
..

G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization
Vol. 7, No. 2, (2017), pp 115–135
DOI:10.22067/ijnao.v7i2.62042

Using a LDG method for solving an
inverse source problem of the

time-fractional diffusion equation

S. Yeganeh, R. Mokhtari∗ and S. Fouladi

Abstract

In this paper, we apply a local discontinuous Galerkin (LDG) method
to solve some fractional inverse problems. In fact, we determine a time-

dependent source term in an inverse problem of the time-fractional diffusion
equation. The method is based on a finite difference scheme in time and a
LDG method in space. A numerical stability theorem as well as an error

estimate is provided. Finally, some numerical examples are tested to confirm
theoretical results and to illustrate effectiveness of the method. It must be
pointed out that proposed method generates stable and accurate numerical
approximations without using any regularization methods which are neces-

sary for other numerical methods for solving such ill-posed inverse problems.

Keywords: Local discontinuous Galerkin method; Inverse source problem;
Time-fractional diffusion equation.

1 Introduction

Recently, studying problems involving fractional order partial differential
equations (PDEs) has attracted a lot of interests of scientists and engi-
neers, see e.g. [1, 5–12, 15, 18–20, 22, 24–30, 33–35]. One of the fractional
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PDEs which has been very popular is the fractional diffusion equation (FDE),
see e.g. [1, 6–12, 15, 18–20, 22, 24–30, 33–35]. Nowadays instead of the classi-
cal diffusion equations, FDEs have attracted wide attentions since a FDE
is a generalization of a diffusion equation which can be used to describe an
anomalous diffusion phenomenon such as super-diffusion or sub-diffusion. By
replacing the standard time derivative with a time fractional derivative in a
diffusion equation, a time-fractional diffusion equation is obtained. FDEs
can be applied in modelling of some problems in porous flows, rheology and
mechanical systems, models of a variety of biological processes, control and
robotics, transport in fusion plasmas, and many other areas of applications.
Analytical or numerical studying of the direct problems corresponding to
the time-fractional diffusion equations have been carried out extensively in
the recent years, see e.g. [6, 7, 9, 11, 12, 15, 30] as well as references cited
therein [27, 28] for some subjects related to the obtaining some uniqueness
and existence results, establishing maximum principle, finding analytical so-
lutions, applying some numerical methods such as finite element methods or
finite difference methods.

If in an initial or initial-boundary value problem some parts of data such
as boundary data, or initial data, or source term or even some coefficients of
the main equation may not be given, we have encountered an inverse problem.
Inverse problems are appeared in many practical situations, and for solving
them we need to some additional measured data, see e.g. [1,8,10,16–25,27–29,
32–35] and references cited therein. In some inverse problems, we need to find
space-dependent source term [27, 32] or time-dependent source term [28] or
even space- and time-dependent source term [23]. In this paper, we focus our
attention on finding the time-dependent source term in a fractional inverse
problem which is one of the interesting and novel inverse problems. One of
the pioneering scientists in this subject is Murio [18–20]. In the following
we mention some of works which have been published after that. An inverse
problem for determining the order of fractional derivative and the diffusion
coefficient in a FDE has been considered in [1] where a uniqueness result has
been also obtained. A backward problem for the time-fractional diffusion
equation has been solved by a quasi-reversibility regularization method in
[13]. In [34,35] some Cauchy problems based on the time-fractional diffusion
equation have been investigated on a bounded domain and on a strip domain,
respectively. Qian [22] has investigated a modified kernel method for solving
an inverse fractional diffusion equation. An inverse source problem for a
FDE has been solved in [33]. Rundell et al. [10] have been investigated some
nonlinear fractional inverse problems. Recently, some interesting works have
been carried out by Wei et al., see e.g. [27–29]. In [10] known theoretical
results and computational techniques for FDEs have been provided.

In [28] the following initial-boundary value problem for the time-fractional
diffusion equation has been considered
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Dα

t u = uxx + f(x)p(t), 0 < x < 1, 0 < t < T,

u(0, t) = k0(t), 0 ⩽ t ⩽ T,

u(1, t) = k1(t), 0 ⩽ t ⩽ T,

u(x, 0) = ϕ(x), 0 ⩽ x ⩽ 1,

(1)

where Dα
t is the Caputo fractional derivative of order α, i.e.,

Dα
t u =

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
, 0 < α < 1, (2)

in which Γ is the Gamma function. For α = 1, we haveDα
t u = ut. We assume

that k0, k1 and ϕ are given functions. Problem (1) will be a direct (forward)
problem whenever f and p are known functions. Based on the availability of
f or p, there are some inverse problems. If p is known and f is unknown we
need to an extra condition such as

u(x, T ) = g(x), 0 ≤ x ≤ 1.

We have investigated numerical solution of this inverse problem in [32].
In another inverse problem, f is known but p is unknown and an over-
determination condition such as

u(x∗, t) = g(t), 0 ≤ t ≤ T, (3)

will be needed where x∗ ∈ (0, 1) is an interior measurement location. It must
be pointed out that although these two inverse problems are very similar
they are completely different. The inverse source problem which we consider
here is to determine (p, u) based on problem (1) and condition (3). Using the
main equation in (1) and Eq. (3), we have

p(t) =
1

f(x∗)

(
Dα

t g(t)−
∂2u(x∗, t)

∂x2

)
. (4)

We need (4) just for theoretical purposes.

The above mentioned inverse source problem is an ill-posed problem [28].
Sakamoto et al. [24] have given a stability estimate for the inverse source
problem and mentioned that the uniqueness of p is guaranteed if f ̸= 0, but
they did not present any numerical method. This inverse source problem has
been solved numerically by Wei et al. [28] using a regularized method based
on the boundary element discretization for recovering a stable approximation
to p. In [28], a numerical method has been applied to various examples in
particular some examples with none-smooth data which lead to the none-
smooth solutions. Therefore, we decided to apply the discontinuous Galerkin
method to the above mentioned inverse source problem. To the best of our
knowledge, for the inverse source problem with or without fractional opera-
tors, the development of the DG methods remains limited and there are a few
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results, see e.g. [32] where a space-dependent source term is determined in
a time-fractional diffusion equation by using a local discontinuous Galerkin
method. Of course, some DG methods have been applied successfully for the
forward fractional diffusion equation. For example, Hesthaven et al. [6, 30]
have been solved some space-fractional diffusion equations using a local dis-
continuous Galerkin method in a semi-discrete regime and Yang Liu et al. [14]
have developed a LDG methos combined with WSGD approximation for a
time fractional subdiffusion equation.

In the present paper, we aim to extend application of the discontinuous
Galerkin method to some inverse source problems and for this purpose, we
present a fully-discrete local discontinuous Galerkin method for solving the
inverse source problem of the time-fractional diffusion equation. In the pro-
posed fully-discrete method, we apply a LDG method for the space variable
and the time-fractional derivative is discretized by using a backward differ-
ence scheme. The rest of the paper is organized as follows. In Section 2,
some preliminaries are prepared. Construction of the proposed method for
the inverse source problem (1)-(3) as well as stability and convergence the-
orems are dealt with in Section 3. Section 4 is devoted to some numerical
experiments to illustrate the accuracy and capability of the method. Finally,
the paper is concluded with a brief conclusion.

2 Preliminaries

In this section, some notations are defined and some auxiliary results are
prepared. At first, we decompose interval [0, 1] to some cells (subintervals)
as follows

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1,

and set Ij = [xj− 1
2
, xj+ 1

2
], with the cell lengths ∆xj = xj+ 1

2
− xj− 1

2
, for

j = 1, . . . , N and h = max1≤j≤N ∆xj . We denote by u+
j+ 1

2

and u−
j+ 1

2

the

values of u at xj+ 1
2
, from the right cell Ij+1 and from the left cell Ij . [u]j+ 1

2

is used to denote u+
j+ 1

2

− u−
j+ 1

2

, that is the jump of u at the cell interfaces.

For any integer k, we define the piecewise-polynomial space V k
h as the space

of polynomials of degree up to k in each cell Ij , thus

V k
h =

{
v ∈ L2[0, 1] : v|Ij ∈ Pk(Ij), j = 1, . . . , N

}
.

In order to investigate the convergence of the method, we need to define
projections P and P± as follows∫

Ij

(Pω(x)− ω(x))υ(x)dx = 0, ∀υ ∈ Pk(Ij), ∀j,
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Ij

(P±ω(x)− ω(x))υ(x)dx = 0, ∀υ ∈ Pk−1(Ij), ∀j,

P±ω(x+
j∓ 1

2

) = ω(xj∓ 1
2
).

It is well-known that these projections satisfy the following inequality [2,31]

∥ ωe ∥ +h ∥ ωe ∥∞ +h
1
2 ∥ ωe ∥τh≤ Chk+1,

where ωe = Pω − ω or ωe = P±ω − ω, the positive constant C, solely
depending on ω, is independent of h, and τh denotes the set of boundary
points of all cells Ij . In the following, we use C to denote a positive constant
which is independent of h and may have a different value in each occurrence.
υx denotes the piecewise derivative with respect to x, and the norm ∥ · ∥
denotes the usual norm of the space L2[0, 1].

3 Construction of the method

In this section, we construct a numerical scheme for solving problem (1)-
(3). Let M be a positive integer, ∆t = T/M be the time step size, and
tn = n∆t, n = 0, 1, . . . ,M denote the time mesh points. An approximation
to time-fractional derivative (2) can be obtained by a simple quadrature
formula given as [9, 11,12],

Dα
t u(x, tn) =

(∆t)1−α

Γ(2− α)

n−1∑
i=0

bi
u(x, tn−i)− u(x, tn−i−1)

∆t
+O((∆t)2−α), (5)

where bi = (i+ 1)1−α − i1−α.
Following the LDG regime [6, 30], we must rewrite (1) as the following first-
order system of equations

q = ux, Dα
t u(x, t)− qx = f(x)p(t). (6)

Let un
h, q

n
h ∈ V k

h be the approximation of u(·, tn), q(·, tn) respectively, and
pn = p(tn), g

n = g(tn). Using (5), we establish the necessary weak forms cor-
responding to (6) and then define a fully-discrete local discontinuous Galerkin
scheme as follows: find un

h, q
n
h ∈ V k

h , such that for all test functions v, w ∈ V k
h ,
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∫
Ω

un
hvdx+ β

∫
Ω

qnhvxdx−
N∑
j=1

((q̂nhv
−)j+ 1

2
− (q̂nhv

+)j− 1
2
)

 =

βpn
∫
Ω

f(x)vdx+
n−1∑
i=1

(bi−1 − bi)

∫
Ω

un−i
h v + bn−1

∫
Ω

u0
hvdx,∫

Ω

qnhwdx+

∫
Ω

un
hwxdx−

N∑
j=1

((ûn
hw

−)j+ 1
2
− (ûn

hw
+)j− 1

2
) = 0,

un
h(x

∗) = gn,
(7)

where Ω = [0, 1] and β = (∆t)αΓ(2 − α) and without lose of generality we
assume that x∗ is a grid point. The “hat” terms in (7) in the cell boundary
terms from integration by parts are the so-called “numerical fluxes”, which
are single valued functions defined on the interfaces and should be selected
carefully for ensuring the numerical stability of the scheme. The choice for
the numerical fluxes is not unique and among several choices, we can take
ûn
h = (un

h)
− and q̂nh = (qnh)

+ or ûn
h = (un

h)
+ and q̂nh = (qnh)

−. In fact, it is
important to take ûn

h and q̂nh from opposite sides [3, 4].
Before investigating theoretical aspects of the method, we are going to explain
details of the method somewhat more. We set

un
h(x) = uh(x, n∆t) =

Np∑
i=1

δni Φi(x), qnh(x) = qh(x, n∆t) =

Np∑
i=1

γn
i Φi(x),

where Np is the total number of basis functions and

F =

(∫
Ω

fh(x)Φ1(x)dx · · ·
∫
Ω

fh(x)ΦNp(x)dx

)T

,

Φ =
(
Φ1(x

∗) · · · ΦNp(x
∗)
)
, Z = (0 · · · 0).

Setting δn = (δn1 · · · δnNp
)T and γn = (γn

1 · · · γn
Np

)T , scheme (7) leads to the
following iteration scheme

K11δ
n +K12γ

n = βpnF +

n−1∑
i=1

(bi−1 − bi)K22δ
n−i,

K21δ
n +K22γ

n = 0,
Φδn = gn,

where n = 1, . . . ,M and

(K11)lr =

∫
Ω

Φl(x)Φr(x)dx, K22 = K11,
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(K12)lr = β

∫
Ω

Φl(x)(Φr(x))xdx− β

N∑
j=1

(
Φl(x

−
j+ 1

2

)Φr(x
−
j+ 1

2

)

− Φl(x
−
j− 1

2

)Φr(x
+
j− 1

2

)
)
,

(K21)lr =

∫
Ω

Φl(x)(Φr(x))xdx−
N∑
j=1

(
Φl(x

+
j+ 1

2

)Φr(x
−
j+ 1

2

)−Φl(x
+
j− 1

2

)Φr(x
+
j− 1

2

)
)
.

For solving the direct problem, we have

M

(
δn

γn

)
=

βpnF +
n−1∑
i=1

(bi−1 − bi)K11δ
n−i

0

 , M =

(
K11 K12

K21 K11

)
, (8)

where matrix K11 is nonsingular and block diagonal which every block is a
k×k (k is degree of basis polynomials) matrix. Using the Schur complement,
linear system (8) has a unique solution iff det(K11 −K12K

−1
11 K21) ̸= 0. For

solving the inverse problem, we have

K11 K12 −βF
K21 K11 ZT

Φ Z 0

 δn

γn

pn

 =


n−1∑
i=1

(bi−1 − bi)K11δ
n−i

0
gn

 , (9)

where we put gnδ instead of gn since data are usually obtained by measurement
tools and have some noises. By solving the nonsymmetric linear system (9)
using the BiCGStab method, we can obtain un

h and pn.
Just for convenience and without lose of generality, we deal with the case
g = 0 in the theoretical analysis. In order to examine the stability property
of the scheme (7), we express following result.

Theorem 3. Assume that the second derivative of u at x = x∗ is bounded
and f is a continuous function on [0, 1]. For periodic or compactly supported
boundary conditions, fully-discrete LDG scheme (7) is unconditionally stable,
and the numerical solution un

h satisfies

∥un
h∥ ≤ ∥u0

h∥+ κ, n = 1, . . . ,M,

where κ is a constant depending on β, f and uxx at x = x∗.

Proof. We can rewrite scheme (7) as follows
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∫
Ω

un
hvdx+ β

∫
Ω

qnhvxdx−
N∑
j=1

((q̂nhv
−)j+ 1

2
− (q̂nhv

+)j− 1
2
)


−

N∑
j=1

((ûn
hw

−)j+ 1
2
− (ûn

hw
+)j− 1

2
) +

∫
Ω

qnhwdx+

∫
Ω

un
hwxdx

= βpn
∫
Ω

f(x)vdx+
n−1∑
i=1

(bi−1 − bi)

∫
Ω

un−i
h vdx+ bn−1

∫
Ω

u0
hvdx,

With taking test functions v = un
h, w = βqnh , for periodic or compactly

supported boundary conditions, we can obtain

β

∫
Ω

qnhvxdx−
N∑
j=1

((q̂nhv
−)j+ 1

2
− (q̂nhv

+)j− 1
2
)

+

∫
Ω

un
hwxdx

−
N∑
j=1

((ûn
hw

−)j+ 1
2
− (ûn

hw
+)j− 1

2
) = β

∫
Ω

qnh(u
n
h)xdx

−β
N∑
j=1

(
((qnh)

+(un
h)

−)j+ 1
2
− ((qnh)

+(un
h)

+)j− 1
2

)
+ β

∫
Ω

un
h(q

n
h)xdx

−β
N∑
j=1

(
((un

h)
−(qnh)

−)j+ 1
2
− ((un

h)
−(qnh)

+)j− 1
2

)
= 0,

then∫
Ω

un
hvdx+

∫
Ω

qnhwdx =
n−1∑
i=1

(bi−1 − bi)

∫
Ω

un−i
h un

hdx+ bn−1

∫
Ω

u0
hu

n
hdx

+ βpn
∫
Ω

f(x)un
hdx.

(10)
For n = 1 and using Eq. (4), we can get

∥ u1
h ∥2 +β ∥ q1h ∥2=

∫
Ω

u0
hu

1
hdx+ βp1

∫
Ω

f(x)u1
hdx

=

∫
Ω

u0
hu

1
hdx− β

∫
Ω

f

f∗

(
u1
h

)∗
xx

u1
hdx

=

∫
Ω

(
u0
h − β

f

f∗

(
u1
h

)∗
xx

)
u1
hdx

≤ 1

2

(
∥ u0

h − β
f

f∗

(
u1
h

)∗
xx
∥2 + ∥ u1

h ∥2
)

≤ 1

2

((
∥ u0

h ∥ +β ∥ f

f∗

(
u1
h

)∗
xx
∥
)2

+ ∥ u1
h ∥2

)
,

≤ 1

2

((
∥ u0

h ∥ +κ
)2

+ ∥ u1
h ∥2

)
,
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therefore
∥ u1

h ∥≤∥ u0
h ∥ +κ.

Next, we suppose the following inequalities hold

∥ um
h ∥≤∥ u0

h ∥ +κ, m = 1, . . . ,K.

For n = K + 1, in Eq. (10), and using

l∑
i=1

(bi−1 − bi) + bl = 1,

we can obtain
∥ ul+1

h ∥≤∥ u0
h ∥ +κ.

In order to examine the convergence of the scheme (7), we express following
result.

Theorem 4. Let u(·, tn) be the exact solution of the problem (1)-(3), which is
sufficiently smooth with bounded derivatives, and un

h be the numerical solution
of the fully-discrete LDG scheme (7). There holds the following error estimate

∥u(·, tn)− un
h∥ ≤ C(hk+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2 + c(∆t)α),

where C is a constant depending on α, u, and T , and c is a constant depending
on f and uxx at x = x∗.

Proof. Obviously for all test functions v, w ∈ V k
h , we have∫

Ω

u(x, tn)vdx+

∫
Ω

u(x, tn)wxdx−
N∑
j=1

((u(x, tn)w
−)j+ 1

2
− (u(x, tn)w

+)j− 1
2
)

+ β

∫
Ω

q(x, tn)vxdx−
N∑
j=1

((q(x, tn)v
−)j+ 1

2
− (q(x, tn)v

+)j− 1
2
)


−

n−1∑
i=1

(bi−1 − bi)

∫
Ω

u(x, tn−i)vdx− bn−1

∫
Ω

u(x, t0)vdx

+

∫
Ω

q(x, tn)wdx+ β

∫
Ω

γn(x)vdx− βp(x, tn)

∫
Ω

f(x)vdx = 0.

(11)
Subtracting equation (7) from (11), we can obtain the error equation
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∫
Ω

enuvdx+ β

∫
Ω

enq vxdx−
N∑
j=1

(((enq )
+v−)j+ 1

2
− ((enq )

+v+)j− 1
2
)


+

∫
Ω

enqwdx+

∫
Ω

enuwxdx−
N∑
j=1

(((enu)
−w−)j+ 1

2
− ((enu)

−w+)j− 1
2
)

−bn−1

∫
Ω

e0uvdx−
n−1∑
i=1

(bi−1 − bi)

∫
Ω

en−i
u vdx+ β

∫
Ω

γn(x)vdx

−βp(x, tn)
∫
Ω

f(x)vdx = 0.

where
enu = u(x, tn)− un

h = P−enu − (P−u(x, tn)− u(x, tn)),
enq = q(x, tn)− qnh = Penq − (Pq(x, tn)− q(x, tn)).

(12)

Using Eq. (4), we have

∫
Ω

enuvdx+ β

∫
Ω

enq vxdx−
N∑
j=1

(((enq )
+v−)j+ 1

2
− ((enq )

+v+)j− 1
2
)


+

∫
Ω

enqwdx+

∫
Ω

enuwxdx−
N∑
j=1

(((enu)
−w−)j+ 1

2
− ((enu)

−w+)j− 1
2
)

−bn−1

∫
Ω

e0uvdx−
n−1∑
i=1

(bi−1 − bi)

∫
Ω

en−i
u vdx+ β

∫
Ω

γn(x)vdx

+β

∫
Ω

f

f∗uxx(x
∗, tn)vdx = 0.

(13)

Using Eq. (12), the error equation (13) can be rewritten as follows

∫
Ω

P−enuvdx+ β

∫
Ω

Penq vxdx−
N∑
j=1

(((Penq )
+v−)j+ 1

2
− ((Penq )

+v+)j− 1
2
)


+

∫
Ω

Penqwdx+

∫
Ω

P−enuwxdx−
N∑
j=1

(((P−enu)
−w−)j+ 1

2
− ((P−enu)

−w+)j− 1
2
)

+β

∫
Ω

f

f∗uxx(x
∗, tn)vdx = bn−1

∫
Ω

P−e0uvdx+
n−1∑
i=1

(bi−1 − bi)

∫
Ω

P−en−i
u vdx

+

∫
Ω

(P−u(x, tn)− u(x, tn))vdx+ β

(∫
Ω

(Pq(x, tn)− q(x, tn))vxdx

−
N∑
j=1

(((Pq(x, tn)− q(x, tn))
+v−)j+ 1

2
− ((Pq(x, tn)− q(x, tn))

+v+)j− 1
2
)


+

∫
Ω

(Pq(x, tn)− q(x, tn))wdx+

∫
Ω

(P−u(x, tn)− u(x, tn))wxdx
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−
N∑
j=1

(((P−u(x, tn)− u(x, tn))
−w−)j+ 1

2
− ((P−u(x, tn)− u(x, tn))

−w+)j− 1
2
)

−β
∫
Ω

γn(x)vdx− bn−1

∫
Ω

(P−u(x, t0)− u(x, t0))vdx

−
n−1∑
i=1

(bi−1 − bi)

∫
Ω

(P−u(x, tn−i)− u(x, tn−i))vdx.

With taking the test functions v = un
h, w = βqnh , for periodic or compactly

supported boundary conditions, we derive∫
Ω

(
P−enu

)2
dx+ β

∫
Ω

(
Penq

)2
dx+ β

∫
Ω

f

f∗uxx(x
∗, tn)P

−enudx

= bn−1

∫
Ω

P−e0uP
−enudx+

n−1∑
i=1

(bi−1 − bi)

∫
Ω

P−en−i
u P−enudx

−β
∫
Ω

γn(x)P−enudx+ β
N∑
j=1

(
((Pq(x, tn)− q(x, tn))

+
[
P−enu

])
j− 1

2

+

∫
Ω

(P−u(x, tn)− u(x, tn))P
−enudx− bn−1

∫
Ω

(P−u(x, t0)− u(x, t0))P
−enudx

−
n−1∑
i=1

(bi−1 − bi)

∫
Ω

(P−u(x, tn−i)− u(x, tn−i))P
−enudx.

For n = 1, we have∫
Ω

(
P−e1u

)2
dx+ β

∫
Ω

(
Pe1q

)2
dx+ β

∫
Ω

f

f∗uxx(x
∗, t1)P

−e1udx

=

∫
Ω

P−e0uP
−e1udx+

∫
Ω

(P−u(x, t0)− u(x, t0))P
−e1udx

−β
∫
Ω

γ1(x)P−e1udx+ β
N∑
j=1

(
((Pq(x, t1)− q(x, t1))

+
[
P−e1u

])
j− 1

2

−
∫
Ω

(P−u(x, t1)− u(x, t1))P
−e1udx.

Using the following facts

∥ P−e0u ∥≤ Chk+1, ab ≤ εa2 +
1

4ε
b2, (14)

we obtain

∥ P−e1u ∥2 +β ∥ Pe1q ∥2≤ (∥ P−e0u ∥ +β ∥ γ1(x) ∥ + ∥ P−u(x, t1)− u(x, t1) ∥
+ ∥ P−u(x, t0)− u(x, t0) ∥ +cβ) ∥ P−e1u ∥

+
β

4ε

N∑
j=1

(
(Pq(x, t1)− q(x, t1))

+
)2
j− 1

2

+ βε

N∑
j=1

[
P−e1u

]2
j− 1

2



..

G
al
le
y
P
ro
of

126 S. Yeganeh, R. Mokhtari, and S. Fouladi

≤ C(hk+1 + (∆t)2 + (∆t)
α
2 hk+ 1

2 + c(∆t)α)2 + ε ∥ P−e1u ∥2

+βε
N∑
j=1

[
P−e1u

]2
j− 1

2

.

If we choose ε very small, we conclude that

∥ P−e1u ∥2 +β ∥ Pe1q ∥2≤ C(hk+1 + (∆t)2 + (∆t)
α
2 hk+ 1

2 + c(∆t)α)2.

Now, we suppose the following inequalities hold

∥P−emu ∥ ≤ C(hk+1 + (∆t)2 + (∆t)
α
2 hk+ 1

2 + c(∆t)α), m = 1, 2, . . . , l.

We need to prove ∥P−el+1
u ∥ ≤ C(hk+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2 + c(∆t)α).
Letting n = l + 1, we have∫

Ω

(
P−el+1

u

)2
dx+ β

∫
Ω

(
Pel+1

q

)2
dx+ β

∫
Ω

f

f∗uxx(x
∗, tl+1)P

−el+1
u dx

= bl

∫
Ω

P−e0uP
−el+1

u dx+
l∑

i=1

(bi−1 − bi)

∫
Ω

P−el+1−i
u P−el+1

u dx

−β
∫
Ω

γl+1(x)P−el+1
u dx+ β

N∑
j=1

(
((Pq(x, tl+1)− q(x, tl+1))

+
[
P−el+1

u

])
j− 1

2

+

∫
Ω

(P−u(x, tl+1)− u(x, tl+1))P
−el+1

u dx

−bl
∫
Ω

(P−u(x, t0)− u(x, t0))P
−el+1

u dx

−
l∑

i=1

(bi−1 − bi)

∫
Ω

(P−u(x, tl+1−i)− u(x, tl+1−i))P
−el+1

u dx.

Then by using (14) and

l∑
i=1

(bi−1 − bi) + bl = 1,

we can obtain

∥ P−el+1
u ∥2 +β ∥ Pel+1

q ∥2≤ (bl ∥ P−e0u ∥ + ∥ P−u(x, tl+1)− u(x, tl+1) ∥
+β ∥ γ1(x) ∥ +bl ∥ P−u(x, t0)− u(x, t0) ∥ +cβ) ∥ P−el+1

u ∥

+
l∑

i=1

(bi−1 − bi) ∥ P−el+1−i
u ∥∥ P−el+1

u ∥ +βε
N∑
j=1

[
P−el+1

u

]2
j− 1

2

+
β

4ε

N∑
j=1

(
(Pq(x, tl+1)− q(x, tl+1))

+
)2
j− 1

2
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≤ C1bl(h
k+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2 + c(∆t)α) ∥ P−el+1
u ∥

+βε
N∑
j=1

[
P−el+1

u

]2
j− 1

2

+
l∑

i=1

(bi−1 − bi)C2(h
k+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2

+c(∆t)α) ∥ P−el+1
u ∥≤ C(hk+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2 + c(∆t)α)2

+ε ∥ P−el+1
u ∥2 +βε

N∑
j=1

[
P−el+1

u

]2
j− 1

2

.

Choosing a small ε, we derive

∥P−el+1
u ∥ ≤ C(hk+1 + (∆t)2 + (∆t)

α
2 hk+ 1

2 + c(∆t)α).

4 Numerical examples

In this section, we carry out some numerical tests to confirm theoretical re-
sults and to investigate the efficiency of the proposed method. The maximum
time is T = 1 otherwise it will be specified. The space and time step sizes
are h = 1/N and ∆t = T/M , respectively. We use the relative root mean
square error, i.e.,

ε(p) =

(
M∑
n=1

(pnh − p(tn))
2/

M∑
n=1

p(tn)
2

)1/2

, (15)

for checking the accuracy of the numerical solutions. In all of tests, we take
k = 2, i.e., we consider piecewise polynomials of degree two as the basis
functions in the LDG regime. For dealing with the sensitivity of the solution
with respect to the data, we use the following noisy data

gδ(tn) = g(tn)(1 + δ rnd(n)), n = 0, 1, . . . ,

where g is the exact data and rnd(n) is a random number uniformly dis-
tributed in [−1, 1] and the magnitude δ indicates a relative noise level.

Example 1 We consider the inverse source problem of the time-fractional
diffusion equation (1)-(3) with the exact solution u(x, t) = e−t cos(2πx). Set-
ting ∆t very small and using the usual L2 and L∞ error norms, we show
in Table 1 that the order of convergence of the proposed method is about
three as we expected (according to the obtained error estimate since k = 2).
Since the exact p of this problem is not accessible, in Fig 1. we show pnh for
α = 0.5, x⋆ = 0.75 and N = 8, 16. The errors in L2-norm and L∞-norm for
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piecewise P k, k = 1, 2, 3 polynomials for α = 0.1, x⋆ = 0.25 are presented in
Fig 2.
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Figure 1: Numerical approximations to p for Example 1 for N = 8 (left) and N = 16

(right).
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Figure 2: log(error) as a function of log(h) for α = 0.1, x⋆ = 0.25 when using piecewise

Pk, k = 1, 2, 3 polynomials for Example 1.

Example 2. Let the exact solution for problem (1)-(3) be u(x, t) =
t2 sin

(
π
2x
)
. Therefore, ϕ(x) = u(x, 0) = 0, k0(t) = u(0, t) = 0, k1(t) =

u(1, t) = t2, f(x) = sin
(
π
2x
)
, and p(t) = 2

Γ(3−α) t
2−α + π2

4 t2. We take
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Table 1: Accuracy test for Example 1 for different α with x∗ = 0.5.

N L2 error Order L∞ error Order
α = 0.3 5 0.002067 - 0.002780 -

10 0.000280 2.9 0.000376 2.9
15 0.000079 3.1 0.000112 3.0
20 0.000034 2.9 0.000047 3.0

α = 0.5 5 0.002068 - 0.002781 -
10 0.000280 2.9 0.000376 2.9
15 0.000079 3.1 0.000112 3.0
20 0.000034 2.9 0.000047 3.0

α = 0.7 5 0.002069 - 0.002783 -
10 0.000280 2.9 0.000377 2.9
15 0.000079 3.1 0.000112 3.0
20 0.000034 2.9 0.000047 3.0

α = 1 5 0.002070 - 0.002784 -
10 0.000281 2.9 0.000377 2.9
15 0.000079 3.1 0.000112 3.0
20 0.000034 2.9 0.000047 3.0

x∗ = 0.5, then g(t) = sin(π4 )t
2. pnh for α = 0.5 and α = 0.95 with various noise

levels δ = 5%, 10%, 15% are plotted in Fig. 3. Corresponding relative root
mean square errors are ε(p) = 8.5762× 10−5, 8.6406× 10−5, 8.7104× 10−5

for α = 0.5 and ε(p) = 2.030156×10−3, 3.077799×10−3, 4.153917×10−3 for
α = 0.95. In Table 2, we compare the relative root mean square errors for the
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Figure 3: Numerical approximations to p for Example 2.



..

G
al
le
y
P
ro
of

130 S. Yeganeh, R. Mokhtari, and S. Fouladi

proposed method in [28] (ε1(p) for no regularization method and ε2(p) with
a regularization method) with the proposed LDG method (ε3(p)). In Table 3
the relative errors for different x∗ with N = 50 are compared. The proposed
method could generate more satisfactory results without any regularization
method. To verify the role of the final time T , we depict pnh for α = 0.95
with T = 100, 10000 and δ = 5%, 10%, 15% in Fig. 4. We can see that the
dependency of the results to final time T is almost unimportant, even when
T is very large, i.e., T = 10000. Without any regularization method, the
trace of the loss of stability does not appear.

Table 2: Comparison approximation solutions of Example 2 with the literature for various

α.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

δ = 5% ε1(p) 0.0773 0.0880 0.1230 0.2651 0.8079

ε2(p) 0.0331 0.0362 0.0393 0.0413 0.0431

ε3(p) 2.162 × 10−6 1.9319 × 10−5 8.5698 × 10−5 3.33882 × 10−4 0.001419157

δ = 10% ε1(p) 0.1545 0.1738 0.2436 0.5296 1.6159

ε2(p) 0.0634 0.0633 0.0662 0.0721 0.0812

ε3(p) 2.1600 × 10−6 1.9334 × 10−5 8.6232 × 10−5 3.51023 × 10−4 0.002105562

δ = 15% ε1(p) 0.2322 0.2611 0.3658 0.7948 2.4241

ε2(p) 0.0952 0.0943 0.0948 0.0721 0.1248

ε3(p) 2.1660 × 10−6 1.9356 × 10−5 8.6557 × 10−5 3.96662 × 10−4 0.002444287

Table 3: Comparison approximation solutions of Example 2 with the literature for various

x∗.

x∗ ε1(p) ε2(p) ε3(p)
0.1 1.0010 0.1801 1.024501× 10−3

0.2 0.9047 0.0661 8.97953× 10−4

0.3 0.9197 0.0767 8.03529× 10−4

0.4 0.9323 0.0694 7.96885× 10−4

0.5 0.9222 0.0839 7.50627× 10−4

0.6 0.9071 0.0761 7.92723× 10−4

0.7 0.9147 0.1026 7.78528× 10−4

0.8 0.9256 0.0974 7.55676× 10−4

Example 3. We test a none-smooth problem corresponding to (1)-(3), with
ϕ(x) = u(x, 0) = sin(2πx), k0(t) = u(0, t) = 0, k1(t) = u(1, t) = 0, f(x) = x2,
and

p(t) =

{
2t+ α, t ∈ [0, 0.5],
−2t+ 2 + α, t ∈ (0.5, 1].
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Figure 4: Numerical approximations to p for Example 2 for T = 100 (left) and T = 10000

(right).

Since the exact solution of this problem is not accessible, we first solve a
direct problem using a suitable LDG method to obtain the input data g
then we solve the inverse problem using our method. In [28], the direct
problem has been solved by using an implicit finite difference (FD) method
but since p is not a smooth function we expect to have a none-smooth solution
and we decided to solve the direct problem using a LDG method too. We
have to point out that since in our method we face the sparse systems, the
computational complexity of both methods, i.e., FD and LDG is almost equal.
pnh for α = 0.5, 0.95 with noise levels δ = 5%, 10%, 15% are presented in
Fig 5. Without applying any regularization methods, our results are in good
agreement with the results of [28]. The corresponding relative root mean
square errors are ε(p) = 3.8300 × 10−7, 6.2300 × 10−7, 9.4800 × 10−7 for
α = 0.5 and ε(p) = 1.03320 × 10−4, 2.33279 × 10−4, 1.03320 × 10−4 for
α = 0.95, which are considerably better than reported in [28].

Example 4. We test a discontinuous problem corresponding to (1)-(3), with
ϕ(x) = u(x, 0) = sin(2πx), k0(t) = u(0, t) = 0, k1(t) = u(1, t) = 0, f(x) = x2,
and

p(t) =

{
1, t ∈ [0.25, 0.75],
0, t ∈ [0, 0.25) ∪ (0.75, 1].

Since the exact solution of this problem is not accessible, we first solve a
direct problem using a suitable LDG method to obtain the input data g
then we solve the inverse problem using our method. In [28], the direct
problem has been solved by using an implicit finite difference method but
since p is not a continuous function we expect to have a discontinuous solution
and we decided to solve the direct problem using a LDG method too. We
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Figure 5: Numerical approximations to p for Example 3 with various α.

have to point out that since in our method we face the sparse systems, the
computational complexity of both methods, i.e., FD and LDG is almost equal.
pnh for α = 0.5, 0.95 with noise levels δ = 5%, 10%, 15% are plotted in Fig
6. Without applying any regularization methods, our results are in good
agreement with the results of [28]. The corresponding relative root mean
square errors are ε(p) = 4.1200 × 10−7, 6.2300 × 10−7, 8.2700 × 10−7 for
α = 0.5 and ε(p) = 8.8388 × 10−5, 1.61535 × 10−4, 2.58527 × 10−4 for
α = 0.95, which are considerably better than reported in [28].
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Figure 6: Numerical approximations to p for Example 4 with various α.
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5 Conclusion

In this paper, an inverse source problem for the time-fractional diffusion equa-
tion was solved numerically by using a local discontinuous Galerkin method.
In fact, we could extend a fully-discrete LDG finite element method for solv-
ing a class of time-fractional inverse problem. By applying this method with-
out using any regularization methods, we could obtain stable and accurate
numerical approximations to the time-dependent source term using an addi-
tional data in an interior measurement location. The numerical stability and
convergence of the proposed method have been investigated and theoretically
proven. Various numerical examples with smooth or none-smooth data and
maybe solutions have been verified to demonstrate the effectiveness and ro-
bustness of the proposed method. This outstanding and promising method
can be further applied to another one-dimensional or higher dimensional in-
verse problems which can be considered for the future works.
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کسری-زمانی انتشار معادله نوع از وارون منبع مساله حل برای LDG روش یک از استفاده

فولادی سميه و مختاری رضا يگانه، سميه

ریاضی علوم دانشکده اصفهان، صنعتی دانشگاه

١٣٩۵ اردیبهشت ٣ مقاله پذیرش ،١٣٩۶ فروردین ٩ شده اصلاح مقاله دریافت ،١٣٩۵ بهمن ٣ مقاله دریافت

وارون مسائل برخی حل برای را (LDG) موضعی ناپيوسته گالركين روش يك مقاله اين در : چکیده
انتشار معادله نوع از وارون مساله يك در را زمان به وابسته منبع جمله واقع در بريم. می كار به كسری
(LDG) روش يك و زمان در متناهی تفاضل طرح يك اساس بر روش اين كنيم. می تعيين كسری-زمانی
مثال چند پايان، در شود. می مهيا خطا تخمين يك علاوه به عددی پایداری قضیه یک است. مکان در
روش كه كرد اشاره بايد شوند. می آزمايش روش، اثربخشی دادن نشان و نظری نتايج تائيد منظور به عددی
وارون مسائل چنين حل در عددی های روش ساير برای كه سازی منظم روشهای از استفاده بدون پيشنهادی

كند. می توليد را دقيقی و پايدار عددی های تقريب هستند، ضروری بدطرح

كسری-زمانی. انتشار معادله وارون؛ منبع مسئله موضعی؛ ناپيوسته گالركين روش : کلیدی کلمات




