conical splines (CS) ϕ (x)=∥x∥2k−1

2

Definition 1. [28] A function ϕ : Rs −→ R is called radial basis provided
there exists a univariate function φ : [0,∞) −→ R such that

ϕ(x) = φ(r),

where r = ∥x∥ and ∥.∥ is some norm on Rs, usually the Euclidean norm.

Some well-known RBFs are listed in Table 1. Plots of some RBFs are
presented in Figure (1).
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The idea of radial basis function method for interpolation is derived from
piecewise polynomial interpolation using a function of Euclidean distance and
defined as follows:

Figure 1: Plots of some radial basis functions.

2.1 Radial basis function interpolation

In the standard RBF interpolation problem, we are given generally scat-
tered data sites X = {x1, . . . ,xN} ⊂ D and associated real function values
u(xi), i = 1, . . . , N . Here D is usually some bounded domain in Rs. It is our
goal to find a (continuous) function P

N
u : Rs → R that interpolates the

given data, i.e., such that

P
N
u(xi) = u(xi), i = 1, . . . , N. (2)

In the RBF literature (see, e.g., [8, 28]) one assumes that this interpolant is
of the form
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PNu(x) =

N∑
j=1

cjφ
(
∥x− xj∥

)
, (3)

where the basic function φ is assumed to be RBF and the coefficients C =
[c1, ..., cN ]T are found by enforcing the interpolation constraints (2). This
implies that

AC = U, (4)

where Aij = φ(∥xi − xj∥) and U = [u(x1), . . . , u(xN )]T . If the ma-
trix A is such that CTAC is strictly positive for all possible choices of
X = {x1, . . . ,xN} and C = [c1, ..., cN ]T ∈ RN − {0} the solution of the
interpolation problem is guaranteed.

The following results establish invertibility of the matrix A for different
radial basis functions:

Definition 2. [28] A function ϕ is called completely monotone on (0,∞)
if it satisfies ϕ ∈ C∞(0,∞), and

(−1)lϕ(−l)(r) ≥ 0,

for all l ∈ N0 and all r > 0. The function ϕ is called completely monotone
on [0,∞) if it is in addition in C[0,∞).

Theorem 1. [27] If ϕ(r) = φ(
√
r) is completely monotone but not constant

on [0,∞), then for any set of N distinct points {x1, . . . ,xN}, the N × N
matrix A with entries φ(∥xi − xj∥) is positive definite (and therefore non-
singular).

Theorem 2. [24] Let ϕ(r) = φ(
√
r) ∈ C0[0,∞), ϕ(r) > 0 for r > 0,

ϕ
′
(r) completely monotone but not constant on (0,∞), then for any set of N

distinct points {x1, . . . ,xN}, the N ×N matrix A with entries φ(∥xi − xj∥)
is positive definite.

It is easy to prove that the radial basis functions IMQ, IQ and GA satisfy
the sufficient conditions of Theorem 1, whereas the MQ and linear RBFs
satisfy the sufficient conditions of Theorem 2, and hence for these types of
RBFs the system (4) is uniquely solvable for any set of distinct data points.
Although the matrix A is non-singular in the above cases, usually it is very
ill-conditioned. Therefore, a small perturbation in initial data may produce
large amount of perturbation in the solution.

As given in Table 1, the types of RBF are mainly divided into two cat-
egories, infinitely smooth and piecewise smooth RBFs [2, 22]. The infinitely
smooth RBFs contain a free parameter c, called the shape parameter, which
affects both the accuracy of a solution and the conditioning of the collocation
matrix. In Figure 2, a data set is interpolated with the Gaussian function,
with different shape parameters. A smaller value of c causes the function to
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become flatter, while increasing c leads to a more peaks RBF. The optimal
value of the shape parameter that can produce relatively accurate results is to
be found numerically. But the optimal choice of the shape parameters is an
open problem which is still under intensive investigation. Several proposals
for the choice of an adequate shape parameter can be found in the papers of
Hardy [16], Franke [10] and Fasshauer [9]. All these proposals are somehow
related with the number of points in the grid and the distance between those
points.

Definition 3. Hardy’s shape parameter

c = 0.815d where d =
1

N

N∑
i=1

di,

where di is the distance from ith center to the nearest neighbor and N is the
total number of centers.

Definition 4. Franke’s shape parameter

c =
1.25D√

N
,

where D is the diameter of smallest circle encompassing all the center loca-
tions and N is the total number of centers.

Definition 5. Fasshauer’s shape parameter

c =
2√
N

,

where N is the total number of centers.

3 Solution of linear integral equations

In this paper, we solve the three-dimensional linear Fredholm integral equa-
tion given in the form

u(x, y, z)− λ

∫ f

e

∫ d

c

∫ b

a

K(x, y, z, r, s, t)u(r, s, t)drdsdt = h(x, y, z), (x, y, z) ∈ D, (5)

where h and K are known functions, u(x, y, z) is the unknown function to
be determined, λ is a constant and D is an cubic domain.

Consider equation (5) with the following assumptions:

(i) h ̸= 0 is continuous in C(D),
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Figure 2: The Gaussian function, with different shape parameters, c.

(ii) K is continuous in C(D ×D),

(iii) kernel K(x, y, z, r, s, t) is real, continuous and bounded in the domain
D, i.e.

L = sup
(x,y,z)∈D

{∫ f

e

∫ d

c

∫ b

a

∣∣K(x, y, z, r, s, t)
∣∣drdsdt} <∞.

Theorem 3. Existence and uniqueness of solution to equation (5) follow by
assumptions (i)− (iii) and the condition

|λ|L < 1.

Proof. It can be proved using Banach’s fixed point theorem in a similar
method as done in [4], Chapter 5 (for one-dimensional linear Fredholm inte-
gral equations).

3.1 The proposed method

To apply the method, we need a RBF ϕ and N nodal scattered points to
initiate the RBF method. These nodes can be selected arbitrary on the whole
of the domain D, such as X = {(x1, y1, z1), ..., (xN , yN , zN )}. Therefore, to
solve equation (5), we estimate the unknown function u(x, y, z) by the RBF
interpolation method as
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u(x, y, z) ≈
N∑

k=1

c̄kϕk(x, y, z) = C̄T .Ψ(x, y, z), (x, y, z) ∈ D ⊂ R3, (6)

where

C̄T = [c̄1, . . . , c̄N ],

ΨT (x, y, z) = [ϕ1(x, y, z), . . . , ϕN (x, y, z)],

ϕk(x, y, z) = φ
(√

(x− xk)2 + (y − yk)2 + (z − zk)2
)
, k = 1, . . . , N.

We replace the expansion (6) with u(x, y, z) and install the collocation
points (xi, yi, zi), i = 1, 2, . . . , N in equation (5). Thus we obtain

C̄T .

{
Ψ(xi, yi, zi)− λ

∫ f

e

∫ d

c

∫ b

a

K(xi, yi, zi, r, s, t)Ψ(r, s, t)drdsdt

}
= h(xi, yi, zi). (7)

The integrals in (7) must usually be evaluated numerically. we convert the
intervals [a, b], [c, d] and [e, f ] to the interval [−1, 1] by using a simple linear
transformations of the form

r =
b− a

2
ξ +

b+ a

2
= g(ξ) =⇒ dr =

b− a

2
dξ,

s =
d− c

2
η +

d+ c

2
= h(η) =⇒ ds =

d− c

2
dη,

t =
f − e

2
τ +

f + e

2
= m(τ) =⇒ dt =

f − e

2
dτ,

and so equation (7) takes the following form:

C̄T .

{
Ψ(xi, yi, zi)− µ

∫ 1

−1

∫ 1

−1

∫ 1

−1

K(xi, yi, zi, g(ξ), h(η),m(τ))Ψ(g(ξ), h(η),m(τ))dξdηdτ

}
= h(xi, yi, zi),

(8)

where

µ =
λ(b− a)(d− c)(f − e)

8
.

Using an mN -point Gauss - Legendre quadrature formula with the points
rp, sq, tk in the interval [−1, 1] and weights wp, wq, wk for numerical integra-
tion in equation (8), we can approximate the integral

∫ 1

−1

∫ 1

−1

∫ 1

−1

K(x, y, z, g(ξ), h(η),m(τ))Ψ(g(ξ), h(η),m(τ))dξdηdτ, (9)

with
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mN∑
p=1

mN∑
q=1

mN∑
k=1

wpwqwkK(x, y, z, g(ξp), h(ηq),m(τk))Ψ(g(ξp), h(ηq),m(τk)).

(10)

Utilizing this numerical integration rule in equation (8), we obtain the
following linear system of algebraic equations

Ĉ
T
.

{
Ψ(xi, yi, zi) − µ

mN∑
p=1

mN∑
q=1

mN∑
k=1

wpwqwkK(xi, yi, zi, g(ξp), h(ηq),m(τk))Ψ(g(ξp), h(ηq),m(τk))

}
= h(xi, yi, zi),

(11)

where i = 1, 2, . . . , N. This is a linear system of equations that can be solved
by iterative methods to obtain the unknown vector ĈT .

4 Error analysis

This section includes the error estimate and the rate of convergence of the
presented method. To understand the numerical behavior of the interpolant
or approximant it is essential to have bounds on the approximation error
and on the condition number of the interpolation matrix. These bounds
are usually expressed employing two different geometric measures. For the
approximation error, it is crucial to know how well the data sites X fill the
region . This can be measured by the fill distance

h
X,D

:= sup
x∈D

min
1≤j≤N

∥x− xj∥2,

which gives the radius of the largest data-site free ball in D. The condition
number, however, will obviously only depend on the data sites X and not on
the regionD.Moreover, if two data sites tend to coalesce then the correspond-
ing interpolation matrix has two rows which are almost identical. Hence, it
is reasonable to measure the condition number in terms of the separation
distance

qX :=
1

2
min
i ̸=j
∥xi − xj∥.

A set X of data sites is said to be quasi-uniform with respect to a constant
cqu > 0 if

q
X
⩽ h

X,D
⩽ c

qu
q
X
.

Definition 6. [28] The definition of the native space is
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ℵϕ(D) =

{
f ∈ L2(Rs) ∩ C(Rs) :

f̂√
ϕ̂

∈ L2(Rs)

}
,

where ϕ̂ is a Fourier transform of ϕ.

Theorem 4. [2] Let ϕ is positive definite RBF with infinitely smoothness.
Suppose that D ⊂ Rs be open and bounded, satisfying an interior cone con-
dition. Denote the interpolant of a function u ∈ ℵϕ(D) based on this RBF
and the distinct set X = {x1, . . . , xN} by PNu. Then for every l ∈ N there
exist constants h0(l), Cl such that

∥u−P
N
u∥L∞(D) ≤ Clh

l
X,D
∥u∥ℵϕ(D), (12)

for all x ∈ D, provided hX,D ⩽ h0(l).

Remark 1. As a conclusion from Theorem 4, for Gaussians ϕ (x) =

e(−c∥x∥2), c > 0, we get for some positive constant l that

∥u−P
N
u∥L∞(D) ≤ e

(−l| log h
X,D

|
h
X,D

)
∥u∥ℵϕ(D), (13)

provided that h
X,D

is sufficiently small and u ∈ ℵϕ(D).
The corresponding result for (inverse) multiquadrics ϕ (x) = (∥x∥ +

c2)α, c > 0, α < 0, or α > 0 and α ̸= N, is

∥u−PNu∥L∞(D) ≤ e

(
−l

h
X,D

)
∥u∥ℵϕ(D), (14)

For thin plate splines ϕ (x)=(−1)k+1∥x∥2klog ∥x∥2 , k ∈ N, we get

∥u−P
N
u∥L∞(D) ≤ Chk

X,D
∥u∥ℵϕ(D). (15)

Let K be the Urysohn integral operator:

(K u)(x, y, z) = λ

∫ f

e

∫ d

c

∫ b

a

K(x, y, z, r, s, t)u(r, s, t)drdsdt, (16)

we can rewrite the integral equation (5) in operator form as

u−K u = h. (17)

Define the approximating operator KN , N ≥ 1, on C(D) by

KNu(x, y, z) = µ

mN∑
p=1

mN∑
q=1

mN∑
k=1

wpwqwkK(x, y, z, g(ξp), h(ηq),m(τk))Ĉ
TΨ(g(ξp), h(ηq),m(τk)).

(18)

The abstract form of equation (8) is
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uN −P
N

K uN = P
N
h,

for N sufficiently large and the above equation can be rewritten as

(I −PN K )uN = PNh. (19)

Remark 2. Note that, P
N

: C(D) −→ VN is the collocation projection
operator on the collocation points X = {(x1, y1, z1), ..., (xN , yN , zN )} ⊂ D,
where the subspace VN := span{ϕ1, . . . ϕN} ⊂ C(D) has finite dimension.
Suppose û ∈ VN , we simply have PN û = û.

The abstract form of equation (11) is

(I −P
N

KN )ûN = P
N
h, (20)

which shows that the scheme is a discrete collocation method [3].
Consequently an iterated discrete collocation solution can be obtained. For
this purpose we set

ūN = h+ PN KN (ûN ), (21)

and by applying the operator P
N
on both sides of (21), and using the relation

(20) we simply have

PN ūN = ûN . (22)

Thus we conclude

(I −P
N

KN )ūN = h. (23)

Theorem 5. [3] Assume the family {KN} of (8) is collectively compact
and pointwise convergent on C(D). Let {PN } be a family of interpolatory
projection operators on C(D) to C(D), and assume

P
N
u −→ u as N −→∞, (24)

for all u ∈ C(D). Finally, assume the integral equation (17) is uniquely solv-
able for all h ∈ C(D) and u∗ be a unique solution of this equation. Then for
all sufficiently large N , say N ⩾ M , (I −KNPN )−1 exists and is uniformly
bounded. Also, for the solution ūN

∥ūN − u∗∥L∞(D) ≤ ∥(I −KNP
N
)−1∥∥K u∗ −KNP

N
u∗∥L∞(D). (25)

Remark 3. From (24) and the principle of uniform boundedness for the
radial basis functions,

cp = sup ∥P
N
∥ <∞. (26)
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Similarly, from the pointwise convergence of {KN},

ck = sup ∥KN∥ <∞. (27)

Theorem 6. Having in mind the assumptions of (5). Suppose that u∗ ∈
ℵϕ(D) is the unique exact solution of equation (5) and the proposed method
has been installed on the quasi-uniform set X = {(xi, yi, zi)}Ni=1. Then there
exists M > 0 such that for every N > M , the method has a unique solution
ûN

∥ûN − u∗∥L∞(D) −→ 0 as N −→∞. (28)

In addition, for the iterative solution ūN for equation (23) we have

∥ūN − u∗∥L∞(D) ≤ cI{∥K u∗ −KNu∗∥L∞(D) + ck(1 + cp)Clh
l
X,D
∥u∗∥ℵϕ(D)},

provided that u∗ ∈ ℵϕ(D), and for the discrete collocation solution ûN of
equation (20) we have

∥ûN − u∗∥L∞(D) ≤ cpcI∥K u∗ − KNu∗∥L∞(D) + (1 + cp)(1 + cpcIck)Clh
l
X,D

∥u∗∥ℵϕ(D),

where cI <∞ is a bound for (I −KNP
N
)−1.

Proof. From Theorem 5, the iterated method has a solution ūN and

∥ūN − u∗∥L∞(D) ≤ ∥(I − KNPN )−1∥∥K u∗ − KNPN u∗∥L∞(D)

≤ cI∥K u∗ − KNPN u∗∥L∞(D)

≤ cI{∥K u∗ − KNu∗∥L∞(D) + ∥KN (u∗ − PN u∗)∥L∞(D)}

≤ cI{∥K u∗ − KNu∗∥L∞(D) + ck∥(u∗ − PN u∗)∥L∞(D)}

≤ cI{∥K u∗ − KNu∗∥L∞(D) + ck(∥u∗ − û∗∥L∞(D) + ∥PN u∗ − PN û∗∥L∞(D))}

≤ cI{∥K u∗ − KNu∗∥L∞(D) + ck(1 + cp)∥(u∗ − û∗)∥L∞(D)}

≤ cI{∥K u∗ − KNu∗∥L∞(D) + ck(1 + cp)Clh
l
X,D

∥u∗∥ℵϕ(D)}

The last inequality is implied by (15). Moreover, let ûN = pN ūN , and
consider the decomposition

u∗ − ûN = u∗ −P
N
ūN = (u∗ −P

N
u∗) + P

N
(u∗ − ūN ), (29)

which yields
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∥ûN − u∗∥L∞(D) ≤ ∥u∗ −P
N
u∗∥L∞(D) + cp∥ūN − u∗∥L∞(D)

≤ (1 + cp)Clh
l
X,D
|u∗|ℵϕ(D) + cp(cI{∥K u∗ −KNu∗∥L∞(D)

+ ck(1 + cp)Clh
l
X,D
|u∗|ℵϕ(D)})

≤ cpcI∥K u∗ −KNu∗∥L∞(D)︸ ︷︷ ︸
N−→∞ =⇒ KN−→K

+ (1 + cp)(1 + cpcIck)Clh
l
X,D
∥u∗∥ℵϕ(D)︸ ︷︷ ︸

N−→∞ =⇒ h
X,D

−→0

Finally, we obtain

∥ûN − u∗∥L∞(D) −→ 0 as N −→∞.

Corollary 1. Theorem 6 shows that, both the quadrature and the RBF
approximation error bounds affect the final estimation. If for a sufficiently
smooth kernel K(x, t, y, s) a high order quadrature is employed then the total
error is dominated by the error of the RBF approximation.

5 Numerical examples

In this section, we present some numerical examples where D is a bounded
domain in R3. In addition to the Hardy, Franke and Fasshauer shape pa-
rameters, the minimum error obtained by trial and error is presented. We
have used the ten-point Gauss-Legendre quadrature rule for numerical inte-
gration. All of the computations have been done using the Maple 14 with
just 80 digits precision. we calculate the RMS error in 2197 points that are
distributed uniformly in the computational domain. The RMS error of the
numerical result is described using

RMS =

√√√√ 1

2197

2197∑
i=1

| u(xi, yi, zi)− û(xi, yi, zi) |2

where u(x, y, z) is the exact solution, û(x, y, z) is the approximate solution.

Example 1. Consider the three-dimensional linear Fredholm integral equa-
tion

u(x, y, z)− 1

2

∫ 1

−1

∫ 1

−1

∫ 1

−1

xyz

1 + x+ y + z
u(r, s, t)drdsdt = f(x, y, z),

where
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f(x, y, z) = sin2(x) sin2(y) sin2(z) +
(
cos(1) sin(1)− 1

)3 xyz

2 + 2x+ 2y + 2z
.

The exact solution for this equation is u(x, y, z) = sin2(x) sin2(y) sin2(z).

Figure 3: Node distribution with 216 nodes for Example 1.

The results obtained by the Chebyshev distribution of points for different
numbers of N in terms of RMS is given in Tables 2, 3 and 4. The distribution
of nodes are depicted for N = 216 in Figure 3. As we expected, from Theorem
6, the results converge to the exact values along with the increase of the nodes.
In computations, for GA RBFs, to obtain the better result, we can use the
small(big) parameter c but the condition number of the final system is grown
fast instead. As can be seen, the convergence rate of the method is arbitrarily
high when GAs and IQs are used and is approximately O(hk

X,D
) when TPSs

and CSs are used. Therefore the numerical results confirm the theoretical
error estimates.
Example 2. Consider the three-dimensional linear Fredholm integral equa-
tion

u(x, y, z)− 1

2

∫ 2

0

∫ 1

0

∫ 1

−1

sin(xyz)u(r, s, t)drdsdt = f(x, y, z),

where

f(x, y, z) = x2y2z2 − 8

27
sin(xyz),

with exact solution u(x, y, z) = x2y2z2. The results obtained by the Regular
distribution of points for different numbers of N in terms of RMS is given
in Tables 5, 6 and 7. The distribution of nodes are depicted for N = 294
in Figure 4. It should be noted that for a fixed sufficiently large mN , by
increasing N , the error of the method is of O(hl

X,D
) (i.e., arbitrarily high

for the use of MQs and IMQs and approximately O(hk
X,D

) for the use of
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Table 2: Results provided by Chebyshev distribution for Example 1.

N h
X,D

shape c GA
parameter

Hardy 0.70 7.36× 10−2

27 0.7339 Franke 0.72 8.13× 10−2

Fasshauer 0.38 2.52× 10−4

a∗ 0.38 2.52× 10−4

Hardy 0.44 7.88× 10−4

64 0.6334 Franke 0.50 1.59× 10−3

Fasshauer 0.25 4.83× 10−3

a∗ 0.43 7.75× 10−4

Hardy 0.30 2.11× 10−4

125 0.4991 Franke 0.37 2.51× 10−4

Fasshauer 0.18 7.50× 10−5

a∗ 0.20 4.24× 10−6

Hardy 0.22 5.13× 10−5

216 0.4189 Franke 0.28 2.02× 10−4

Fasshauer 0.14 2.35× 10−4

a∗ 0.20 2.20× 10−6

a∗ indicates the shape parameter which minimum error is observed.

Table 3: Results provided by Chebyshev distribution for Example 1.

N hX,D

CS TPS

k = 1 k = 2 k = 1 k = 2

27 0.7339 9.14× 10−2 3.92× 10−2 1.56× 10−1 2.21× 10−1

64 0.6334 3.36× 10−2 1.71× 10−2 5.88× 10−2 4.82× 10−2

125 0.4991 2.29× 10−2 5.76× 10−3 1.17× 10−2 4.54× 10−3

216 0.4189 1.71× 10−2 3.34× 10−3 6.05× 10−3 2.64× 10−3



..

G
al
le
y
P
ro
of

30 M. Esmaeilbeigi, F. Mirzaee and D. Moazami

Table 4: Results provided by Chebyshev distribution for Example 1.

N h
X,D

shape c IQ
parameter

Hardy 0.70 2.24× 10−2

27 0.7339 Franke 0.72 2.29× 10−2

Fasshauer 0.38 3.52× 10−2

a∗ 1.25 1.57× 10−3

Hardy 0.44 7.44× 10−3

64 0.6334 Franke 0.50 6.27× 10−3

Fasshauer 0.25 9.30× 10−3

a∗ 0.93 8.91× 10−4

Hardy 0.30 6.60× 10−3

125 0.4991 Franke 0.37 4.82× 10−3

Fasshauer 0.18 8.22× 10−3

a∗ 1.61 1.43× 10−4

Hardy 0.22 4.34× 10−3

216 0.4189 Franke 0.28 2.35× 10−3

Fasshauer 0.14 6.23× 10−3

a∗ 0.92 7.84× 10−5

a∗ indicates the shape parameter which minimum error is observed.

TPSs and CSs ) because the RBF interpolation error overcomes the error of
integration method and so increasing N has no significant effect on the error.
Based on the obtained fill distance, the results confirm Theorem 6.

Example 3. Consider the three-dimensional linear Fredholm integral equa-
tion

u(x, y, z)− 1

2

∫ 1

0

∫ 1

0

∫ 1

0

xyzu(r, s, t)drdsdt = f(x, y, z),

where

f(x, y, z) = xyz exp(−x2 − y2 − z2)− 1

16

(
1− 1

exp(1)

)3

xyz,

with exact solution u(x, y, z) = xyz exp(−x2− y2− z2). The results obtained
by the Halton distribution of points for different numbers of N in terms of
RMS is given in Tables 8, 9 and 10. A set of 216 Halton points in the unit
cubic in R3 has been shown in Figure 5. For sufficiently large mN , increasing



..

G
al
le
y
P
ro
of

Radial basis functions method for solving three-dimensional ... 31

Figure 4: Node distribution with 294 nodes for Example 2.

Table 5: Results provided by Regular distribution for Example 2.

N h
X,D

shape c MQ
parameter

Hardy 0.41 1.01× 10−2

48 0.5246 Franke 0.54 9.82× 10−3

Fasshauer 0.29 1.12× 10−2

a∗ 1.82 7.21× 10−3

Hardy 0.27 5.16× 10−3

100 0.3842 Franke 0.37 4.81× 10−3

Fasshauer 0.20 5.26× 10−3

a∗ 4.23 9.39× 10−4

Hardy 0.20 3.26× 10−3

180 0.3039 Franke 0.28 3.09× 10−3

Fasshauer 0.15 3.30× 10−3

a∗ 5.54 2.20× 10−4

Hardy 0.16 2.16× 10−3

294 0.2517 Franke 0.22 2.04× 10−3

Fasshauer 0.12 2.19× 10−3

a∗ 5.52 3.88× 10−5

a∗ indicates the shape parameter which minimum error is observed.

the number of integration nodes mN has no significant effect on the error and
the proposed method will be of O(hl

X,D
), by increasing N . The numerical
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Table 6: Results provided by Regular distribution for Example 2.

N h
X,D

shape c IMQ
parameter

Hardy 0.41 1.35× 10−2

48 0.5246 Franke 0.54 1.39× 10−2

Fasshauer 0.29 1.20× 10−2

a∗ 2.79 4.72× 10−3

Hardy 0.27 7.23× 10−3

100 0.3842 Franke 0.37 7.73× 10−3

Fasshauer 0.20 6.32× 10−3

a∗ 4.71 6.68× 10−4

Hardy 0.20 4.51× 10−3

180 0.3039 Franke 0.28 5.08× 10−3

Fasshauer 0.15 4.11× 10−3

a∗ 8.40 8.02× 10−5

Hardy 0.16 3.07× 10−3

294 0.2517 Franke 0.22 3.51× 10−3

Fasshauer 0.12 3.13× 10−3

a∗ 5.52 3.88× 10−5

a∗ indicates the shape parameter which minimum error is observed.

Table 7: Results provided by Regular distribution for Example 2.

N hX,D

CS TPS

k = 1 k = 2 k = 1 k = 2

48 0.5246 9.92× 10−2 8.70× 10−2 1.05× 10−1 1.00× 10−1

100 0.3842 4.87× 10−2 3.76× 10−2 4.63× 10−2 3.15× 10−2

180 0.3039 3.18× 10−2 2.06× 10−2 2.71× 10−2 1.53× 10−2

294 0.2517 2.22× 10−2 1.16× 10−2 1.69× 10−2 7.76× 10−3
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results confirm the theoretical error estimates. In addition, the numerical
results shows that the accuracy of RBFs with shape parameter is better than
RBFs without shape parameter.

Figure 5: Node distribution with 216 nodes for Example 3.

6 Conclusion

In this paper, a collocation method based on RBFs for numerical solution of
three-dimensional linear Fredholm integral equations of the second kind on
the cubic domains is presented. The proposed method is a meshless method,
which requires no domain elements for the interpolation or approximation.
The Gauss-Legendre quadrature formula is employed for numerical integra-
tion. Error analysis was provided for suffficiently smooth kernel and source
functions. The method is very convenient for solving higher dimensional in-
tegral equations because the RBF is defined as the function of distance. The
proposed method can be easily expanded into non-cube domains. It means
the process of solving is no more complicated in spite of increasing the dimen-
sion of problem. This is significant advantage of the method in comparision
with other strategy for solving Integral Equations in three dimension.
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Table 8: Results provided by Halton distribution for Example 3.

N h
X,D

shape c GA
parameter

Hardy 0.22 4.16× 10−3

27 0.4912 Franke 0.29 3.88× 10−3

Fasshauer 0.38 3.56× 10−3

a∗ 1.57 1.81× 10−3

Hardy 0.14 9.10× 10−4

64 0.3456 Franke 0.20 7.84× 10−4

Fasshauer 0.25 6.89× 10−4

a∗ 0.88 8.57× 10−5

Hardy 0.12 1.76× 10−4

125 0.2820 Franke 0.17 1.51× 10−4

Fasshauer 0.18 1.46× 10−4

a∗ 0.84 7.45× 10−6

Hardy 0.09 2.14× 10−5

216 0.2780 Franke 0.13 1.70× 10−5

Fasshauer 0.14 1.61× 10−5

a∗ 0.90 9.10× 10−8

a∗ indicates the shape parameter which minimum error is observed.

Table 9: Results provided by Halton distribution for Example 3.

N hX,D

CS TPS

k = 1 k = 2 k = 1 k = 2

27 0.4912 5.34× 10−2 1.09× 10−2 2.12× 10−2 4.07× 10−2

64 0.3456 3.61× 10−3 3.22× 10−3 1.47× 10−2 5.90× 10−3

125 0.2820 2.28× 10−3 1.60× 10−3 9.15× 10−3 3.43× 10−3

216 0.2780 1.74× 10−3 4.88× 10−4 2.04× 10−3 1.35× 10−3
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Table 10: Results provided by Halton distribution for Example 3.

N h
X,D

shape c MQ
parameter

Hardy 0.22 3.91× 10−3

27 0.4912 Franke 0.29 3.77× 10−3

Fasshauer 0.38 3.65× 10−3

a∗ 1.60 2.95× 10−3

Hardy 0.14 2.38× 10−3

64 0.3456 Franke 0.20 2.14× 10−3

Fasshauer 0.25 1.99× 10−3

a∗ 1.80 2.06× 10−4

Hardy 0.12 1.64× 10−3

125 0.2820 Franke 0.17 1.46× 10−3

Fasshauer 0.18 1.43× 10−3

a∗ 2.60 1.74× 10−5

Hardy 0.09 1.20× 10−3

216 0.2780 Franke 0.13 1.02× 10−3

Fasshauer 0.14 9.73× 10−4

a∗ 2.10 1.46× 10−6

a∗ indicates the shape parameter which minimum error is observed.
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١٣٩۵ آبان ٢۶ مقاله پذیرش ،١٣٩۵ شهریور ١۴ شده اصلاح مقاله دریافت ،١٣٩۴ آذر ١٨ مقاله دریافت

از خطی فردهلم انتگرال معادلات حل برای کارآمد عددی روش یک ارایه مقاله این اصلی هدف : چکیده
شعاعی پایه توابع درونیاب اساس بر شده ارایه روش باشد. می مکعبی بعدی سه های دامنه روی دوم نوع
به است. شده بیان مدنظر روش برای خطا آنالیز است. شده طراحی لژاندر گاوس وزنهای و نقاط بر مبتنی

است. گرفته قرار ارزیابی و سنجش مورد روش، کارایی و قابلیت متنوع عددی مثالهای کمک

مکعبی. های دامنه محلی؛ هم روش شعاعی؛ پایه توابع بعدی؛ سه انتگرال معادلات : کلیدی کلمات




