[1] A. Bouhamidi, and K. Jbilou, “Sylvester Tikhonov-regularization methods in image restoration,”Journal of Computational and Applied Mathematics, vol. 206, no. 1, pp. 86-98, 2007.
[2] A. Bouhamidi, K. Jbilou, and M. Raydan, “Convex constrained optimization for large-scale ill-conditioned generalized Sylvester equations,” Computational Optimization and Applications, vol. 48, No. 2, pp. 233-253, 2011.
[3] S. Morigi, L. Reichel, and F. Sgallari, “An interior-point method for large constrained discrete ill-possed problems,”Journal of Computational and Applied Mathematics, vol. 233, pp. 1288-1297, 20010.
[4] J. Nagy and Z. Strakos, “Enforcing nonnegativity in image reconstruction algorithms,” in: David C. Wilson, et al. (Eds.), Mathematical Modeling, Estimation, and Imaging, Proceedings of SPIE, vol. 4121, pp. 182-190, 2000.
[5] M. Rojas, and T. Steihaug, “An interior-point trust-region-based method for large-scale non-negative regularization,” Inverse Problems, vol. 18, pp. 1291-1307, 2002.
[6] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov regularization and the L-curve for large discrete ill-posed problems,” Journal of Computational and Applied Mathematics, vol. 123, pp. 423-446, 2000.
[7] A. Bouhamidi, R. Enkhbat, and K. Jbilou, “Conditional gradient Tikhonov method for a convex optimization problem in image restoration,” Journal of Computational and Applied Mathematics, vol. 255, pp. 580-592, 2014.
[8] K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM J. Imag. Sci,vol. 3, pp. 492-526, 2010.
[9] W. Zhu and T.F. Chan, “Image denoising using mean curvature,”SIAM J. Imag. Sci.,vol. 5,pp. 1-32, 2012.
[10] J. Liu, T. Z. Huang,I. W. Selesnick, X. G. Lv, and P. Y. Chen, “Image restoration using total variation with overlapping group sparsity,”Information Sciences,vol. 295, pp. 232-246, 2015.
[11] J. F. Cai, S. Osher, and Z. W. Shen, “Linearized bregman iterations for frame-based image deblurring,”SIAM J. Imag. Sci., vol. 2, pp. 226-252, 2009.
[12] L. Sun, and K. Chen, “A new iterative algorithm for mean curvature-based variational image denoising,” BIT Numerical Mathematics, vol. 54, issue 2, pp. 523-553, 2013.
[13] B. Morini, M. Porcelli, and R. Chan, “A reduced Newton method for constrained linear least-squares problems,” Journal of Computational and Applied Mathematics, vol. 233, pp. 2200-2212, 2010.