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Abstract. In this paper, Tikhonov regularization with l-curve 
parameter estimation as convex optimization problem has 
been proposed in image restoration as a solution of ill-posed 
problem stem from sparse and large scale blurring matrix 
which has many singular values of different orders of 
magnitude close to the origin. Also, since the restored image 
is so sensitive to initial guess (start point) of optimization 
algorithm, a new schema for feasible set and feasible start 
point has been proposed. Some numerical results show the 
efficiency of the proposed algorithm in comparison with 
previous proposed methods. 
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1. Introduction  

One of the fundamental tasks of Image processing is 
image restoration which could be expressed as 
reconstruction of images that are degraded and noised by 
moving imaging instrument, moving objects, environment, 
non-uniform illumination and additive noise. 
Mathematically, degrading process is formulated with point 
spread function (PSF) which is a function that specifies how 
pixels in the image are distorted. In this paper, matrix A is 
used as blurring matrix which is very large ill-determined 
rank and has many singular values of different orders of 
magnitude close to the origin. Because of this property of A, 
this kind of image restoration is a large-scale linear discrete 
ill-posed problem which could be solved by regularization 
methods. For this kind of problems some recently developed 
methods have been proposed such as Sylvester Tikhonov-
regularization methods [1], convex constrained optimization 
for large-scale ill-conditioned generalized Sylvester 
equations [2], interior-point method for large constrained 
discrete ill-possed problems [3], enforcing non-negativity in 
image reconstruction algorithms [4] and interior-point trust-
region-based method for large-scale non-negative 
regularization [5]. 

In this paper, the mentioned ill-posed problem is solved 
by regularization methods which have the desirable 
properties such as having the small norm and smoothness 
cost function. Regularization parameter is estimated by L-
curve method [6].  

Both regularization and blurring matrices are considered 
as a Kronecker product of two small matrices. Finally, since 
the convergence of such optimization problems is so 
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sensitive to initial point of algorithm, the new schema is 
proposed for feasible start and feasible set which lead the 
algorithm to more accurate results. 

The rest of this paper is organized as follows: Section 2 
presents the recent proposed methods in image restoration, 
Section 3 describes some mathematical background of 
regularization convex optimization and l-curve parameter 
estimation. The new feasible start, feasible set and proposed 
algorithm for image restoration are all described in Section 
4. Experimental setup and results are described in Section 5. 
Finally, the conclusion and future works are discussed in 
Section 6. 
 
2. Related Works 

There are many methods which have been proposed for 
image restoration task. In [1, 2, 7] Bouhamidi et al. proposed 
the image restoration technique as a large-scale linear 
discrete ill-posed problem with the right-hand side noise by 
regularization approach and image restoration method based 
on convex constrained optimization for large-scale ill-
conditioned generalized Sylvester equations.  In [8] Bredies 
et al. developed a total generalized variation (TGV) method 
which preserves the image edges with some smoothness in 
the regions away from edges. In [9] Zhue et al. proposed the 
effective restoration method for both smooth and non-
smooth images based on mean curvature model. Their 
method has a drawback of its difficulty to being solved 
efficiently. In [10] Liu et al. extended the total variation with 
overlapping group sparsity for image restoration. They 
proposed a convex cost function and an efficient algorithm 
for solving the minimization problem. Also, in [11] Cai et al. 
proposed a method for image deblurring in tight frame 
domains which is reduced to finding a sparse solution of a 
system of linear equations with the rectangular coefficient 
matrix. Finally, in [12] Sun et al. proposed an augmented 
Lagrangian formulation with a special linearized fixed point 
iteration and a nonlinear multi-grid method for image 
restoration. One of the main challenges of iteration methods 
is the initial guess (primary point). In iteration methods, for 
different initial points, different results are achieved. Also, 
the inappropriate initial points (infeasible points) mislead the 
iteration algorithms. In this work, we address this challenge 
by the proposed algorithm for finding the feasible start 
(initial) point.  

 
3. Regularization Convex Optimization Methods 

Generally, image restoration problem can be formulated 
as the system of linear equations in equation (1), 
 

g ൌ Ax ൅ n (1) 
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where x is a vector of size ሺmnሻ ൈ 1 which is achieved by 
stacking the rows of true image X of size mൈ n in equation 
(2). 
 
x ൌ ሺXଵଵ, Xଵଶ, … , Xଵ୬, Xଶଵ,… , Xଶ୬,… , X୫ଵ,… , X୫୬ሻ    (2) 
 

Also, n is a vector of size ሺmnሻ ൈ 1 by stacking the rows of 
additive noise matrix N of size ሺm ൈ nሻ and A is blurring 
matrix which is ሺmn ൈ mnሻ. Finally, g is a vector with mൈ
n element achieved from degraded and noised available 
output image G of size	ሺm ൈ nሻ. For any x, the lower 
differences between Ax and g, the better approximation 
could be achieved. So the problem of image restoration is 
formulated as a convex optimization problem 

 
																																		min

୶∈୊ୗ
‖Ax െ g‖,                             (3) 

 
where FS is a convex set and denoted as feasible set of the 
problem andFS ∈ R୫୬. Suppose that we have the image of 
size 256 ൈ 256, as discussed before the size of blurring 
matrix A is ሺ256 ൈ 256ሻ ൈ ሺ256 ൈ 256ሻ ൌ 65536 ൈ
65536 which is extremely large and the direct solution of (3) 
involves high order computation task. For such problems, the 
Kronecker product takes a direct effect in this issue by sparse 
factorization of the blurring matrix.  Let H be a	ሺm ൈ nሻ 
matrix and K be a ሺp ൈ qሻ matrix. The Kronecker product of 
H and K is H⨂K ൌ ሺh୧୨Kሻ and h୧୨ ∈ H for all i and j.  It 
means that each element of His multiplied to whole matrix 
K, so, the result of this Kronecker product is a ሺmpሻ ൈ ሺnqሻ 
matrix. 

As discussed, regularization methods play an important 
role in ill-posed problems with smoothing the cost function 
by adding an extra term weighted by γ regularization 
parameter. So the image restoration problem in (3) is 
converted to (4) which is regularization convex optimization 
problem, 

 
																											min

୶∈୊ୗ
ሺ‖Ax െ g‖ ൅ γ‖Rx‖ሻ,    (4) 

 
where R is a regularization matrix. Both A and R, are 
considered as Kronecker product of two smaller matrix 
defined byA ൌ Aଵ⨂Aଶ	and		R ൌ Rଵ⨂Rଶ. For better gradient 
estimation, (4) can be formulated as (5), 

 
																									min

୶∈୊ୗ
ሺ‖Ax െ g‖ଶଶ ൅ γଶ‖Rx‖ଶଶሻ    (5) 

 
By applying the Kronecker product to A and R, (6) is 

achieved, 
 
									min

୶∈୊ୗ
ሺ‖ሺAଵ⨂Aଶሻx െ g‖ଶଶ ൅ γଶ‖Rଵ⨂Rଶx‖ଶଶሻ									(6) 

 
Finally, considering the property for Kronecker product in 
equation (7), 

 
      VectorሺAXBሻ ൌ ሺB୘⨂AሻVectorሺXሻ (7) 

 
 The regularization optimization problem leads to (8), 

 

												min
୶∈୊ୗ

ሺฮሺAଵXAଶ
୘ െ gฮ

ଶ

ଶ
൅ γଶฮRଵXRଶ

୘ฮ
ଶ

ଶ
ሻ									(8) 

One of the most important issues in regularization method 
is the estimation of parameterγ. In this paper we apply L-
curve method for this estimation. The L-curve tries to get the 
regularization parameter by the analysis of the norm of the 
regularized solution ‖x୩‖ and the corresponding residual 
norm ‖ܾ − ܣx୩‖. The L-curve is a plot of φሺ‖x୩‖ሻ versus 
φሺ‖b	 െ 	Ax୩‖ሻ which φ could be φሺtሻ ൌ t, φሺtሻ ൌ
√t	and	φሺtሻ ൌ log	ሺtሻ. This curve is shaped like the letter 
“L” and the optimal point is the point with the maximum 
curvature which lies in the corner of letter “L” [6]. 
 
4. Proposed Algorithm 

In this paper, the feasible set of optimization algorithm is 
considered as a sphere or box in equation (9) which is convex 
and leads (5) to be a convex optimization problem, 

 
FS ൌ ሼX ∈ R୫ൈ୬ ∶ L ൑ X ൑ Uሽ (9) 

 
where X is amൈ n image matrix and L and U are lower and 
upper bound matrixes, respectively. The notation ൑ between 
two matrix means that all elements in matrix L such as L୧୨ 
are smaller than corresponding elements in matrix X 
denoting by X୧୨. This relation is vice versa for X and U. As it 
is clear that the optimization algorithm searches among 
whole feasible set to find the best image matrix X, the more 
probability for existence of relevant X in feasible set, the 
higher chance for finding the optimized X exists.  

Both the degree of blurriness of the image and the amount 
of additive noise affects selection of feasible set. Our idea is 
that the interval of the feasible set is selected based on the 
fact that how images are deviated from their origin. The 
proposed feasible set is an interval around available blurred 
and noised image G. Firstly a 5 ൈ 5 window around each 
pixel in G is selected. Then, mean and variance for each 
window is calculated with equations (10) and (11), 

 

Gሺi, jሻ ൌ
1
25

෍ ෍ Gሺd, sሻ

୨ାଶ

ୱୀ୨ିଶ

୧ାଶ

ୢୀ୧ିଶ

 
 
(10) 

Varሺi, jሻ ൌ
1
25

෍ ෍ ሾGሺd, sሻ െ Gሺd, sሻሿଶ
୨ାଶ

ୱୀ୨ିଶ

୧ାଶ

ୢୀ୧ିଶ

 

 
 
 

(11) 

 
      The lower and upper bounds for feasible set are 
proposed in equations (12) and (13), 

 

Lሺi, jሻ ൌ ቐ
Gሺi, jሻെ∝. Varሺi, jሻ			if			൫Gሺi, jሻെ∝ Varሺi, jሻ൯ ൏ 0

0																																															otherwise
					(12) 

 
Uሺi, jሻ ൌ Gሺi, jሻ൅∝ Varሺi, jሻ (13) 

 
The higher amount of noise added to image, the bigger 

interval of feasible set must be selected. The main issue for 
this idea is that the model of noise is unavailable. We address 
this problem by constant parameter α which controls the 
interval of feasible set. The feasible set interval grows 
linearly as the α parameter leads to bigger amounts.  In our 
experiment, the best selection for feasible start point is G 
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which is in the middle part of the feasible set, so this point is 
strictly feasible. The final algorithm for image restoration is 
presented as following: 
Algorithm 1. Tikhonov regularization feasible start for 
image restoration 

1. Initialize the ܺ଴ (available blurred and noised image 
G), tolerance and maximum iteration. 

2. Estimate the regularization parameter ߛ with L-curve 
method described in Section 2. 

3. Repeat :  

4. If ݂׏൫ ௜ܺ௝൯ ൒ 0	, ܺ௜௝ ൌ ௜௝ܺ݁ݏ௜௝݈݁ܮ ൌ ௜ܷ௝ 

ߟ .5 ൌ൏ ܺ|ሺܺሻ݂׏ െ ܺ ൐ி 

6. Find the ߱∗ which minimize the  min
ఠ
ሺ ݂ሺܺ ൅

߱൫ܺ െ ܺ൯ሻ 

7. Update ܺ ൌ ܺ ൅߱∗ሺܺ െ ܺሻ 

8. Until  max iteration is achieved or ߟ ൏  ݁ܿ݊ܽݎ݈݁݋ܶ

݂ሺܺሻ	is objective function of equation (5). ൏ ܤ|ܣ ൐ி	 is a 
type of inner product which is equal to ݁ܿܽݎݐሺܤ்ܣሻ. It could 
be implied that the well known Frobenius norm ‖. ‖ி is given 
by ‖ܣ‖ி ൌ ඥ൏ ܣ|ܣ ൐ி. Also, the property in equation (14) 
could be implied. 

 
൏ ܤ|ܣ ൐ிൌ൏ ሻܤሺݎ݋ݐܸܿ݁|ሻܣሺݎ݋ݐܸܿ݁ ൐ଶ (14) 

 
Step 4 is a solution of the ݉݅݊

௑
൏ ܺ|ሺܺሻ݂ߘ ൐ி and 

 ,ሺܺሻ is computed from the equation (15) [7]݂ߘ
 
ሺܺሻ݂ߘ		 ൌ ଶ்ܣଵܺܣଵ்ሺܣ2 െ ଶܣሻܩ ൅  ଶܴଵ்ܴଵܴܺଶ்ܴଶ  (15)ߛ2

 

The solution of linear minimization problem in step 6 is 
stem from Tikhonov regularization solution in equation (16) 
[7], 
 

߱∗ ൌ

ە
ۖ
۔

ۖ
െۓ

ழ׏௙ሺ௑ሻ|௑ି௑வಷ

ଶฮ஺భ൫௑ି௑൯஺మ
೅ฮ

ಷ

మ
ାଶఊమฮோభ൫௑ି௑൯ோమ

೅ฮ
ಷ

మ 		……….																						

							݂݅			ሺെ ழ׏௙ሺ௑ሻ|௑ି௑வಷ

ଶฮ஺భ൫௑ି௑൯஺మ
೅ฮ

ಷ

మ
ାଶఊమฮோభ൫௑ି௑൯ோమ

೅ฮ
ಷ

మሻ ൑ 1	

݁ݏ݅ݓݎ݄݁ݐ݋																																																																												1

(16) 

 
5. Experimental Setup and Results 

To illustrate the effectiveness of the proposed algorithm, 
some numerical tests are performed. The proposed algorithm 
is implemented on a machine with 2.26 GHz Corei7 CPU 
and 6 GB of RAM and Windows 7 with two images named 
as fruit and cameraman with the sizes of 512x512 and 
256x256 pixels respectively. The results are compared with 
the proposed algorithm in [7] and reduced Newton (RN) 
algorithm [13].First, the image is blurred by blur matrix A 
consisting of Kroncker product of Aଵ		and	Aଶ. These two 
matrixes are considered to be equal and are computed with 
equation (17), 

 
										Aଵሺi, jሻ ൌ Aଶሺi, jሻ ൌ

														ቊ
ଵ

஢√ଶ஠
	exp ቀെ

ሺ୧ି୨ሻమ

ଶ஢మ
ቁ 			if			|i െ j| ൑ r

	0																																					otherwise								
																	(17) 

 
Then, the additive noise is added to blur noise-free image 
with white Gaussian noise of mean 0 and different variances.  
The regularization matrix R is computed from Kroncker 
product of Rଵ	and	Rଶ. As in papers used [1, 3, 7], Rଵ is 
tridiagonal matrix of [-1 2 -1] and Rଶ is identity matrix. Fig. 
1 and Fig. 2 show the results of both proposed and RN 
methods in cameraman and fruit images with two types of σ, 
r and noise variances. 

 
 

 
 

 
Fig. 1. Restored cameraman images by proposed method and reduced Newton: a) Noise Variance = 2, Sigma = 4.4, r = 5 and b) Noise 
Variance = 2.5, Sigma = 8.4, r = 7. 
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There are some measures for evaluating the restored 
image result. In this research we have used Improvement 
Signal to Noise Ratio (ISNR), Mean Absolute Error (MAE), 
Mean Squared Error (MSE) and relative error measures 
which are computed by equations (18), (19), (20), and (21), 
respectively: 

 

															ISNR ൌ 10 logଵ଴ ൬
∑ ሾ୥ሺ୧,୨ሻି୤ሺ୧,୨ሻሿమ౟,ౠ

∑ ሾ୤መሺ୧,୨ሻି୤ሺ୧,୨ሻሿమ౟,ౠ
൰ (18) 

                   MAE ൌ
∑ |୤መሺ୧,୨ሻି୤ሺ୧,୨ሻ|౟,ౠ

୑୒		
  (19) 

 

                   MSE ൌ
∑ |୤መሺ୧,୨ሻି୤ሺ୧,୨ሻ|మ౟,ౠ

୑୒		
 (20) 

 

																					Relative	ErrorሺXሻ ൌ
ฮ୤መି୤ฮూ
ฮ୤መฮూ

                         (21)

 

 
Fig. 2. Restored fruit images by proposed method and reduced Newton: a) Noise Variance = 2, Sigma = 4.4, r = 5 and b) Noise   Variance 
= 2.5, Sigma = 8.4, r = 7. 
 

Table 1. Results for Our Proposed Method, Proposed Method in [7] and RN. 

 ો r 
Noise 

Variance 
હ ઻ Method Relative Error 

 

ISNR 
 

MAE 
 

MSE 

C
am

er
am

an
 

1.4 3 1 15 0.954 Proposed Algorithm 0.1831 0.0514 7.3421 121.4 
1.4 3 1 - - Proposed Method in [7] 0.1812 0.0541 7.0134 118.3 
1.4 3 1 - - RN 0.2065 0.0432 7.9876 125.7 
4.4 5 2 15 0.954 Proposed Algorithm 0.2418 0.0332 9.1245 135.5 
4.4 5 2 - - Proposed Method in [7] 0.2634 0.0304 10.2345 141.9 
4.4 5 2 - - RN 0.2712 0.0301 10.8733 149.3 
8.4 7 2.5 15 0.954 Proposed Algorithm 0.3243 0.0118 13.4564 161.5 
8.4 7 2.5 - - Proposed Method in [7] 0.3294 0.0113 13.8734 168.6 
8.4 7 2.5 - - RN 0.3283 0.0104 14.6534 174.5 
12.4 10 5 15 0.954 Proposed Algorithm 0.4154 -0.0245 17.7645 191.4 
12.4 10 5 - - Proposed Method in [7] 0.4834 -0.0735 21.4533 205.3 
12.4 10 5 - - RN 0.5521 -0.1355 28.8734 213.5 

F
ru

it
 

1.4 3 1 15 0.954 Proposed Algorithm 0.2123 0.0412 8.4633 127.3 
1.4 3 1 - - Proposed Method in [7] 0.2059 0.0443 7.9853 125.6 
1.4 3 1 - - RN 0.2354 0.0382 8.8753 135.1 
4.4 5 2 15 0.954 Proposed Algorithm 0.2534 0.0402 10.1342 139.7 
4.4 5 2 - - Proposed Method in [7] 0.2848 0.0356 11.1546 146.4 
4.4 5 2 - - RN 0.2914 0.0312 11.8912 153.2 
8.4 7 2.5 15 0.954 Proposed Algorithm 0.3341 0.0184 13.7564 165.5 
8.4 7 2.5 - - Proposed Method in [7] 0.3387 0.0112 14.1654 172.1 
8.4 7 2.5 - - RN 0.3467 0.0091 14.8745 179.7 
12.4 10 5 15 0.954 Proposed Algorithm 0.3918 -0.0341 16.3452 200.3 
12.4 10 5 - - Proposed Method in [7] 0.4453 -0.0674 18.8435 209.9 
12.4 10 5 - - RN 0.4976 -0.1613 25.5432 221.2 
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where f, f	෠and g are original image, restored image and 
degraded image, respectively. Also, M and N are the image 
dimensions. It is worth mentioning that the higher amount of 
ISNR, the better restoration result is achieved while for  
MAE, MSE and relative error this relation is vice versa. 
The γ  regularization parameter, computed by L-curve, is 

0.954 in its best case at the corner of curve, so we set this 
parameter to 0.954 as a constant for all experiments. Also, 
the best case for feasible set parameter ∝ was 15 which is a  
trade-off between time order of the algorithm and 
appropriate restoration results. Experiments are performed 
for different parameters of the algorithm and then results are 
shown in the table 1. As it is indicated, 4 types of noise and 
blur parameters include 1. σ ൌ 1.4, r = 3 and Noise Variance 
= 1, 2. σ ൌ 4.4, r = 5 and Noise Variance = 2, 3. σ ൌ 8.4, r = 
7 and Noise Variance = 2.5 and 4. σ ൌ 12.4, r = 10 and Noise 
Variance = 5 are applied to cameraman and fruit images. As 
it is clear from the table 1, our proposed algorithm 
outperforms RN in all noise and blur cases and outperforms 
[7] in 2, 3 and 4 cases. 

 
6. Conclusion 

In this paper, a new schema for image restoration based on 
Tikhonov regularization convex optimization method has 
been proposed. The regularization parameter was estimated 
by L-curve method. The iteration methods in image 
restoration are so sensitive to initial point. The different 
initial points lead the algorithms to different results. Also, 
inappropriate initial points mislead the algorithms. In our 
proposed algorithm, the appropriate feasible set and feasible 
start point for the mentioned optimization problem was 
introduced which clearly affects both convergence and 
founded optimal solution of the algorithm. Our idea for 
feasible start point is very simple as well as it is strictly 
feasible since it is located in the middle of the feasible set. 
The results showed that the performance of new algorithm is 
relatively better in comparison with previous methods in the 
term of ISNR, MAE, MSE and relative error measures. For 
future trend, more advanced methods, such as generalized 
cross-validation methods could be tested on the new 
algorithm. Also, the more sophisticated non-convex feasible 
sets may lead to better results. Finally, the particle swarm 
optimization (PSO) method could be adapted for estimation 
of optimalγ parameter. 
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