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Abstract. Geometric and geodesic active contours are 
typical approaches for medical image segmentation. 
Specially, local binary fitting (LBF) effectively takes 
advantage of the local intensity average in the energy 
functional to overcome segmentation difficulties caused by 
intensity in homogeneity and ruptured edges. Despite 
promising results, the convergence rate of LBF is too slow. 
In this paper, we proposed a new efficient implementation 
of LBF based on the additive operator splitting scheme. In 
more detail, the multi-dimensional deformation equation of 
LBF is decomposed into some one-dimensional equations 
which can be efficiently solved by Tomas' algorithm. 
Experimental results demonstrated that the proposed 
algorithm performs better than LBF in terms of both CPU 
time and solution quality. 
 
Keywords: Geometric active contours, level set, local 
binary fitting, additive operator splitting, image 
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1. Introduction 
Deformable models are frequently-used and well-known 
approaches in medical image segmentation. They were 
primarily introduced by Kass et al. [1] based on 
evolving/deforming a parametric active contour (Snake) in 
the image domain to minimize the internal and external 
energy functionals. The former makes the curve smooth 
while the later moves it toward the interested features in the 
image domain. In order to handle topological changes and 
increasing numerical stability, Sethian et al. [2,3] proposed 
geometric active contours based on the level-set function. 

Primarily, the edge-based geometric active contours, 
established by Casllese et al. [4,5], Kichenassamy et al. [6], 
and Siddiqi et al. [7] effectively employ the object 
boundary information for segmentation. However, the 
active contour without edges (ACWE) is the first region-
based deformable model. It takes advantage of average 
gray-levels of the internal and external regions of the curve 
for evolving the active contour based on the Mumford-Shah 
energy functional [8]. Afterwards, they extended their work 
for segmentation of the multi-phase homogeneous and 
inhomogeneous images [9]. Despite significant advantages, 
both region-based and edge-based deformable models 
suffer considerable difficulties in segmentation of medical 
images due to boundary rupturing, gray-level 
inhomogeneity, and imaging artifacts.  
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Recently, patch-based deformable models have been 
proposed as a solution [11-15]. Generally, they effectively 
employ local edge and region information by taking 
advantage of appropriate kernel functions. For example, 
Lankton et al. [13] proposed a natural framework that 
allows any region-based segmentation energy to be re-
formulated in a local way. Then, they effectively used the 
framework with three well-known region-based schemes 
for segmentation of different medical images. Li et al. [14] 
introduced a patch-based method based on the k-means 
clustering framework for multi-phase segmentation and 
bias correction of inhomogeneous medical images. In 
another work, they presented the local binary fitting (LBF) 
which employs local intensity average to cope intensity 
inhomogeneity and ruptured edges. Although LBF provides 
remarkable results in medical images segmentation, it is 
afflicted by low convergence rate and sensitivity to 
parameters, mainly because of using inefficient re-
initialization process (in each step, during evolution) and 
small time-step size (necessary to guarantee the evolution 
stability). 
 
1.1. AOS-Based Implementations 
To speed-up the evolution of active contours, Weickert et 
al. [16] proposed the additive operator splitting (AOS) 
method. AOS is an efficient numerical framework to 
accelerate curvature-based methods. They demonstrated 
that AOS can expedite typical edge-based active contours 
with the coefficient of 9. The basic idea of AOS is 
decomposition of a multi-dimensional problem into some 
one-dimensional sub-problems which can be solved 
significantly more efficient. The final multi-dimensional 
solution is approximated as the average of all given one-
dimensional solutions. 

A number of active contours took advantage of AOS to 
speed up their implementation. For example, Paragioset al. 
[17] combined the geodesic active contour [4] with the 
gradient vector flow [18] and utilized AOS for efficient 
implementation. Goldenberg et al. [19] took advantage of 
both AOS and narrowband technique (NRT) [20] for 
efficient tracking in color videos. They used the Fast 
marching method [21] for accelerating the re-initialization 
of the distance function. Han et al. [24] also employed AOS 
with the geodesic active contour. In another work, Zheng et 
al. [22] improved implementation of the Mumford-Shah 
energy functional [10] by AOS and NRT methods. Also, 
Leo et al. [23] used Zheng's approach for segmentation of 
red cells in microscopic images of the urinary sediment. As 
another example, Jeon et al. [25] could successfully speed 
up ACWE by using AOS for segmentation of multi-phase 
images. 
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1.2. ALBF 
In this paper, we proposed an extended version of AOS for 
efficient implementation of LBF. It has been successfully 
used for segmentation of a number of different medical 
images. In comparison with LBF, the proposed accelerated 
version of LBF (referred to as ALBF) converged at-least 5 
times faster with equivalent solution quality. Furthermore, 
experimental results demonstrated that compared to ACWE 
and a frequently-used version of the edge-based geometric 
active contour, ALBF could superiorly segment the blood-
pool boundary of the left ventricle in 11 cardiac magnetic 
resonance (MR) images in terms of both the area-similarity 
and shape-similarity measures. The desired boundary of 
each benchmark image was manually delineated by a 
cardiologist expert. 
 
1.3. Paper Outline 
The remainder of the paper is organized as follows. Section 
2 briefly presents the LBF scheme. The AOS framework is 
stated in Section 3. Section 4 is devoted to state the 
proposed method in detail. Experimental results are given 
in Section 5 and finally, conclusions are drawn in Section 6. 
 
2. Local Binary Fitting Scheme 
Let's assume the image Ru →Ω:  with the domain Ω⊂R2 
and gray-level u(x)∈[0,1] for all x=(x,y)∈Ω. The energy 
functional of LBF is given by [11] 
 

( ) ( ) ,

( , , )1 2
2

( ) ( ) ( ) ( ( ))1 1 1,
2

( ) ( ) ( ) ( ( ))2 2 2,
21

( ) ( ) 1
2

=

− − +∫ ∫Ω

− − +∫ ∫Ω

∇ + ∇ −∫ ∫

J f f

K u f M d d

K u f M d d

H d d

ϕ

λ ϕσ ε

λ ϕσ ε

υ ϕ µ ϕε

x y y x y y x

x y y x y y x

x x x x

 (1) 

 
whereφ is the level-set function, 1λ , 2λ ,υ and µ  are four 
constant coefficients, and y∈Ω represents the neighbors of 
the central pixel x. Also, we have 
 

( ( )) ( ( )),1

( ( )) 1 ( ( )),,2

M H

M H

ϕ ϕεε

ϕ ϕεε

=

= −







y y

y y

 (2) 

 
where )(φεH is a regularized Heaviside function defined as 
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Also, the Gaussian kernel σK  (with the standard deviation 
of 0>σ ) is computed by 
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In Eq. (1), the functions )(1 xf and )(2 xf  locally 
approximate u(x) in the inside and outside regions of the 
active contour, respectively. They can be optimally 
obtained by 
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Finally, according to the Euler-Lagrange equation, LBF 
evolution equation is given by [11] 
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where t  is the time variable, )(φδ denotes the derivative of 

)(φεH , and ∇ , div, and 2∇  represent the gradient, 
divergence and Laplacian operators, respectively. Also, the 
functions 1e  and 2e  (given by the Euler-Lagrange equation 
for the first two terms of Eq. 1) are obtained by 
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In the LBF energy functional (Eq. 1), the first two terms 

move the active contour toward the desired boundary, the 
third expression keeps the active contour continuous and 
derivable, and finally, the last term preserves the distance 
function (φ) regularity during curve deformation. 
 
3. Additive Operator Splitting Scheme 
Additive operator splitting (AOS) [16] is an unconditionally 
stable numerical scheme which presents an efficient 
approach for solving a curvature-based partial differential 
equation (PDF). In more detail, typical numerical 
implementations remain stable only with a small-enough 
time-step. Thus, they require a large number of iterations 
for convergence. However, AOS remains stable with a 
larger time-step size and in sequence, convergence is 
achieved with fewer iterations.  

Let us briefly explain AOS procedure already used to 
numerically implement the evolution equation of the 
geometric/geodesic active contours. In more detail, the 
curvature-based evolution equation of the level-set method 
is given by 
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where α  and β are two functions and the level-set function 
φ is primarily initialized by φ0. For example, the above 
equation with (α=g, β=1) and (α=1, β=g) yields the 
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geometric and geodesic active contours, respectively, where 

2: (0,1]→g R is a stopping function (e.g.,
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The explicit scheme is obtained by utilizing the matrix-
vector notation for Eq. (8) as 
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where l is defined to indicate every dimension of the m-
dimensional coordinates system (e.g. for a 2-D level-set 
function, we have m = 2, x1=x and x2=y). Also, the 
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where the set Nl(i) includes two neighboring pixels of the i-
th pixel along the l-th direction. However, the explicit 
scheme requires a small τ  for robust convergence. 

On the other hand, for solving Eq. (8), we can employ 
the semi-implicit scheme as 
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Although the semi-implicit scheme is unconditionally 

stable, inverting the large bandwidth matrix requires 
immense computational burden. To tackle this problem, we 
may take advantage of the AOS variant given by 
 

11  1     ( ) 1

mn n nI m A llm
ϕ τ ϕ ϕ

−+ = −∑
=

    (12) 

 
The above equation, which provides a solution to Eq. (8), 
can be efficiently implemented by Tomas' algorithm [16]. 
 
4. Proposed Algorithm 
As aforementioned, the convergence rate of LBF is 
restricted by the time-step size. This difficulty can be 
addressed by utilizing AOS scheme in numerical 
implementation.  
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Fig. 1. Comparing the convergence rate of (left column) ALBF 
and (right column) LBF for the image vessel (of size 111×110). 
The corresponding iteration number is quoted under each 
illustration. 
 

The general deformation PDE of an active contour can 
be usually written as follows: 
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where the speed E is typically obtained from the external 
and regularization terms of the energy functional. In this 
case, the AOS scheme can be simply extended to 
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Specially, we can rewrite the deformation equation of LBF 
(Eq. 6) in the form of Eq. (13) by using 
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Fig. 2. Comparing the convergence rate of (left column) ALBF 
and (right column) LBF for the image finger bone (of size 
236×213). 
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Fig. 3. Comparing the convergence rateof (left column) ALBF and 
(right column) LBF for the image heart (of size 152×128). 
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Therefore, the AOS scheme of LBF (referred to as ALBF) 
is computed by 
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Fig. 4. Comparing the convergence rateof (left column) ALBF and 
(right column) LBF for the image brain (of size 119×78). 
 
9B4.1. Implementation 
In the 2D case (i.e. m=2), each deformation step of ALBF 
(Eq. 16) consists of four stages 
i) Computation of Φ P

n
P as follows 
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ii) Evolution along the xR1R=x direction by solving the 
following tri-diagonal set of equations using Tomas' 
algorithm to obtain v P

n+1 
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Table 1. Comparing CPU-times of ALBF and LBF for four 
benchmark medical images. 

 

 
ALBF LBF 

CPU 
Time (s) 

Iterations 
Number 

CPU 
Time (s) 

Iterations 
Number 

Vessel 1.28 80 2.77 380 

Finger 
bone 3.35 110 13.19 1100 

Heart 2.27 110 6.56 550 

Brain 3.78 400 19.57 3600 
 
3B5. Experimental Results 
The performance of ALBF was compared with that of LBF 
by using four medical benchmark images including vessel 
(an angiographic image), finger bone (a radiology image), 
heart (a cardiac CT image), and brain (a MR image of the 
brain white matter of the human). All the experimental 
results were obtained by a LAPTOP with CPU Core-i5 
3.2GHz and 1-GB main memory using MATLAB 
environment. Furthermore, in each experiment, the same 
parameters values were chosen for the both counterpart 
methods. 

The deformation process of LBF and ALBF for all 
benchmark images are illustrated in Figs. 1-4. In every 
figure, for each algorithm, some illustrations of middle 
steps of the deformation process are appeared (the 
corresponding iteration number is quoted under each 
illustration).  

As shown, for all benchmark images, the number of 
iterations necessary for LBF convergence was, at least, 5 
times greater than that of ALBF. It is further illustrated in 
Table 1 which includes CPU times. For all benchmark 
images, ALBF was converged above twice faster compared 
to LBF. For example, for the Brain image, the CPU times 
of LBF and ALBF were 19.57 and 3.78 seconds, 
respectively.  

Although the solutions of LBF and ALBF were similar 
in all experiments, ALBF slightly perform better to segment 
thin structures in the image. For example, as illustrated in 
Fig. 4, ALBF could better segment narrow cavities of the 
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Fig. 5. Comparing the results of ALBF, ACWE and GCM with the desired boundary manually delineated by a cardiologist expert for 
four different CMR images. 
 
 
brain white-matter (shown by yellow ellipses) compared to 
LBF. In other words, ALBF overcame LBF in terms of both 
CPU time and (slightly) solution quality. 
 
5.1. Solution Quality Evaluations 
To further evaluate the solution quality of ALBF, 11 
different gradient-echo cardiac MR (CMR) images 
(obtained by a 1.5-Tesla MR scanner) were used for the 
blood-pool boundary segmentation. The desired boundary 
of each benchmark image was manually delineated by a 
cardiologist expert. In Fig. 5, the solutions of ALBF are 
compared with those of ACWE [8] and a well-known 
frequently-used version of the edge-based geometric active 
contour (GAC) [26, 27] for 4 different CMR images. 
Obviously, ALBF provided the best results for all 
benchmark images. 

For further quantitative comparisons, we used the 
average area-similarity (Sarea) and shape-similarity (Sshape) 
measures for all the benchmark images. In more detail, the 
area-similarity measure (Sarea∈[0,1]) compares the blood-
pool region (A1) obtained by the algorithm with the 
manually delineated area (A2), as follows: 
 

2 (   )1 2
area ( ) ( )1 2

n A A
S

n A n A
=

+



 
(21) 

where n(.) returns the number of pixels in a region. Since 
Sarea cannot effectively evaluate the similarity of the 
resultant boundaries, we also used the shape-similarity 
measure, primarily proposed by Pluempitiwiriyawej et al. 
[28]. For two completely matched boundaries, Sshape results 
to 1 while it decreases to 0 in the worst case. 
The evaluation results are presented in Table 2. As shown 
ALBF provided superior solution quality compared to 
ACWE and GAC in term of both the average area-
similarity and shape-similarity measures. 
 
Table 2. Comparing the results of ALBF, ACWE, and GAC in 
terms of the average area-similarity and shape-similarity measures 
for 11 CMR images. The standard deviations are quoted inside the 
brackets. Also, the best results are indicated by bold-faced text. 
 
 

Method Sarea Sshape 

ALBF 0.85 [0.08] 0.9 [0.03] 

ACWE 0.72 [0.29] 0.75 [0.17] 

GAC 0.69 [0.12] 0.59 [0.11] 
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6. Conclusion 
Although LBF can be used for segmentation of images with 
intensity inhomogeneity and ruptured edges, it suffers from 
slow deformation convergence. In this paper, we proposed 
an efficient variant of LBF based on the AOS method. 
Indeed, instead of the explicit implementation, we solved 
PDE of the LBF energy functional by using the AOS 
scheme. It equivalently decomposes a multi-dimensional 
spatial operator into some one-dimensional operators which 
can be separately solved by the efficient Thomas' algorithm. 
The experimental results demonstrated that ALBF performs 
superior to LBF in terms of both CPU-time and (slightly) 
solution quality. Furthermore, it provided better results for 
segmentation of the blood-pool of the left ventricle in CMR 
images compared to ACWE and GAC in terms of both the 
average area-similarity and shape-similarity measures. 
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