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| mage Restor ation with Regularization Convex
Optimization Approach
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Abstract. In this paper, Tikhonov regularization with 1-curve
parameter estimation as convex optimization problem has
been proposed in image restoration as a solution of ill-posed
problem stem from sparse and large scale blurring matrix
which has many singular values of different orders of
magnitude close to the origin. Also, since the restored image
is so sensitive to initial guess (start point) of optimization
algorithm, a new schema for feasible set and feasible start
point has been proposed. Some numerical results show the
efficiency of the proposed algorithm in comparison with
previous proposed methods.
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1. Introduction

One of the fundamental tasks of Image processing is
image restoration which could be expressed as
reconstruction of images that are degraded and noised by
moving imaging instrument, moving objects, environment,
non-uniform  illumination = and  additive  noise.
Mathematically, degrading process is formulated with point
spread function (PSF) which is a function that specifies how
pixels in the image are distorted. In this paper, matrix A is
used as blurring matrix which is very large ill-determined
rank and has many singular values of different orders of
magnitude close to the origin. Because of this property of A,
this kind of image restoration is a large-scale linear discrete
ill-posed problem which could be solved by regularization
methods. For this kind of problems some recently developed
methods have been proposed such as Sylvester Tikhonov-
regularization methods [1], convex constrained optimization
for large-scale ill-conditioned generalized Sylvester
equations [2], interior-point method for large constrained
discrete ill-possed problems [3], enforcing non-negativity in
image reconstruction algorithms [4] and interior-point trust-
region-based method for large-scale non-negative
regularization [5].

In this paper, the mentioned ill-posed problem is solved
by regularization methods which have the desirable
properties such as having the small norm and smoothness
cost function. Regularization parameter is estimated by L-
curve method [6].

Both regularization and blurring matrices are considered
as a Kronecker product of two small matrices. Finally, since
the convergence of such optimization problems is so

Manuscript received May 27, 2014; revised August 20, 2014;
accepted August 29, 2014.

The authors are with the Department of Electrical and Computer
Engineering, Isfahan University of Technology, Isfahan, Iran. The
corresponding author's email is: a.rashno@ec.iut.ac.ir

sensitive to initial point of algorithm, the new schema is
proposed for feasible start and feasible set which lead the
algorithm to more accurate results.

The rest of this paper is organized as follows: Section 2
presents the recent proposed methods in image restoration,
Section 3 describes some mathematical background of
regularization convex optimization and l-curve parameter
estimation. The new feasible start, feasible set and proposed
algorithm for image restoration are all described in Section
4. Experimental setup and results are described in Section 5.
Finally, the conclusion and future works are discussed in
Section 6.

2. Related Works

There are many methods which have been proposed for
image restoration task. In [1, 2, 7] Bouhamidi et al. proposed
the image restoration technique as a large-scale linear
discrete ill-posed problem with the right-hand side noise by
regularization approach and image restoration method based
on convex constrained optimization for large-scale ill-
conditioned generalized Sylvester equations. In [8] Bredies
et al. developed a total generalized variation (TGV) method
which preserves the image edges with some smoothness in
the regions away from edges. In [9] Zhue et al. proposed the
effective restoration method for both smooth and non-
smooth images based on mean curvature model. Their
method has a drawback of its difficulty to being solved
efficiently. In [10] Liu et al. extended the total variation with
overlapping group sparsity for image restoration. They
proposed a convex cost function and an efficient algorithm
for solving the minimization problem. Also, in [11] Cai et al.
proposed a method for image deblurring in tight frame
domains which is reduced to finding a sparse solution of a
system of linear equations with the rectangular coefficient
matrix. Finally, in [12] Sun et al. proposed an augmented
Lagrangian formulation with a special linearized fixed point
iteration and a nonlinear multi-grid method for image
restoration. One of the main challenges of iteration methods
is the initial guess (primary point). In iteration methods, for
different initial points, different results are achieved. Also,
the inappropriate initial points (infeasible points) mislead the
iteration algorithms. In this work, we address this challenge
by the proposed algorithm for finding the feasible start
(initial) point.

3. Regularization Convex Optimization M ethods

Generally, image restoration problem can be formulated
as the system of linear equations in equation (1),

g=Ax+n €8
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where x is a vector of size (mn) X 1 which is achieved by
stacking the rows of true image X of size m X n in equation
2).

x = (X1, X125 0 X1 X215 - Xoms o Xty oo Xmn) (2)
Also, n is a vector of size (mn) X 1 by stacking the rows of
additive noise matrix N of size (m X n) and A is blurring
matrix which is (mn X mn). Finally, g is a vector with m X
n element achieved from degraded and noised available
output image G of size (m X n). For any x, the lower
differences between Ax and g, the better approximation
could be achieved. So the problem of image restoration is
formulated as a convex optimization problem

QIFISIIIAX —gll, (3)

where FS is a convex set and denoted as feasible set of the
problem andFS € R™". Suppose that we have the image of
size 256 X 256, as discussed before the size of blurring
matrix A is (256 X 256) X (256 x 256) = 65536 X
65536 which is extremely large and the direct solution of (3)
involves high order computation task. For such problems, the
Kronecker product takes a direct effect in this issue by sparse
factorization of the blurring matrix. Let H be a (m X n)
matrix and K be a (p X q) matrix. The Kronecker product of
H and K is HQK = (h;K) and h;; € H for all i and j. It
means that each element of His multiplied to whole matrix
K, so, the result of this Kronecker product is a (mp) X (nq)
matrix.

As discussed, regularization methods play an important
role in ill-posed problems with smoothing the cost function
by adding an extra term weighted by y regularization
parameter. So the image restoration problem in (3) is
converted to (4) which is regularization convex optimization
problem,

min([lAx — gll + ylIRxI)), )

where R is a regularization matrix. Both A and R, are
considered as Kronecker product of two smaller matrix
defined byA = A;®A, and R = R;®R,. For better gradient
estimation, (4) can be formulated as (5),

min(||Ax — gll5 + v*|IRx|I3) (5
X€EFS

By applying the Kronecker product to A and R, (6) is
achieved,

_min(ll(A; ®A;)x — gll3 + VIR, @Rox113)  (6)

Finally, considering the property for Kronecker product in
equation (7),

Vector(AXB) = (BT®A)Vector(X) 7

The regularization optimization problem leads to (8),

min([|(A,XA," - gll; + IRXR,[D)  (®)

One of the most important issues in regularization method
is the estimation of parametery. In this paper we apply L-
curve method for this estimation. The L-curve tries to get the
regularization parameter by the analysis of the norm of the
regularized solution ||xy|| and the corresponding residual
norm ||b — Axy||. The L-curve is a plot of @(||x||) versus
o(||b — Axy]) which @ could be @(t) =t @) =
Vtand @(t) = log(t). This curve is shaped like the letter
“L” and the optimal point is the point with the maximum
curvature which lies in the corner of letter “L” [6].

4. Proposed Algorithm

In this paper, the feasible set of optimization algorithm is
considered as a sphere or box in equation (9) which is convex
and leads (5) to be a convex optimization problem,

FS={XeR™M: [ <X< U} )

where X is am X n image matrix and L and U are lower and
upper bound matrixes, respectively. The notation < between
two matrix means that all elements in matrix L such as Lj
are smaller than corresponding elements in matrix X
denoting by Xj;. This relation is vice versa for X and U. As it
is clear that the optimization algorithm searches among
whole feasible set to find the best image matrix X, the more
probability for existence of relevant X in feasible set, the
higher chance for finding the optimized X exists.

Both the degree of blurriness of the image and the amount
of additive noise affects selection of feasible set. Our idea is
that the interval of the feasible set is selected based on the
fact that how images are deviated from their origin. The
proposed feasible set is an interval around available blurred
and noised image G. Firstly a 5 X 5 window around each
pixel in G is selected. Then, mean and variance for each
window is calculated with equations (10) and (11),

i+2  j+2
— 1
GG, == G(d,s) (10)
25 d;z SZ—:Z
1 i+2  j+2
Var(i,j) = 7€ Z Z [G(d,s) — G(d,s)]? (11)

d=i-2s=j-2

The lower and upper bounds for feasible set are
proposed in equations (12) and (13),

G(i,j)—o. Var(i,j) if (G@,j)—o Var(i,j)) < 0
LG,j) = (12)
0 otherwise
U(i,j) = G, j)+« Var(i, j) (13)

The higher amount of noise added to image, the bigger
interval of feasible set must be selected. The main issue for
this idea is that the model of noise is unavailable. We address
this problem by constant parameter o which controls the
interval of feasible set. The feasible set interval grows
linearly as the o parameter leads to bigger amounts. In our
experiment, the best selection for feasible start point is G
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which is in the middle part of the feasible set, so this point is
strictly feasible. The final algorithm for image restoration is
presented as following:

Algorithm 1. Tikhonov regularization feasible start for
image restoration

1. [Initialize the X, (available blurred and noised image
Q), tolerance and maximum iteration.

2. Estimate the regularization parameter y with L-curve
method described in Section 2.

3. Repeat:

4. vaf(Xl]) >0 ) YU = Lijelsez-j = Ul]
5. =<V X)X —-X>p
6. Find the w* which minimize the

w(Y—X))

min(f(X +

7. Update X = X + w*(X — X)
8. Until max iteration is achieved or n < Tolerance
f(X) is objective function of equation (5). < A|B > is a

type of inner product which is equal to trace(A” B). It could
be implied that the well known Frobenius norm ||. ||z is given

by ||Allr = /< A|A >p. Also, the property in equation (14)
could be implied.

< A|B >p=<Vector(A4)|Vector(B) >, (14)

Step 4 is a solution of the mXin <VfX)|X >F and
Vf(X) is computed from the equation (15) [7],

VF(X) = 24T(A,XAT — G)A, + 2y*RTR,XRIR, (15)

Blured and noised Image Restored Image by Proposed Algorithm

33

The solution of linear minimization problem in step 6 is
stem from Tikhonov regularization solution in equation (16)

(71,

_ <VF(X)|X-X>p
I 2|4y (R-x) AT [ +2v2 Ry (R-X)RE|I;
, <VF(X)|X-X>
lf (_ — T2 > £ T z) <1
l 2|4y (R-x)aZ |1 +2v2 || Ry (X-X)RE
1 otherwise

(16)

5. Experimental Setup and Results

To illustrate the effectiveness of the proposed algorithm,
some numerical tests are performed. The proposed algorithm
is implemented on a machine with 2.26 GHz Corei7 CPU
and 6 GB of RAM and Windows 7 with two images named
as fruit and cameraman with the sizes of 512x512 and
256x256 pixels respectively. The results are compared with
the proposed algorithm in [7] and reduced Newton (RN)
algorithm [13].First, the image is blurred by blur matrix A
consisting of Kroncker product of A; and A,. These two
matrixes are considered to be equal and are computed with
equation (17),

A; (L)) = A (0,)) =

1 CGDA e s
{ ov2m exp( 202) if li-jl<r
0 otherwise

(17

Then, the additive noise is added to blur noise-free image
with white Gaussian noise of mean 0 and different variances.
The regularization matrix R is computed from Kroncker
product of R; and R,. As in papers used [1, 3, 7], Ry is
tridiagonal matrix of [-1 2 -1] and R, is identity matrix. Fig.
1 and Fig. 2 show the results of both proposed and RN
methods in cameraman and fruit images with two types of o,
r and noise variances.

Restored Image by RN

Restored Image by [7]

Fig. 1. Restored cameraman images by proposed method and reduced Newton: a) Noise Variance = 2, Sigma = 4.4, r = 5 and b) Noise

Variance = 2.5, Sigma=8.4,r="7.
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There are some measures for evaluating the restored MAE = i DG 19
image result. In this research we have used Improvement - MN (19)
Signal to Noise Ratio (ISNR), Mean Absolute Error (MAE), N
Mean Squared Error (MSE) and relative error measures MSE = 2y, D -FGDI* (20)
which are computed by equations (18), (19), (20), and (21), MN
respectively: =]

Relative Error(X) = ||?||FF 21)
TiilgN DI
ISNR = 1010g1o (zi,]j[‘fa.i)—f(i.i)]Z) (18)
a) .
al’
iy e
b)
28 2l
TR .‘-“"m;-..:f:f ¢
Fig. 2. Restored fruit images by proposed method and reduced Newton: a) Noise Variance = 2, Sigma = 4.4, r =5 and b) Noise Variance
=25,Sigma=84,r=7.
Table 1. Results for Our Proposed Method, Proposed Method in [7] and RN.
Noise :

c " | vVariance | @ Y Method RelativeError | ISNR MAE M SE
1.4 3 1 15 | 0.954 Proposed Algorithm 0.1831 0.0514 | 7.3421 | 1214
1.4 3 1 - - Proposed Method in [7] 0.1812 0.0541 7.0134 | 118.3
1.4 3 1 - - RN 0.2065 0.0432 | 7.9876 | 125.7
4.4 5 2 15 | 0.954 Proposed Algorithm 0.2418 0.0332 | 9.1245 | 135.5
8 | 44 5 2 - - Proposed Method in [7] 0.2634 0.0304 | 10.2345 | 141.9
% 4.4 5 2 - - RN 0.2712 0.0301 | 10.8733 | 149.3
% 8.4 7 2.5 15 | 0.954 Proposed Algorithm 0.3243 0.0118 | 13.4564 | 161.5
S| 84 7 2.5 - - Proposed Method in [7] 0.3294 0.0113 | 13.8734 | 168.6
8.4 7 2.5 - - RN 0.3283 0.0104 | 14.6534 | 174.5
12.4 | 10 5 15 | 0.954 Proposed Algorithm 0.4154 -0.0245 | 17.7645 | 191.4
12.4 | 10 5 - - Proposed Method in [7] 0.4834 -0.0735 | 21.4533 | 205.3
124 | 10 5 - - RN 0.5521 -0.1355 | 28.8734 | 213.5
1.4 3 1 15 | 0.954 Proposed Algorithm 0.2123 0.0412 8.4633 | 1273
1.4 3 1 - - Proposed Method in [7] 0.2059 0.0443 7.9853 | 125.6
1.4 3 1 - - RN 0.2354 0.0382 | 8.8753 | 135.1
4.4 5 2 15 | 0.954 Proposed Algorithm 0.2534 0.0402 | 10.1342 | 139.7
4.4 5 2 - - Proposed Method in [7] 0.2848 0.0356 | 11.1546 | 146.4
5 | 44 5 2 - - RN 0.2914 0.0312 | 11.8912 | 153.2
i | 84 7 2.5 15 | 0.954 Proposed Algorithm 0.3341 0.0184 | 13.7564 | 165.5
8.4 7 2.5 - - Proposed Method in [7] 0.3387 0.0112 | 14.1654 | 172.1
8.4 7 2.5 - - RN 0.3467 0.0091 | 14.8745 | 179.7
12.4 | 10 5 15 | 0.954 Proposed Algorithm 0.3918 -0.0341 | 16.3452 | 200.3
12.4 | 10 5 - - Proposed Method in [7] 0.4453 -0.0674 | 18.8435 | 209.9
12.4 | 10 5 - - RN 0.4976 -0.1613 | 25.5432 | 221.2
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where f, fand g are original image, restored image and
degraded image, respectively. Also, M and N are the image
dimensions. It is worth mentioning that the higher amount of
ISNR, the better restoration result is achieved while for
MAE, MSE and relative error this relation is vice versa.

The y regularization parameter, computed by L-curve, is
0.954 in its best case at the corner of curve, so we set this
parameter to 0.954 as a constant for all experiments. Also,
the best case for feasible set parameter « was 15 which is a
trade-off between time order of the algorithm and
appropriate restoration results. Experiments are performed
for different parameters of the algorithm and then results are
shown in the table 1. As it is indicated, 4 types of noise and
blur parameters include 1. 6 = 1.4, r =3 and Noise Variance
=1,2.0 = 4.4,r=5 and Noise Variance=2,3.0 = 8.4,r=
7 and Noise Variance =2.5 and 4. 6 = 12.4,r=10 and Noise
Variance = 5 are applied to cameraman and fruit images. As
it is clear from the table 1, our proposed algorithm
outperforms RN in all noise and blur cases and outperforms
[7]1in 2, 3 and 4 cases.

6. Conclusion

In this paper, a new schema for image restoration based on
Tikhonov regularization convex optimization method has
been proposed. The regularization parameter was estimated
by L-curve method. The iteration methods in image
restoration are so sensitive to initial point. The different
initial points lead the algorithms to different results. Also,
inappropriate initial points mislead the algorithms. In our
proposed algorithm, the appropriate feasible set and feasible
start point for the mentioned optimization problem was
introduced which clearly affects both convergence and
founded optimal solution of the algorithm. Our idea for
feasible start point is very simple as well as it is strictly
feasible since it is located in the middle of the feasible set.
The results showed that the performance of new algorithm is
relatively better in comparison with previous methods in the
term of ISNR, MAE, MSE and relative error measures. For
future trend, more advanced methods, such as generalized
cross-validation methods could be tested on the new
algorithm. Also, the more sophisticated non-convex feasible
sets may lead to better results. Finally, the particle swarm
optimization (PSO) method could be adapted for estimation
of optimaly parameter.
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