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Approximation of the Huxley equation
with nonstandard finite-difference

scheme

M. Namjoo∗ and S. Zibaei

Abstract

In this paper, an explicit exact finite-difference scheme for the Huxley
equation is presented based on the nonstandard finite-difference (NSFD)

scheme. Afterwards, an NSFD scheme is proposed for the numerical solu-
tion of the Huxley equation. The positivity and boundedness of the scheme
is discussed. It is shown through analysis that the proposed scheme is consis-
tent, stable, and convergence. The numerical results obtained by the NSFD

scheme is compared with the exact solution and some available methods, to
verify the accuracy and efficiency of the NSFD scheme.

Keywords: The Huxley equation; Nonstandard finite-difference scheme;
Positivity and boundedness; Consistency; Stability; Convergence.

1 Introduction

Nonlinear partial differential equations (PDEs) play an important role in
the various fields of physical science and engineering such as plasma physics,
fluid mechanics, optimal fibbers, solid state physics, chemical kinetics, and
geochemistry. Recently, it also began to become important in various other
fields of science, for example, biology and economics [14, 18]. Behaviors of
many physical systems encountered in models of reaction mechanisms, con-
vection effects, and diffusion transports give rise to the Burgers–Huxley (BH)
equation. Consider the BH equation
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ut + αuux − uxx = βu(1− u)(u− γ), (1)

where α, β ≥ 0 and γ ∈ (0, 1). When β = 0, equation (1) reduces to the
Burgers equation. If α = 0, then Equation (1) recovers the Huxley equation

ut − uxx = βu(1− u)(u− γ), (2)

which describes nerve pulse propagation in nerve fibers and wall motion in
liquid crystals. An analytical solution to this equation subject to the following
initial and boundary conditions:

u(x, 0) =
γ

1 + e−2A1x
, 0 ≤ x ≤ 1,

u(0, t) =
γ

1 + e2A1A2t
, t ≥ 0,

u(1, t) =
γ

1 + e−2A1(1−A2t)
, t ≥ 0,

derived by Wang in [17], is given by

u(x, t) =
γ

2
+
γ

2
tanh[A1(x−A2t)] =

γ

1 + e−2A1(x−A2t)
, (3)

where

A1 =

√
8β

8
γ, A2 =

4− 2γ

γ
A1.

In the past few years, various powerful mathematical methods such as the
Adomian decomposition method (ADM) [7, 8, 10], the variational iteration
method (VIM) [1, 2], the differential transform method (DTM) [3] and the
Haar wavelet method [6] have been used in attempting to solve (2). Among
various techniques for solving PDEs, the NSFD schemes have been proved to
be one of the most efficient approaches in recent years [13]. These schemes
are developed for compensating the weaknesses, such as numerical instabil-
ities that may be caused by standard finite- difference schemes. One of the
most important advantages of this scheme is that choosing a complicate de-
nominator function instead of the stepsize h, better results can be obtained.
If the stepsize h is chosen small enough, the obtained results do not change
significantly but if the stepsize h gets larger, then this advantage comes into
focus [13,19–24].

This paper is organized as follows: In Section 2, we provide a brief
overview of the important features of the procedures for constructing NSFD
schemes for PDEs. In Section 3, we begin with proposing the exact finite-
difference scheme for the Huxley equation. In Section 4, we give an NSFD
scheme for numerical solution of the Huxley equation and also positivity and
boundedness are studied for the proposed NSFD scheme. Moreover, a brief
study of consistency is presented here, along with a Von Neumann analysis
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of stability and convergence. Finally, in the last section, numerical results
are given to show the efficiency of the proposed NSFD scheme.

2 Nonstandard finite-difference schemes

The initial foundation of NSFD schemes came from the exact finite-difference
schemes. NSFD schemes were firstly proposed by Mickens [12,13] for ordinary
differential equations (ODEs) and, successively, their use has been investi-
gated in several fields. Regarding the positivity and boundedness of solutions,
NSFD schemes have a better performance over the standard finite-difference
schemes, due to its flexibility to construct an NSFD scheme that can preserve
certain properties and structures, which are obeyed by the original equations.
The advantages of NSFD schemes have been shown in many numerical appli-
cations. Gonzalez-Parra et al. [5] and Zibaei and Namjoo [20–23] developed
NSFD schemes to solve population and biological models.

This class of schemes and their formulations center on two issues. First,
how should discrete representations be determined for derivatives, and sec-
ond, what are the proper forms to be used for nonlinear terms. The forward
Euler method is one of the simplest discretization schemes. In this method

the derivative term dy
dt is replaced by y(t+h)−y(t)

h , where h is the stepsize.

However, in the Mickens schemes this term is replaced by y(t+h)−y(t)
ϕ(h) , where

ϕ(h) is an increasing continuous function of h, and the function ϕ(h) satisfies
the following conditions:

ϕ(h) = h+O(h2), 0 < ϕ(h) < 1, h→ 0.

Examples of functions ϕ(h) that satisfy these conditions are [12, 19–24]:

h, sinh,
1− e−λh

λ
.

Note that in taking the limh→ 0 to obtain the derivative, the use of any of
these ϕ(h) will lead to the usual result for the first derivative

dy

dt
= lim
h→0

y
(
t+ ϕ1(h)

)
− y(t)

ϕ2(h)
= lim
h→0

y(t+ h)− y(t)

h
,

where ϕ1(h) and ϕ2(h) are continuous functions of the stepsize h. A scheme
is called nonstandard if at least one of the following conditions is satisfied:

1. A nonlocal approximation is used.

2. The denominator function for the discrete derivative, in general, ex-
pressed in terms of more complicated functions of the stepsize h than
those conventionally used.
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Nonlinear terms approximated in a nonlocal way, for example, if there are
nonlinear terms in the differential equation [12,19–24], these are replaced by

y2(t) → yn(t)yn+1(t), y2(t) → yn−1(t)yn(t).

In the two-dimensional case, nonlinear terms such as y(t)x(t) are either re-
placed by

y(t)x(t) → yn(t)xn+1(t), y(t)x(t) → yn+1(t)xn(t).

One can say that there is no appropriate general method to choose the func-
tion ϕ(h) or to choose which nonlinear terms are to be replaced, some special
techniques may be found in [15,19–24].

3 An explicit exact finite-difference scheme

In this section, we obtain an exact finite-difference scheme for the Huxley
equation. If we choose h = A2∆t, then we easily obtain u(x−h, t) = u(x, t+
∆t), and the following equations

1

u(x+ h, t)
=

1

γ
(1 + e−2A1(x+h−A2t)),

1

u(x− h, t)
=

1

γ
(1 + e−2A1(x−h−A2t)),

1

u(x, t−∆t)
=

1

γ
(1 + e−2A1(x−A2(t−∆t))).

(4)

According to (4), we can write

1

u(x, t)
− 1

u(x+ h, t)
= (

1

u(x, t)
− 1

γ
)(1− e−2A1h),

1

u(x, t)
− 1

u(x− h, t)
= (

1

u(x, t)
− 1

γ
)(1− e2A1h),

1

u(x, t)
− 1

u(x, t−∆t)
= (

1

u(x, t)
− 1

γ
)(1− e−2A1A2∆t).

If we set the stepsize functions as

ψ1 =
1− e−2A1h

2A1
, ψ2 =

e2A1h − 1

2A1
, ϕ1 =

1− e−2A1A2∆t

2A1A2
,

we will get the following forward and backward difference quotients with the
special stepsize functions
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∂xu =
u(x+ h, t)− u(x, t)

ψ1
= 2A1u(x+ h, t)(1− u(x, t)

γ
),

∂̄xu =
u(x, t)− u(x− h, t)

ψ2
= 2A1u(x− h, t)(1− u(x, t)

γ
),

∂̄tu =
u(x, t)− u(x, t−△t)

ϕ1
= 2A1A2u(x, t−∆t)(

u(x, t)

γ
− 1).

(5)

Consequently, it follows that

∂̄x∂xu =
∂̄xu(x+ h, t)− ∂̄xu(x, t)

ψ1

=
2A1

γ
u(x, t)

u(x− h, t)− u(x+ h, t)

ψ1
+ 2A1

u(x, t)− u(x− h, t)

ψ1

= −A2
u(x, t)− u(x− h, t)

ψ1
+

2A1

γ
u(x, t)

u(x− h, t)− u(x+ h, t)

ψ1

+(2A1 +A2)
u(x, t)− u(x− h, t)

ψ1
.

(6)

Since A2

ψ1
= 1

ϕ1
, according to (5), (6), and u(x − h, t) = u(x, t +∆t), we can

write

∂̄x∂xu =
u(x, t+∆t)− u(x, t)

ϕ1
+

2A1

γ
u(x, t)

(u(x− h, t)− u(x, t)

ψ1

+
u(x, t)− u(x+ h, t)

ψ1

)
+ (2A1 +A2)

u(x, t)− u(x− h, t)

ψ1

=
u(x, t+∆t)− u(x, t)

ϕ1
+

2A1

γ
u(x, t)

(
− 2A1u(x, t)(1−

u(x− h, t)

γ
)

−2A1u(x+ h, t)(1− u(x, t)

γ
)
)
+ (2A1 +A2)2A1u(x, t)(1−

u(x− h, t)

γ
).

(7)

We notice that

2A1
2A1

γ
=
βγ

2
, 2A1(2A1 +A2) = βγ,

hence according to (7), we have

∂̄x∂xu =
u(x, t+∆t)− u(x, t)

ϕ1
+ β(u(x, t))2

u(x+ h, t) + u(x− h, t)

2

−βγu(x, t)u(x, t) + u(x+ h, t)

2
+ βγu(x, t)− βu(x, t)u(x− h, t).

Now, using approximation uxx ≈ ∂̄x∂xu and also assuming
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Unj = u(xj , tn) =
γ

1 + e−2A1(xj−A2tn)
,

we construct the following explicit exact finite-difference scheme:

Unj+1 − 2Unj + Unj−1

ψ1ψ2
=
Un+1
j − Unj
ϕ1

+ β(Unj )
2
Unj+1 + Unj−1

2

−βγUnj
Unj + Unj+1

2
− βUnj U

n
j−1 + βγUnj .

(8)

The following theorem is the main result of the previous discussion.

Theorem 1. An explicit exact finite-difference scheme for the Huxley equa-
tion (2) is given by (8). The stepsize satisfies h = A2∆t, and the stepsize
functions satisfy

ψ1 =
1− e−2A1h

2A1
, ψ2 =

e2A1h − 1

2A1
, ϕ1 =

1− e−2A1A2∆t

2A1A2
.

4 Analysis of NSFD scheme

In this section, we present a NSFD scheme for the Huxley equation. In the
classical sense, a special difference scheme of the Huxley equation can be
written as

Un+1
j − Un

j

∆t
−

Un
j+1 − 2Un

j + Un
j−1

h2
= β

(
− (Un

j )3 + (1 + γ)(Un
j )2 − γUn

j

)
, (9)

where h and ∆t are space and time stepsizes, respectively; and Unj is an
approximation to u(xj , tn). Similar to the classical difference scheme (9), we
obtain a NSFD scheme for the Huxley equation as follows:

Un+1
j − Un

j

Φ
−

Un
j+1 − 2Un

j + Un
j−1

Ψ
= β

(
− Un+1

j (Un
j )2 + (1 + γ)Un+1

j Un
j − γUn

j

)
,(10)

where the functions Φ and Ψ are given by

Φ =
1− e−2A1A2∆t

2A1A2
, Ψ = (

1− e−2A1h

2A1
)2.

We conclude that Φ → ∆t and Ψ → h2 as ∆t and h approach zero.

Comparing (10) with (2), we infer that the nonlinear terms on the right-
hand side of (2) are in the forms(

u(xj , tn)
)3 ≈ (Un+1

j )(Unj )
2,

(
u(xj , tn)

)2 ≈ Un+1
j Unj .
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It can be easily noticed that the NSFD scheme (10) is explicit. Setting
R = Φ

Ψ , we can rewrite (10) as

Un+1
j =

(1− 2R)Unj +R(Unj+1 + Unj−1)− βγΦUnj
1− β(1 + γ)ΦUnj + βΦ(Unj )

2
. (11)

We can find positivity and boundedness properties in the presented NSFD
scheme. The following theorem shows these properties.

Theorem 2. For any nonnegative initial data, if 1 − 2R − βΦγ ≥ 0, then
the numerical solution (11) satisfies

0 < Unj < γ =⇒ 0 < Un+1
j < γ

for all relevant values of n and j.

Proof. Since 1− 2R− βΦγ ≥ 0 and Unj > 0, we deduce that

(1− 2R)Unj +R(Unj+1 + Unj−1)− βγΦUnj

= (1− 2R− βγΦ)Unj +R(Unj+1 + Unj−1) > 0.
(12)

Moreover, βγΦ ≤ 1− 2R ≤ 1 and Unj < γ < 1 implies

1− β(1 + γ)ΦUnj + βΦ(Unj )
2 ≥ βγΦ− β(1 + γ)Φγ + βΦ(Unj )

2

= βΦ(Unj − 1)(Unj − γ) > 0.
(13)

So the inequalities (12) and (13) imply that Un+1
j > 0. Consider

(1− 2R− βγΦ)Unj +R(Unj+1 + Unj−1)− γ
(
1− β(1 + γ)ΦUnj + βΦ(Unj )

2
)

≤ (1− 2R− βγΦ)γ + 2Rγ − γ + βγ(1 + γ)ΦUnj − βγΦ(Unj )
2

= −βγΦ
(
γ − (1 + γ)Unj + (Unj )

2
)
= −βγΦ

(
(Unj − γ)(Unj − 1)

)
< 0,

and the last inequality shows that Un+1
j < γ. Hence, the solution of NSFD

scheme (11) has the positivity and boundedness properties.

Now, we establish the properties of consistency and stability of the NSFD
scheme (11).

For appropriate R, setting unj = u(xj , tn) precisely, we have Taylor’s for-
mula for the solution of the Huxley equation, with appropriate x̄j ∈ (xj , xj+1)

and t̄n, ¯̄tn,
¯̄̄tn ∈ (tn, tn+1). For functions defined on the grid, we introduce

these difference quotients

∂tu
n
j =

Un+1
j − Unj

Φ
, ∂x∂̄xu

n
j =

Unj+1 − 2Unj + Unj−1

Ψ
.
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By using the method in [4], the local truncation error τnj is shown as
follows:

τnj =

(
∂tu

n
j − ut(xj , tn)

)
−
(
∂x∂̄xu

n
j − uxx(xj , tn)

)
+ βγ

(
unj − u(xj , tn)

)
−β(1 + γ)

(
un+1
j unj − u2(xj , tn)

)
+ β

(
un+1
j (unj )

2 − u3(xj , tn)

)
= (∆tΦ − 1)ut(xj , tn) +

∆t2

2Φ utt(xj , tn) +
∆t3

6Φ uttt(xj , t̄n)

−
(
(h

2

Ψ − 1)uxx(xj , tn) +
h4

12Ψuxxx(x̄j , tn)

)
−β(1 + γ)

(
∆tu(xj , tn)ut(xj , tn) +

∆t2

2 u(xj , tn)utt(xj , tn)

+∆t3

3 u(xj , tn)uttt(xj , ¯̄tn)

)
+β

(
∆tu2(xj , tn)ut(xj , tn) +

∆t2

2 u2(xj , tn)utt(xj , tn)

+∆t3

3 u2(xj , tn)uttt(xj ,
¯̄̄tn)

)
.

When ∆t → 0 and h → 0 , we have Φ ≈ ∆t and Ψ ≈ h2. Therefore,
τnj = O(∆t) + O(h2) if ∆t → 0 and h → 0. This shows that the NSFD
scheme (11) is consistent with the Huxley equation. In [24], Namjoo et al.
considered the approximation of the BH equation using an NSFD scheme,
and investigated their numerical results. In fact this scheme is consistent for
the BH equation with a consistency of the order of O(∆t) +O(h).

Von Neumann introduced a method to prove stability, using Fourier analy-
sis, so that it can give a sufficient condition for the stability of finite-difference
schemes.

Theorem 3. Sufficient conditions for the NSFD scheme (11) to be stable,
are that γ ∈ (0, 1) and βΨ(1 + γ) ⩽ 2.

Proof. Let Unj = eαnke−ijλh, for every n ∈ {0, 1, 2, . . . , N} and every j ∈
{0, 1, 2, . . . ,M} where α is a real constant. Substituting in the NSFD scheme
(11) and simplifying, we get

eαk =
(1− 2R) +R(e−iλh + eiλh)− βγΦ

1− β(1 + γ)Φenαk−ijλh + βΦe2(nαk−ijλh)
,

so we deduce that

βγΦ+ eαk − β(1 + γ)Φe(n+1)αk

(
cos(jλh)− i sin(jλh)

)
+βΦe(2n+1)αk

(
cos(2jλh)− i sin(2jλh)

)
= 1− 4R sin2(λh2 ).

(14)
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Expanding (14) into separate real and imaginary parts, we obtain the follow-
ing identities:

β(1 + γ)Φe(n+1)αk sin(jλh)− βΦe(2n+1)αk sin(2jλh) = 0, (15)

βγΦ+ eαk − β(1 + γ)Φe(n+1)αk cos(jλh) + βΦe(2n+1)αk cos(2jλh)

= 1− 4R sin2(λh2 ).
(16)

Therefore, from (15), we have

eαk = (
1 + γ

2 cos(jλh)
)

1
n .

Hence, according to the Fourier analysis, the NSFD scheme (11) is stable in
the sense of Von Neumann if |eαk| ⩽ 1, or equivalently:

−1 ⩽ 1 + γ

2 cos(jλh)
⩽ 1. (17)

In order to show inequalities (17), we need to consider the following two
cases.
Case1. Assume that cos(jλh) > 0, to prove (17), it is sufficient to show that

1 + γ

2 cos(jλh)
⩽ 1. (18)

Since cos(jλh) > 0, there exists a number γ∗, such that

0 < γ∗ < cos(jλh) ⩽ 1. (19)

Now pick a number γ ∈ (0, 1) such that γ∗ = 1+γ
2 . Substituting for γ∗ in

(19), we obtain the desired result, (18).
Case 2. Now suppose that cos(jλh) < 0. To prove (17), it is sufficient to
show that

−1 ⩽ 1 + γ

2 cos(jλh)
. (20)

Since cos(jλh) < 0, there exists a number γ∗∗, such that

−1 ⩽ cos(jλh) < γ∗∗ < 0. (21)

Choose a number γ ∈ (0, 1) such that

γ∗∗ = − (1 + γ)

2
. (22)
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Substituting (22) into (21), we get the desired result (20).

On the other hand, by using the following inequality∣∣∣∣1− 4R sin2(
λh

2
)

∣∣∣∣ ⩽ 1 + 4R,

and the fact that |eαk| ⩽ 1, from (16), it follows that∣∣∣∣1− 4R sin2(
λh

2
)

∣∣∣∣ = ∣∣∣∣βγΦ+ eαk − β(1 + γ)Φe(n+1)αk cos(jλh)

+βΦe(2n+1)αk cos(2jλh)

∣∣∣∣ ⩽ βγΦ+ 1 + β(1 + γ)Φ + βΦ = 1 + 2βγΦ+ 2βΦ.

Now, by imposing the condition

1 + 2βγΦ+ 2βΦ ⩽ 1 + 4R,

we obtain the following inequality

βΦ(1 + γ)

2
⩽ R,

where R = Φ
Ψ . Consequently, the sufficient conditions for stability the NSFD

scheme (11) are given as follows:

βΨ(1 + γ) ⩽ 2, γ ∈ (0, 1). (23)

Corollary 1. The NSFD scheme (11) is convergent for γ ∈ (0, 1) and
βΨ(1 + γ) ⩽ 2 with the Huxley equation (2).

Proof. The result follows from Theorem 3 and the Lax theorem.

5 Numerical results

To verify the effectivity of the NSFD scheme in section 4, we simulate initial-
boundary value problem
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ut − uxx = βu(1− u)(u− γ), 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) =
γ

1 + e−2A1x
, 0 ≤ x ≤ 1,

u(0, t) =
γ

1 + e2A1A2t
, t ≥ 0,

u(1, t) =
γ

1 + e−2A1(1−A2t)
, t ≥ 0.

(24)

We use the NSFD scheme (11); then we give the initial and boundary
conditions

U0
j =

γ

1 + e−2A1xj
, j = 0, 1, . . . ,M,

Un0 =
γ

1 + e2A1A2tn
, n = 0, 1, . . . , N,

UnM =
γ

1 + e−2A1(xM−A2tn)
, n = 0, 1, . . . , N.

(25)

To verify the efficiency and to measure its accuracy and the versatility of
the NSFD scheme (11) for the current problem in comparison with the exact
solution, absolute error for different values of β and γ is reported which is
defined by ∣∣u(xj , tn)− U(xj , tn)

∣∣,
in the point (xj , tn). Here U(xj , tn) as the solution portraying the behaviors
of physical system is obtained by the present scheme while u(xj , tn) stands
for the exact solution. Consider the Huxley equation in the form (24) with
the initial and boundary conditions (25), and the exact solution (3). The
results are compared with the exact solution. The numerical computations
were performed by using uniform grids. The differences between the com-
puted solution and the exact solution for some values of the constants β and
γ are shown in Tables 1–4. As various problems of science were modeled
by the Huxley equation, hence various values of the parameters have been
considered in the following examples. In all numerical examples reported in
this section, the Von Neumann stability conditions (23) are fulfilled for the
NSFD scheme (11).

Example 1. In Table 1, the absolute errors have been shown for various
values of β, x, and t with γ = 0.001. A comparison between the NSFD
scheme [24] and the NSFD scheme (11) is given in Table 1. The numerical
results show the high accuracy of the NSFD scheme (11).

Example 2. Table 2 shows the absolute errors for various values of γ, x, and t
with β = 10. The results of the NSFD scheme (11) and the NSFD scheme [24]
for different values of the parameters are shown in Table 2. Comparison of
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Table 1: The absolute errors for various values of β, x, and t with γ = 0.001

x t NSFD [24] Presented NSFD NSFD [24] Presented NSFD

for β = 1 for β = 1 for β = 10 for β = 10

0.3 1.3158E–12 7.4809E–18 3.9633E–11 9.3750E–16
0.2 0.5 1.3753E–12 7.5894E–18 4.1390E–11 9.5875E–16

0.9 1.3846E–12 7.6978E–18 4.1589E–11 9.1983E–16

0.3 2.0465E–12 1.1384E–17 6.1653E–11 1.4631E–15
0.5 0.5 2.1477E–12 1.2034E–17 6.4648E–11 1.5020E–15

0.9 2.1635E–12 1.2143E–17 6.4999E–11 1.4430E–15

0.3 1.3159E–12 7.4809E–18 3.9651E–11 9.4271E–16
0.8 0.5 1.3755E–12 7.5894E–18 4.1408E–11 9.6363E–16

0.9 1.3847E–12 7.9146E–18 2.3405E–11 9.2525E–16

current and exact results shows the efficiency and accuracy of the NSFD
scheme (11).

Table 2: The absolute errors for various values of γ, x, and t with β = 10

x t NSFD [24] Presented NSFD NSFD [24] Presented NSFD
for γ = 10−2 for γ = 10−2 for γ = 10−5 for γ = 10−5

0.2 2.0599E–08 4.5578E–12 2.0529E–17 6.7762E–21

0.1 0.4 2.2927E–08 4.0248E–12 2.3054E–17 5.9292E–21
0.6 2.3035E–08 2.8500E–12 2.3408E–17 7.6232E–21

0.2 5.6063E–08 1.3031E–11 5.5677E–17 1.1011E–20

0.5 0.4 6.3727E–08 1.1893E–11 6.3850E–17 1.5246E–20
0.6 6.4195E–08 8.6771E–12 6.4996E–17 2.1175E–20

0.2 2.0724E–08 4.9406E–12 2.0527E–17 1.6940E–21

0.9 0.4 2.3063E–08 4.4080E–12 2.3053E–17 5.0821E–21
0.6 2.3172E–08 3.2331E–12 2.3407E–17 9.3173E–21

Example 3. In Table 3 the absolute errors have been shown for various val-
ues of x, t, and γ with β = 50. The numerical results obtained by the NSFD
scheme (11) show good accuracies and agreements with exact solutions.

Example 4. Table 4 shows the absolute errors for various values of x, t, and
γ with β = 100. The results of the present scheme and the NSFD scheme [24]
for the above values of the parameters are shown in Table 4. The numerical
results reported in Table 4 indicate the high accuracy of the NSFD scheme
(11).
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Table 3: The absolute errors for various values of γ, x, and t with β = 50

x t NSFD [24] Presented NSFD NSFD [24] Presented NSFD

for γ = 10−3 for γ = 10−3 for γ = 10−5 for γ = 10−5

0.1 5.3170E–12 9.2720E–15 1.5906E–16 7.6232E–21
0.1 0.5 2.3504E–10 1.2583E–14 2.3744E–16 1.1858E–20

1 2.3317E–10 1.2682E–14 2.3895E–16 9.3173E–21

0.1 5.3230E–12 2.3789E–14 4.0521E–16 1.9481E–20
0.5 0.5 6.5311E–10 3.5184E–14 6.5885E–16 2.7952E–20

1 6.4861E–10 3.0349E–14 6.6378E–16 2.8799E–20

0.1 5.3289E–12 9.3692E–15 1.5906E–16 8.4703E–21
0.9 0.5 2.3553E–10 1.2682E–14 2.3745E–16 7.6232E–21

1 2.3366E–10 1.0925E–14 2.3896E–16 1.1011E–20

Table 4: The absolute errors for various values of γ, x, and t with β = 100

x t NSFD [24] Presented NSFD NSFD [24] Presented NSFD
for γ = 10−3 for γ = 10−3 for γ = 10−4 for γ = 10−4

0.2 1.2498E–09 1.0843E–13 1.2564E–12 1.1004E–17

0.3 0.5 1.4195E–09 1.1179E–13 1.4482E–12 1.2590E–17
0.8 1.4027E–09 9.7739E–14 1.4561E–12 1.2529E–17

0.2 1.4802E–09 1.2868E–13 1.4865E–12 1.3030E–17

0.5 0.5 1.6913E–09 1.3352E–13 1.7241E–12 1.4989E–17
0.8 1.6718E–09 1.1683E–13 1.7336E–12 1.4928E–17

0.2 1.2522E–09 1.0890E–13 1.2566E–12 1.1018E–17

0.7 0.5 1.4222E–09 1.1226E–13 1.4488E–12 1.2590E–17
0.8 1.4053E–09 9.8212E–14 1.4563E–12 1.2549E–17

Comparing the numerical results in Tables 1–4, it follows that the NSFD
scheme (11) is more accurate than the NSFD scheme [24]. This follows be-
cause the local truncation error the NSFD scheme (11) is O(∆t) + O(h2),
while the local truncation error the NSFD scheme [24] is O(∆t) +O(h).

Figures 1 and 2 indicate the numerical solutions and the solitary wave
solutions. Figures 1(a) and 11(b) compare the numerical results with the
exact one for β = 1 and γ = 0.001 with stepsize ∆t = 0.001 and h = 0.1
for a given fixed value of x = 0.5. Figures 2(a) and 2(b) show the error
between two solutions of different formats. The two simulations show that
the presented NSFD scheme is efficient. From the numerical results of this
example, we conclude that the obtained results quite agreed with the exact
one.

In Figures 3(a)–(d), we simulate absolute errors between the exact solu-
tion and the NSFD scheme for various stepsizes. In fact, we have compared
absolute errors when x = 0.5, for two values of β and γ. It is noticeable
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Figure 1: Simulations of the NSFD scheme for the Huxley equation with stepsize ∆t =

0.001, h = 0.1.
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Figure 2: U and u(x, t) at a fixed value x = 0.5 for the NSFD scheme.

that increasing stepsizes do not decrease accuracy of the scheme significantly.
These comparisons show that the NSFD scheme (11) has good efficiency even
for a high space stepsize.

In Table 5, we present the absolute errors of the computed solution for
the Huxley equation, by ADM [7,8,10], VIM [1,2], DTM [3], Crank–Nicolson
(CN) and NSFD scheme [24], with the NSFD scheme (11). Observing the
numerical results, we conclude that the NSFD scheme (11) presents remark-
ably accurate in comparison with the other methods. In Tables 6 and 7,

Table 5: The absolute errors for β = 1 and γ = 0.01

x t ADM VIM DTM CN NSFD [24] Presented NSFD

0.05 2.4852E–06 2.4874E–06 2.4875E–06 3.7048E–07 3.5421E–10 2.6543E–14
0.1 0.1 4.9727E–06 4.9749E–06 4.9749E–06 4.0679E–07 5.2191E–10 3.9261E–14

1 .0 4.9743E–05 4.9749E–05 4.9749E–05 4.4552E–07 7.8134E–10 4.3048E–14

0.05 2.4763E–06 2.4875E–06 2.4874E–06 5.5746E–08 7.9198E–10 6.3115E–14
0.5 0.1 4.9638E–06 4.9749E–06 4.9749E–06 1.2894E–07 1.3305E–09 1.0499E–13

1.0 4.9738E–05 4.9749E–05 4.9749E–05 2.4749E–07 2.1718E–09 1.2556E–13

0.05 2.4673E–06 2.4874E–06 2.4874E–06 2.1847E–09 3.5492E–10 2.9874E–14
0.9 0.1 4.9548E–06 4.9749E–06 4.9749E–06 1.4873E–08 5.2275E–10 4.2973E–14

1.0 4.9728E–05 4.9788E–05 4.9749E–05 4.9497E–08 7.8230E–10 4.6822E–14
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Figure 3: The absolute errors between u(xj , tn) and Un
j for various space and time

stepsizes.

the numerical results of the presented NSFD scheme are compared with the
NSFD scheme [24] and MCB–DQM, FDS4, ADM, OHAM, GCG, ECG, ELG
methods in [16]. These comparisons show that the presented NSFD scheme
for various values of x and t with β = 1 and γ = 0.001 offers better results
than the others.

Table 8 shows comparison of the presented NSFD scheme with explicit
exponential finite difference method (EFDM) in [9] for various values of x and
t with β = 1 and γ = 0.001. According to the results presented in this table,
the presented NSFD scheme offers high accuracy for the numerical solutions
of the Huxley equation.

In Table 9, the numerical results of the meshless RBFs method in [11]
are compared with the presented NSFD scheme for various values of x and t
with γ = 0.001 and β = 1. The numerical results presented guaranteed the
effectiveness of the presented NSFD scheme.
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Table 6: Absolute errors for β = 1 and γ = 0.001

t x MCB-DQM FDS4 ADM OHAM Presented NSFD

0.1 1.0044E–08 2.4988E–08 1.8747E–07 2.4988E–08 1.8431E–18
0.05 0.5 2.3047E–08 2.4988E–08 1.8749E–07 2.4988E–08 4.3368E–18

0.9 1.0044E–08 2.4987E–08 1.8751E–07 2.4988E–08 1.8431E–18

0.1 1.4790E–08 4.9975E–08 3.7493E–07 4.9975E–08 2.9273E–18
0.1 0.5 3.8252E–08 4.9975E–08 3.7498E–07 4.9975E–08 7.2641E–18

0.9 1.4790E–08 4.9975E–08 3.7502E–07 4.9975E–08 2.9273E–18

0.1 2.2205E–08 4.9975E–07 3.7500E–06 4.9975E–07 4.2283E–18
1 0.5 6.2169E–08 4.9975E–07 3.7504E–06 4.9975E–07 1.1817E–17

0.9 2.2205E–08 4.9975E–07 3.7509E–06 4.9975E–07 4.3368E–18

Table 7: Absolute errors for β = 1 and γ = 0.001

t x GCG ECG ELG NSFD [24] Presented NSFD

0.1 1.0698E–08 1.0683E–08 9.2752E–09 3.5194E–13 1.8431E–18
0.05 0.5 9.2595E–09 9.2595E–09 9.2595E–09 7.8629E–13 4.3368E–18

0.9 7.8921E–09 7.8701E–09 9.2845E–09 3.5201E–13 1.8431E–18

0.1 2.3188E–08 2.3188E–08 2.3173E–08 5.2107E–13 2.9273E–18
0.1 0.5 2.1749E–08 2.1748E–08 2.1749E–08 1.3292E–12 7.2641E–18

0.9 2.0382E–08 2.0381E–08 2.0360E–08 5.2115E–13 2.9273E–18

0.1 2.4872E–07 2.4870E–07 2.4729E–07 1.3846E–12 4.2283E–18
1 0.5 2.4728E–07 2.4728E–07 2.4728E–07 2.1636E–12 1.1817E–17

0.9 2.4591E–07 2.4585E–07 2.4530E–07 7.7895E–13 4.3368E–18

6 Conclusions

In this paper, we present an exact finite-difference scheme for the Huxley
equation based on the method in Mickens papers. Moreover, we present
an NSFD scheme for the Huxley equation. We also provided analysis of
positivity, boundedness, consistency, stability, and convergence of the NSFD
scheme. The numerical results obtained by the scheme, compared to ADM,
VIM, DTM, CN, and NSFD [24] with the other methods, which reveal that
the NSFD scheme is significantly more effective and accurate than the other
methods in the literature.
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Table 8: The absolute errors for value of γ, x, and t with γ = 0.001 and β = 1

x t EFDM Presented NSFD

0.05 1.030307E–08 1.84314E–18

0.1 0.1 1.506294E–08 2.92734E–18
1 2.248771E–08 4.22838E–18

0.05 2.313697E–08 4.33680E–18

0.5 0.1 3.843952E–08 7.26415E–18
1 6.246539E–08 1.18178E–17

0.05 1.030307E–08 1.84314E–18

0.9 0.1 1.506294E–08 2.92734E–18
1 2.248771E–08 4.33680E–18

Table 9: The absolute errors for value of γ, x, and t with γ = 0.001 and β = 1

x t meshless RBFs method (MQ) Presented NSFD

0.1 0.0E–09 1.9E–18

0.05 0.5 1.0E–09 4.4E–18
0.9 1.0E–09 1.8E–18

0.1 1.0E–09 3.1E–18

0.1 0.5 0.0E–09 7.1E–18
0.9 0.0E–09 2.8E–18

0.1 1.0E–09 4.4E–18
1 0.5 0.0E–09 1.2E–17

0.9 1.0E–09 4.7E–18
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