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time complexity on tree networks to O(pn2). Hakimi [10] demonstrated that
the classical 1-median problem has nodal optimal solution, and Goldman [9]
presented a linear time algorithm to find the optimal solution. For the case
p = 2, an O(n log n) time algorithm was provided by Gavish and Sridhar
in [7].

Determining precise demand weight of each node may be impossible. For
example, the number of patients arising from different regions going into a
hospital cannot be predicted precisely. Therefore, it is desirable to treat
demand weights as random variables. Frank considered a probabilistic case,
in which the demand weights are random variables with arbitrary known
or estimated probability distributions, [5]. He discussed the median and
center problems on a network with independent random demand weights
and extended the classical 1-median problem to the maximum probability
absolute median (MPAM) problem. The MPAM problem seeks to find
a new facility maximizing the probability that the total weighted distances
from all nodes to the new facility is less than or equal to a given threshold.
He also defined a maximum probability center to maximize the probability
that the maximum weighted distance is less than a prespecified threshold
value. Later, the results for the maximum probability median were extended
by Frank to the case where demand weights are correlated normal random
variables, [6].

Berman and Wang [2] extended the problem to some single facility lo-
cation problems as maximum probability 1-median, 1-anti-median, 1-center,
and 1-anti-center problems with independent discrete random weights and
presented efficient algorithms to solve these problems. In [3], They also stud-
ied the p-facility location problem with maximum probability and formulated
it as a linear integer programming problem, then determined the solutions in
large-scaled networks by using the normal approximation.

Puga and Tancrez [16] studied a location-inventory problem for the de-
sign of large supply chain networks with uncertain demand and proposed a
heuristic algorithm to solve the problem. Bieniek [4] considered the single
source capacitated facility location problem with independent and identically
distributed random demands. The unified of a priori solution for the loca-
tions of facilities and for the allocation of customers to the operating facilities
was found.

The distances between nodes can also be considered as nondeterministic
parameters. The uncertainty about the lengths of the links of a network often
occurs when the lengths are measured in units of traveling times instead of
geographical distances. Mirchandani and Odoni studied the p-median prob-
lem when traveling times on the links are discrete random variables, [13].
The p-median problem with continuous random lengths of links, was studied
by Handler and Mirchandani, [11]. They formulated the problem for locating
p medians and provided an algorithm for the 1-median problem. The uncer-
tainty in link traveling times can also be considered in some other location
problems. Berman et al [1] studied the maximum covering location problem
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on a network with traveling time uncertainty represented by different travel-
ing time scenarios. The proposed models were applied to the analysis of the
location of fire stations in Toronto, Canada.

In this paper, a new case is proposed in which the weights of nodes and
the traveling times on links are both discrete independent random variables.
The problem is to find the location of the new facility in such a way the
expected sum of weighted distances is less than a prespecified value with
maximum probability. The problem is studied in both small and large-sized
networks. In Section 2, the problem formulation is stated and an expected
1-median with the maximum probability is defined. The solution approach
for small-sized networks is stated in Section 3, and a precise algorithm to get
the optimal solution is presented; then a numerical example is provided. In
Section 4, by using the normal approximation, the solution is determined in
large-sized networks and a numerical example is presented. Summary and
conclusions are stated in the last section.

2 Problem formulation

Let G = (N,E) be a network, where N is the set of nodes and E is the set
of links with |N | = n and |E| = m. The weight of each node vh ∈ N, h =
1, . . . , n is denoted by wh. Let the link connecting two nodes vi and vj and
its length be denoted by eij and lij , respectively. In a deterministic network,
the shortest distance between two points y, x ∈ G is denoted by d(y, x). Let
x be a point on the link eij at distance x from node vi; then the shortest
distance between x and an arbitrary point y is given as follows:

d(y, x) = min{d(y, vi) + x, d(y, vj) + lij − x}. (1)

Hence the shortest distance from point y to x ∈ eij is covered via node vi
or node vj , whichever that is shorter. In a stochastic network, each link eij
has a deterministic geographical length lij , that is a real positive fixed value.
Moreover the traveling time along the link eij is a random variable dependent
on the traveling speed. In this case, the distances are computed in terms of
traveling times. It is clear that the traveling speed along each link may be
changed under such various conditions as traffic congestion.

To introduce the traveling time of a link, we use the inverse of traveling
speed. Let the traveling time and inverse of traveling speed along the link
eij be denoted by Tij and SPij , respectively. If SPij is a discrete random
variable, Tij is also a discrete random variable equal to SPij lij . In this
paper, the random values for the inverse of traveling speed of the link eij
are considered to be independent from the other links and chosen from the

set {sp1ij , sp2ij , . . . , sp
Uij

ij } , where Uij is the number of all states of traveling
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speed in the link eij . The relevant probability to spuij on the link eij is Pu
ij

for u = 1, . . . , Uij .
Because of random values for traveling times, the network G gets into

different state-based networks Gr. Let Gstate = {Gr, r = 1, . . . , R}, where
R =

∏
eij∈E Uij . We define

WDr(x) =
n∑

h=1

whdr(vh, x), r = 1, . . . , R (2)

as the total weighted traveling time from all nodes to the point x in the rth
state Gr ∈ Gstate, in which dr(vh, x) is the distance between vh and x ∈ Gr,
that is determined by equation (1) noting that the traveling time of each
link eij ∈ E is computed by sprij lij . Then the expected 1-median problem is
defined as below.

Definition 1. The expected 1-median problem in network G with probabilistic
distances seeks to find a point x which minimizes

E(WD(x)) =
R∑

r=1

PrWDr(x), (3)

where WD(x) is the random variable denotes the weighted traveling time from
all nodes to the point x having the values WDr(x), r = 1, . . . , R computed
by expression (2), and Pr is the probability of the rth state in set Gstate. The
function E(WD(x)) is known as the expected 1-median function.

In continue, an independent discrete random weight Wh is allocated for
each node vh ∈ N . The discrete values of Wh are denoted by wh[k], k =
1, . . . ,Kh, where Kh is the number of different situations for the weight of
node vh ∈ N and it is assumed that wh[k] ≤ wh[k+1] for k = 1, . . . ,Kh − 1.
The probability corresponding to wh[k] is denoted by P ′

h[k], k = 1, . . . ,Kh.
Let T be a preselected admissible threshold. The proposed objective function
is maximizing the probability that the expected 1-median function (3) does
not exceed the given threshold T . Here T is an upper level, which is given
by the decision maker.

Definition 2. Let the weights of nodes and the lengths of links be independent
discrete random variables with known probabilities. A point x ∈ G is an
expected 1-median with the maximum probability if it maximizes the following
probabilistic objective function:

P ′(
R∑

r=1

PrWDr(x) ≤ T ) (4)

and consequently
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P ′(

R∑
r=1

Pr

n∑
h=1

Whdr(vh, x) ≤ T ),

where P ′(.) is the probability corresponding to the random weight vector of
nodes.

The expected 1-median with maximum probability is NP -hard on general
networks; see [2].

2.1 Calculating a lower bound

In this section, we provide a lower bound approximation for the objective
function (4) at each point x of G. The lower bound can be calculated as an
expected function, which would be readily calculated in comparison with the
probabilistic objective function (4); see Lemma 1.

Lemma 1. If µh =
∑Kh

k=1 wh[k]P
′
h[k], h = 1, . . . , n is the expected value of

Wh, then the probability P ′(
∑R

r=1 PrWDr(x) < T ) is greater than or equal

to 1−
∑R

r=1 Pr

∑n
h=1

µh

T dr(vh, x).

Proof. Based on Markov’s inequality, if X is a nonnegative random variable

and a ≥ 0 , then P (X ≥ a) ≤ E(X)

a
or in other words P (X < a) ≥ 1−E(X)

a
,

where E(X) is the expected value of X. Therefore, Since W1, . . . ,Wn are
independent random variables, the following inequalities hold:

P ′(
R∑

r=1

Pr

n∑
h=1

Whdr(vh, x) < T ) ≥ 1− E(
R∑

r=1

Pr

n∑
h=1

Wh

T
dr(vh, x))

= 1−
R∑

r=1

Pr

n∑
h=1

E(Wh)

T
dr(vh, x)

= 1−
R∑

r=1

Pr

n∑
h=1

µh

T
dr(vh, x),

which completes the proof.

Lemma 1 determines a lower bound approximation for the function (4),
when a given point is available as the solution for the expected 1-median with
maximum probability problem. This helps to correct the available value of
T and estimates a more reasonable amount to the preselected threshold. To
determine the solution of the expected 1-median with maximum probability,
we define the antipode points which are originally introduced by Frank, [6].
Using the antipode points, we bring forward the state-based primary regions
in links, which are useful to estimate the distances; see [2].
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Definition 3. For each node vh ∈ N and each state r, r = 1, . . . , R, the point
zijr,h on the link eij is called an antipode associated with the node vh in state
r, if the following equation holds:

zijr,hsp
r
ij + dr(vh, vi) = (lij − zijr,h)sp

r
ij + dr(vh, vj).

An antipode zijr,h on the link eij provides two regions [vi, z
ij
r,h] and [zijr,h, vj ],

where the distances between the points on the link eij in each of these regions
and the node vh in state r can be distinctly computed. Considering all
antipode points and gathering them up together yield some basic intervals
on eij , which we call them the state-based primary regions; see Definition 4.

Definition 4. The set of all points between two consecutive antipodes zijr′,l
and zijr′′,k in the link eij associated with the node vl ∈ N in the state r′ and
node vk ∈ N in the state r′′, (r′, r′′ ∈ {1, . . . , R}) is called a state-based
primary region [zijr′,l, z

ij
r′′,k].

Recall that the state-based primary regions are special with a remarkable
property that the distances from any node vh in each state r to all points
x ∈ [zijr′,l, z

ij
r′′,k] are computed either by xsprij + dr(vh, vi) or (lij − x)sprij +

dr(vh, vj) and it remains unchanged throughout this region. By using this
property, the 1-median objective function in the state r, that is, WDr(x) =∑n

h=1 whdr(vh, x), in each state-based primary region can be computed.

Next, a reformulation of the expected 1-median problem with maximum
probability is given. Since the weights of nodes are discrete random variables,
there are different situations in network. Let the set of all situations for
the vector of weights be denoted by Wstate = {W s|W s = (ws

1, . . . , w
s
n), s =

1, . . . , S}, where S =
∏n

h=1 Kh and W s denotes the vector of weights in
situation s. Therefore, the weight of node vh, h = 1, . . . , n, in situation s,
s = 1, . . . , S and its probability are denoted by ws

h and P
′s
h , respectively.

For all W s ∈ Wstate and x ∈ G, the following characterization function is
provided to calculate the objective function (4):

YW s(x) =

{
1,

∑R
r=1 Pr

∑n
h=1 w

s
hdr(vh, x) ≤ T,

0 otherwise.
(5)

By applying this characterization function, the objective function (4)
would be rewritten as follows:

max
x∈G

f(x) =
S∑

s=1

YW s(x)P ′
W s , (6)

where P ′
W s =

∏
vh∈N P

′s
h ; see [2].
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3 The solution approach

In this section, two lemmas are provided to determine the optimal solution of
the expected 1-median problem with maximum probability when the thresh-
old T is selected from some regular intervals. Furthermore, when T is selected
out of these regular intervals, an algorithm is represented to find the opti-
mal solution; see [2]. The 1-anti-median and 1-median problems are used in
Lemmas 2 and 3 to indicate some regular intervals for threshold T , where
all points in the network G are optimal with probabilistic objective function
equal to 1 and zero, respectively. In 1-anti-median problem, the purpose is
to find the location of a facility in the network, where the total weighted
distances from all nodes to the facility is maximized. The point x is 1-anti-
median, if it maximizes

∑n
h=1 whd(vh, x), where the weights and distances

are fixed values. For more details and the solution approaches, see [14].
Let xr be the optimal solution to the following 1-deterministic-anti-

median problem:

max
x∈Gr

n∑
h=1

wh[Kh]dr(vh, x),

for r = 1, . . . , R, where wh[Kh] is the largest probabilistic weight corre-
sponding to node vh. Also let x′

r be the optimal solution to the following
1-deterministic-median problem:

min
x∈Gr

n∑
h=1

wh[1]dr(vh, x),

for r = 1, . . . , R, where wh[1] is the smallest probabilistic weight correspond-
ing to node vh. Lemma 2 provides an upper level value to the threshold T ,
while Lemma 3 provides a lower level value to it. If T is selected greater
than the estimated upper level or smaller than the estimated lower level,
then the maximum probability expected 1-median solution would be readily
determined.

Lemma 2. If A = argmaxr=1,...,R

∑n
h=1 wh[Kh]dr(vh, xr) while xA is the

corresponding 1-deterministic-anti-median solution to the following problem:

max
x∈GA

n∑
h=1

wh[Kh]dA(vh, x)

and T is given in such a way to satisfy the constraint

n∑
h=1

wh[Kh]dA(vh, xA) ≤ T,

then each point x ∈ G is the expected 1-median solution with the maximum
probability equal to 1.
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Proof. The weights of the nodes vh ∈ N are assumed to be arranged in
ascending order; therefore, the following inequalities hold:

wh[1] < wh[2] < · · · < wh[Kh].

Considering the above inequalities together with the definition of xA yields
the following inequalities for an arbitrary x:

R∑
r=1

Pr

n∑
h=1

wh[k]dr(vh, x)

≤
R∑

r=1

Pr

n∑
h=1

wh[Kh]dr(vh, x) ≤
R∑

r=1

Pr

n∑
h=1

wh[Kh]dr(vh, xr)

≤
R∑

r=1

Pr

n∑
h=1

wh[Kh]dA(vh, xA) =

n∑
h=1

wh[Kh]dA(vh, xA) ≤ T.

Hence YW s(x) = 1 for all W s ∈ Wstate and x ∈ G; therefore, the objective
function value at every point x ∈ G is equal to 1, that is, all x ∈ G are
optimal.

Lemma 3. Let B = argminr=1,...,R

∑n
h=1 wh[1]dr(vh, x

′
r), where x′

B is the
1-deterministic-median solution to the following problem:

min
x∈GB

n∑
h=1

wh[1]dB(vh, x).

If T <
∑n

h=1 wh[1]dB(vh, x
′
B), then all points x ∈ G are optimal to the

expected 1-median problem with maximum probability equal to zero.

Proof. Considering the definitions of x′
B , the following inequalities hold:

T <
n∑

h=1

wh[1]dB(vh, x
′
B) =

R∑
r=1

Pr

n∑
h=1

wh[1]dB(vh, x
′
B)

≤
R∑

r=1

Pr

n∑
h=1

wh[1]dr(vh, x
′
r) ≤

R∑
r=1

Pr

n∑
h=1

wh[1]dr(vh, x)

≤
R∑

r=1

Pr

n∑
h=1

wh[k]dr(vh, x).

The foregoing inequalities yield YW s(x) = 0 for all x ∈ G and W s ∈ Wstate;
therefore, all points x ∈ G are optimal with probability equal to zero.

Lemma 4 provides a sufficient condition to ignore some links, which along
them, the characterization function (5) is equal to zero.
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Lemma 4. Let vi and vj be two adjacent nodes, where YW s(vi) = YW s(vj) =
0, for some W s ∈ Wstate; then YW s(x) is also equal to zero for all x ∈ eij.

Proof. By the assumption, YW s(vi) = YW s(vj) = 0; therefore, the following
inequalities hold:

R∑
r=1

Pr

n∑
h=1

ws
hdr(vh, vi) > T,

R∑
r=1

Pr

n∑
h=1

ws
hdr(vh, vj) > T.

Furthermore, each function dr(vh, x) is concave in each link eij ; see Figure
1. Therefore, the function:

R∑
r=1

Pr

n∑
h=1

ws
hdr(vh, x)

is concave on the link eij ; see [14]. This yields the inequality

R∑
r=1

Pr

n∑
h=1

ws
hdr(vh, x) > T

for all x ∈ eij and consequently YW s(x) = 0, which completes the proof.

Figure 1: The figure of function dr(vh, x) on the link eij .

Let the threshold T be selected between the upper and lower bound values
provided by Lemmas 2 and 3,

n∑
h=1

wh[1]dB(vh, x
′
B) ≤ T <

n∑
h=1

wh[Kh]dA(vh, xA).
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In this case, the solution of the expected 1-median problem with maximum
probability would be determined by defining some new points x in network
links, where the characterization function YW s(x) for the weight vectors
W s ∈ Wstate would change. First some special points in stated-based pri-
mary regions, called jump-points, are specified as introduced in [2]. Then it is
shown the objective function (6) would be changed only at the jump-points.
The shortest path from the points in a state-based primary region on the
link eij to each node vh would be obtained through the node vi or vj without
switching to the other node. Hence, the value of objective function (6) can
be readily computed in all jump-points in each state-based primary region.
Therefore, the optimal solution in each primary region would be determined.
By comparing all solutions in the state-based primary regions together, the
local optimal solution in each link would be obtained.

Let [zijr′,l, z
ij
r′′,k] be a state-based primary region associated with the nodes

l and k in the link eij in states r′ and r′′, respectively. Then the set of nodes
N and the set of states corresponding to the traveling times of links, Gstate,
can be partitioned into two sets L−

r′ and K+
r′′ as follows:

L−
r′ = {(h, r)|zijr,h ≤ zijr′,l}, K+

r′′ = {(h, r)|zijr,h ≥ zijr′′,k}.

Indeed, the set L−
r′ includes the pair indices (h, r), where h corresponds to

the node vh ∈ N and r corresponds to Gr ∈ Gstate, so that the position
of antipode zijr,h in the link eij is before the position of the antipode zijr′,l
associated with the node vl in the state r′. The set K+

r′′ is defined similarly.

Therefore, for (h, r) ∈ L−
r′ , the distance between any point x ∈ [zijr′,l, z

ij
r′′,k]

and the node vh in the state r is determined through the node vj , that is,
dr(vh, x) = sprij(lij −x)+dr(vh, vj), where sp

r
ij is the inverse of the traveling

speed on the link eij in the state r. The corresponding value for dr(vh, x),
where (h, r) ∈ K+

r′′ , would be determined through node vi in a similar manner.

As an example, consider the small network shown in Figure 2 with three
state-based networks G1, G2, and G3 with spr12 = 0.5, spr14 = 0.3, spr23 =
0.3, spr24 = 0.5 for r = 1, 2, 3 and sp113 = sp134 = 0.2, sp213 = sp234 = 0.3
and sp313 = sp334 = 0.4. Consider the link e12, then the set of antipodes
associated with the node 3 is {z121,3, z122,3, z123,3} = {3.7, 2.7, 2.7} and with the
node 4 is {z121,4, z122,4, z123,4} = {3.4, 4.1, 4.8}; see Figure 2. For the primary

region [z122,3, z
12
1,4] = [2.7, 3.4], we have L−

2 = {(2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}
and K+

1 = {(1, 1), (1, 2), (1, 3), (3, 1) (4, 1), (4, 2), (4, 3)}. Note that for all
states r, the antipodes corresponding to the nodes 1 and 2, are the points
l12 = 6 and 0, respectively. Now consider one of the weight vectors W s ∈
Wstate with components ws

h, h = 1, . . . , n. So for any point x ∈ [zijr′,l, z
ij
r′′,k],

the following relationships hold [2]:∑
r

Pr

∑
h

ws
hdr(vh, x) ≤ T
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Figure 2: The state-based primary regions in the link e12 in a small-sized network.

⇒
∑

(r,h)∈L−
r′

Prw
s
hdr(vh, x) +

∑
(r,h)∈K+

r′′

Prw
s
hdr(vh, x) ≤ T

or∑
(r,h)∈L−

r′

Prw
s
h(dr(vh, vj) + sprij(lij − x)) +

∑
(r,h)∈K+

r′′

Prw
s
h(dr(vh, vi) + sprijx) ≤ T

⇒
∑

(r,h)∈L−
r′

Prw
s
h(dr(vh, vj) + sprij lij) +

∑
(r,h)∈K+

r′′

Prw
s
hdr(vh, vi)

+ (
∑

(h,r)∈K+

r′′

Prw
s
hsp

r
ij −

∑
(h,r)∈L−

r′

Prw
s
hsp

r
ij)x ≤ T.

(7)

Definition 5. If inequality (7) is binding at a point xW s

, then xW s

is called
a jump-point with respect to weight vector W s ∈ Wstate.

If we set∑
(r,h)∈L−

r′

Prw
s
h(dr(vh, vj)+sprij lij) = AW s

r′,L,
∑

(r,h)∈K+

r′′

Prw
s
hdr(vh, vi) = BW s

r′′,K

and ∑
(h,r)∈K+

r′′

Prw
s
hsp

r
ij −

∑
(h,r)∈L−

r′

Prw
s
hsp

r
ij = CW s

(r′,L),(r′′,K),

then

xW s

=
T −AW s

r′,L −BW s

r′′,K

CW s

(r′,L),(r′′,K)

.
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Let J be the set of all jump-points in state-based primary region [zijr′,l, z
ij
r′′,k]

unified with two boundary points {zijr′,l, z
ij
r′′,k}.

Lemma 5. The expected 1-median objective function would change only in
the points belonging to the set J .

Proof. The objective function value would change in some point x, if the
value of YW s(x) is changes from 0 to 1 or vice versa for some vectors W s.
This guarantees that these points belong to the set J .

If a local optimal solution in a state-based primary region in some links is
given, Lemma 6 provides some optimal intervals in this region. The coefficient
of variable x in inequality (7) is a criterion, which determines the optimal
intervals; for more details see [2].

Lemma 6. Let xW s ∈ [zijr′,l, z
ij
r′′,k] be the local optimal jump-point while yW

1

1

and yW
2

2 are the left and right consecutive jump-points to xW s

, respectively.
Then the optimal interval in [zijr′,l, z

ij
r′′,k] is determined as follows:

1. If CW s

(r′,L),(r′′,K) ≥ 0 and CW 1

(r′,L),(r′′,K) ≤ 0, then the interval [yW
1

1 , xW s

]
is optimal.

2. If CW s

(r′,L),(r′′,K) ≤ 0 and CW 2

(r′,L),(r′′,K) ≥ 0, then the interval [xW s

, yW
2

2 ]
is optimal.

3. If CW s

(r′,L),(r′′,K) ≥ 0 and xW s

is the first jump-point after zijr′,L, then the

interval (zijr′,L, x
W s

] is optimal, where the starting point of the interval
can be distinctly verified.

4. If CW s

(r′,L),(r′′,K) ≤ 0 and xW s

is the last jump-point before zijr′′,K , then

the interval [xW s

, zijr′′,K) is optimal, where the end point of the interval
can be distinctly verified.

Proof. The coefficient of variable x in inequality (7) is CW s

(r′,L),(r′′,K). If

CW s

(r′,L),(r′′,K) ≥ 0 and CW 1

(r′,L),(r′′,K) ≤ 0, then YW s(x) = 1 for all x ≤ xW s

and YW 1(x) = 1 for all x ≥ yW
1

1 . For other vectors W ′, which their

respective jump-points x lie outside the interval [yW
1

1 ,xW s

], the values of

YW ′(x) remain unchanged in this interval. Note that if CW 1

(r′,L),(r′′,K) > 0 and

CW s

(r′,L),(r′′,K) > 0, then YW 1(xW s

) = 0. Therefore, f(xW s

) < f(yW
1

1 ), which

contradicts the optimality of point xW s

. The other cases can be proved
similarly. Note that the rest of states for CW s

(r′,L),(r′′,K), C
W 1

(r′,L),(r′′,K), and

CW 2

(r′,L),(r′′,K) are impossible, since they contradict the optimality of point

xW s

.
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3.1 The Algorithm: finding a global optimal solution

In this section, Algorithm 1 is represented to describe that how a local opti-
mal solution can be obtained on an arbitrary link and consequently a global
optimal solution is determined. Recall that if two arbitrary adjacent nodes,
say vi and vj , have the same zero objective function values, then all points on
the link eij have also objective values equal to zero. Therefore, these edges
should be ignored in the proposed algorithm. In other side, as described in
Lemmas 2 and 3, the solution can be determined directly for spacial values of
T . The idea of Algorithm 1 is to specify the state-based primary regions on
all links and obtain the local optimal solution in all regions. Hence, Gstate the
set of all state-based situations for the network G, , and the set of all weight
situations, Wstate, are determined. Then the primary regions are located
by computing the antipodes while the set of jump-points are determined in
each primary region, as well. The corresponding value of the objective func-
tion (6) is estimated for all jump-points x by evaluating YW s(x) for vectors
W s ∈ Wstate. By comparing these solutions, the optimal solution in each
primary region and consequently on each link would be determined. Finally,
the global optimal solution in the network would be determined by compar-
ing the local optimal solutions on all links, while the optimal regions are fully
specified by Lemma 6.

In the represented algorithm, the maximum number of state-based pri-
mary regions in each link is (n − 2)R + 1 and the maximum number of
jump-points in each link is S((n−2)R+1), where S and R are the number of
states for the weights of nodes and the traveling times of edges, respectively.
To specify the solution, the values of YW s , s = 1, . . . , S for each jump-point
should be estimated. Therefore, if any link is not ignored by Lemma 4, in the
worst case, the time of algorithm in network would be mS2((n − 2)R + 1).
This time would be so long, particularly for large-sized networks. In section
5, we propose a method to solve the problem in large-sized networks without
using the Algorithm 1.

3.2 Numerical example

In the following, a numerical example is provided. The optimal solutions are
estimated for different values of threshold T by performing the steps of Algo-
rithm 1 in MATLAB R2014a, and the sensitivity analysis for different values
of weights is proposed. Using Lemmas 2 and 3, some regular intervals for
threshold T are introduced, where the optimal solutions along them would
be readily obtained.

Example 1. In this example, we study an squared network given in Figure
3 with 25 nodes and 40 links. The lengths of the links have been written next
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to the links while the weights of the nodes with their relevant probabilities
are shown in Table 1. The traveling speeds in different states for each link
eij with their relevant probabilities are given in Table 2.

Algorithm 1 Determining the expected 1-median with maximum probabil-
ity in the link eij

1: prob-the deterministicofsolutionDetermine the
lems minr=1,...,R minx′∈Gr

∑n
h=1 wh[1]dr(vh, x

′) and
maxr=1,...,R maxx∈Gr

∑n
h=1 wh[Kh]dr(vh, x), set their optimal val-

ues as L and U , respectively. If T < L or T ≥ U , then the optimal
solutions are determined by Lemmas 3 and 2, respectively. Otherwise go
to step (2).

2: Consider the set of all state-based situations for the networkG asGstate =
{Gr, r = 1, . . . , R} in which R =

∏
eij∈E Uij with relevant probabilities

Pr =
∏

eij∈E P r
ij , where P r

ij is the probability that the link eij has the

traveling time dr(vi, vj) = sprij lij .
3: Arrange the demand weight situations in the set Wstate = {W s| W s =

(ws
1, . . . , w

s
n), s = 1, . . . , S} with relevant probabilities P ′

W s =
∏

vh∈N P
′s
h

for s = 1, . . . , S.
4: Determine and sort the set of Zij = {zijr,h|h = 1, . . . , n, h ̸= ri, j, =

1, . . . , R} ∪ {0, lij} on the link eij ∈ E in ascending order. Rename the
members of Zij as zk, k = 1, . . . , |Zij |.

5: Set W ′
state = Wstate\{W s|YW s(vi) = YW s(vj) = 0} and k = 1.

6: Determine the state-based primary regions [zk, zk+1], where zk, zk+1 ∈
Zij , and the jump-point set Jk = {xk

d|xk
d = xW s ∈

[zk, zk+1]for some vector W s ∈ W ′
state, d = 1, . . . , D}, where D = |Jk|.

Set q = 1, d = 1 and f(xk
d) = 0.

7: If YW q (xk
d) = 1, where W q is the qth member of W ′

state, set f(xk
d) =

f(xk
d) + P ′

W q , else go to step (8).
8: Set q = q + 1. If q ≤ |W ′

state|, then go to step (7), else set d = d+ 1 and
go to step (9).

9: If d ≤ D, set f(xk
d) = 0, q = 1, and go to step (7), else go to step (10).

10: Set xk
opt = argmaxd f(x

k
d).

11: Set k = k + 1, if k ≤ |Zij | − 1, go to step (6), else go to step (12).
12: Set xeij = argmaxk=1,...,|Zij |f(xopt

k ).

The upper and lower bound values provided by Lemmas 2 and 3 are
5716.435 and 310.2833, respectively. Therefore, if T ≥ 5716.435 or T <
310.2833, then all points of network G are optimal with probabilities equal
to one and zero, respectively. In addition, using the proposed algorithm, it
can be numerically verified that, for values of T ≤ 1050 and T ≥ 1900, the
optimal objective function value is equal to zero and one, respectively.

To verify Algorithm 1 in details, we consider the threshold T = 1100. By
applying Lemma 4, only the links e7,12, e8,13, e11,12, e12,13, e12,17, e13,14 and
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Figure 3: A squared network with 25 nodes.

Table 1: The weights of nodes in different states
nodes 1 2 3 4 5 6 7 8 9 10 11 12 13
state 1 75 35 33 59 47 57 56 72 23 86 78 62 53
state 2 69 68 18 88 74 54 28 5 90 90 40 50 96
state 3 44 36 4 67 9 50 57 25 72 41 32 55 4
state 4 47 94 57 28 80 43 82 27 7 38 50 78 39
state 5 75 28 33 76 43 33 53 72 60 44 41 15 68
nodes 14 15 16 17 18 19 20 21 22 23 24 25 Probability
state 1 82 18 51 75 48 27 72 8 32 46 74 4 0.2
state 2 77 18 10 54 6 9 25 88 51 1 66 73 0.25
state 3 57 6 19 16 69 23 41 27 56 51 63 62 0.15
state 4 101 32 38 97 107 46 90 68 7 28 24 87 0.1
state 5 47 17 36 9 57 29 58 44 48 66 72 48 0.3

Table 2: The different traveling speeds

State 1 2 3 4 5 6
link traveling speed 100 + i + j 70 + i + j 50 + i + j 40 + i + j 80 + i + j 90 + i + j

probability 0.15 0.2 0.1 0.25 0.23 0.07
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e13,18 have to be searched for state s = 3 and the other states s = 1, 2, 4, 5 as
well as the other links would be ignored. We follow the steps of algorithm for
links e12,13 and e13,14. The antipodes of the link e12,13 are sorted ascending
according to their distance from vertex 12, as follows:

Z12,13 = {0, 5.5061, 5.6330, 5.8108, 5.8753, 5.9289, 5.9742, 9}.

The jump-points obtained by equality (7) are all outside the primary regions
and the only jump-points of the link e12,13 would be its antipodes. Computing

the values of
∑6

r=1 Pr

∑25
h=1 w

3
hdr(vh, zk) for zk ∈ Z12,13, k = 1, . . . , 8 results

in YW 3(zk) = 1. So all points in the link e12,13 are optimal with the objective
function value equals to 0.15. The other evaluated link is e13,14, where its
antipode set is

Z13,14 = {0, 1.5085, 1.6971, 1.9164, 2.1749, 2.8602, 3.3285, 3.8673, 5.3977,

7.4310, 8.1409, 8.7211, 9.2043, 33.5780, 34.0291, 34.6129,

34.8126, 34.9741, 35.1074, 44.9147, 45.7261, 45.7886, 46.9351,

46.9441, 47.4125, 47.8139, 48.0984, 48.1616, 48.2600, 48.5373,

48.6747, 48.9968, 49.1737, 49.2538, 49.4117,

49.6128, 49.7849, 69.6898, 71.4483, 72}

Again, the jump-points obtained by equality (7) are outside the primary
regions and the set of jump-points includes just the antipodes. For antipodes

{0, 1.5085, 1.6971, 1.9164, 2.1749, 2.8602, 3.3285, 3.8673, 5.3977} ⊂ Z13,14

the value of YW 3 is equal to 1. Therefore, the optimal interval obtained by
Lemma 6 is [0 , 5.3977] with optimal probability 0.15. Using Algorithm 1, the
solutions for different values of T with their objective (Obj) function values
are determined and inserted in Table 3. The obtained optimal intervals (Int)
in corresponding links with running times (t) are also reported. Moreover,
the variations of the objective function (4) with respect to different values of
T are released in Figure 4.

Next, we develop a sensitivity analysis to the solutions by certain pertur-
bations in the weights of nodes and traveling speeds of links. The weights of
all nodes are assumed to be equal to 75 in all 5 states with relevant probabil-
ities {0.55, 0.1, 0.1, 0.1, 0.15} while the lengths of all links are considered
equal to 50. In addition, 6 states are considered for links’ traveling speeds that
are assumed to be the same for all links equal to {100, 70, 50, 40, 80, 90}
in states r = 1, . . . , 6 with relevant probabilities given in Table 2. The weight
of node 1 is multiplied by 100 in the first state, that is, w1

1 = 7500. This
alteration results in the solution of maximum probability expected 1-median
problem for T = 3700 being attained in node 13 with probability 0.45. More-
over, YW s(x∗) = 1 for the states s = 2, 3, 4, 5 and YW 1(x∗) = 0, where x∗
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denotes the optimal solution, also the interval [0, 6.8090] in the link e13,18 is
optimal.

By increasing the value of T from T = 3700 to T = 6000, the optimal
value of the objective function remains unchanged while the optimal solutions
would be spread in the network. For T = 6000, all nodes except 1, 5, 21
and 25 lie in the optimal solution set. If T = 6100, only the node 1 is
optimal with objective function value 1. In this case, the value of T is larger
than the expected sum of weighted distances from all nodes to node 1 in all
states s = 1, 2, 3, 4, 5. Notice that if the median is in node 1, the expected
sum of weighted distances from all nodes to node 1 is the same in all states
s = 1, . . . , 5.

Next, we multiply the weight of node 25 in state 5 by 100 while the other
information remain unchanged. For T = 3700, . . . , 6000, the optimal value
of the objective function is 0.3. The solution for T = 3700 is node 13, by
increasing the value of T to T = 6000 the value of optimal probability does
not change but the number of optimal points is increased. For T = 6000 all
nodes expect 1, 5, 21 and 25 lie in the optimal points’ set. For T = 6100
the optimal probability is changed to 0.85 whereas the optimal solution set
is reduced to node 1.

If the probability of the first and fifth states are changed together, that
is, P ′

W 1 = 0.15 and P ′
W 5 = 0.55, then the solution would be in the last node

with optimal probability 0.85. Also, if the first and the fifth states of nodes’
weights have just the same probability equal to 0.35, then for T = 6100, both
nodes 1 and 25 would be optimal with optimal probability 0.65.

Figure 4: Variations of objective function (4) for different values of T
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4 Central limit theorem

In this section, the expected 1-median problem with maximum probability in
the large-sized networks is considered. Considering all state-based primary
regions, determining the jump-points, and finding the value of objective func-
tion in all of them make a large number of computations to be done that
practically is useless. Therefore, we state an approximation method, which
provides a near optimal solution to the expected 1-median with maximum
probability, the approach proposed in [3].

Let the mean and variance of Wh, which is the independent discrete ran-
dom weight of node vh ∈ N , be denoted by µh and σ2

h, respectively. Using
Lemma 7, the mean and variance of term

∑
r=1,...,R Pr

∑
h=1,...,n Whdr(vh, x)

are determined. Then by applying the central limit theorem, the problem is
reduced to a nonlinear fractional programming problem.

Lemma 7. Based on the central limit theorem, the term∑
r=1,...,R Pr

∑
h=1,...,n Whdr(vh, x) in large-sized networks has the normal

distribution with the expected mean value

µEWD =
∑

r=1,...,R

Pr

∑
h=1,...,n

µhdr(vh, x)

and variance σ2
EWD =

∑
r=1,...,R P 2

r

∑
h=1,...,n σ

2
hd

2
r(vh, x).

Therefore,

∑
r=1,...,R Pr

∑
h=1,...,n Whdr(vh, x)− µEWD

σEWD
∼ N(0, 1), which

yields the following:

P ′(
∑

r=1,...,R

Pr

∑
h=1,...,n

Whdr(vh, x) ≤ T )

= P ′(

∑
r=1,...,R Pr

∑
h=1,...,N Whdr(vh, x)− µEWD

σEWD
≤ T − µEWD

σEWD
)

= ϕ(
T − µEWD

σEWD
),

where ϕ is the cumulative distribution function of the standard normal dis-
tribution. By considering the ascending property of ϕ, the main problem can
be transformed into

max
x

T −
∑

r=1,...,R Pr

∑
h=1,...,n µhdr(vh, x)√∑

r=1,...,R P 2
r

∑
h=1,...,n σ

2
hd

2
r(vh, x)

. (8)

The above nonlinear fractional programming problem can be solved by
using the existed approaches such as parametric or direct methods; see [17].
But here we use a method that considers the problem in three cases. Let x∗
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be the optimal solution to the problem (8); then three cases can be occurred
associated with T − µEWD(x∗) that are discussed in details below; see [3].

1. First case: T − µEWD(x∗) > 0. Setting T − µEWD(x) =
1

γ
, the

problem is transformed into the following problem:

min
x

∑
r=1,...,R

P 2
r

∑
h=1,...,n

σ2
hγ

2d2r(vh, x) (9)

s.t. Tγ −
∑

r=1,...,R

Pr

∑
h=1,...,n

µhγdr(vh, x) = 1.

γ ≥ 0

To solve the above problem, the optimal point x in each state-based
primary region should be determined. Let [zijr′,l, z

ij
r′′,k] be a state-based

primary region associated with the nodes l and k in states r′ and r′′

in the link eij , respectively. Then for all x ∈ [zijr′,l, z
ij
r′′,k] and an ar-

bitrary state r and node vh, either dr(vh, x) = dr(vh, vi) + sprijx or
dr(vh, x) = dr(vh, vj) + sprij(lij − x). Substituting dr(vh, x) in problem

(9) and setting γx = x
′
, the problem can be rewritten as a second order

problem with one linear constraint in each primary region, which can
be solved by using such nonlinear convex programming algorithms as
Lagrangian dual method or linearization approaches; see [15]. Compar-
ing the objective function values of the optimal solutions in all intervals
yields the global optimal solution in each link and consequently in the
network.

2. Second case: T − µEWD(x∗) = 0. The second case is considered
when the first one is infeasible. In this case, it is sufficient to solve the
following problem:

min
x

∑
r=1,...,R

Pr

∑
h=1,...,n

µhdr(vh, x). (10)

Using the concavity of the objective function as mentioned in the proof
of Lemma 4, this problem has at least a nodal optimal solution. So it is
sufficient to search among the nodes of the network. If the optimal value
of the objective function (10) equals to T , then the obtained solution
is optimal to the fractional programming problem (8) with the optimal
value equal to zero. Otherwise, the third case should be considered.

3. Third case: T−µEWD(x∗) < 0. If the first and second cases are infea-
sible, this case is considered similar to the first one, but the constraint
is changed as follows:
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r=1,...,R

Pr

∑
h=1,...,n

µhγdr(vh, x)− Tγ = 1,

and the objective function (9) should be maximized. The local op-
timal solutions of the resulted problem can also be obtained in each
primary region by using such nonlinear programming algorithms as the
Lagrangian dual method or linearization approaches; see [15].

Example 2. To illustrate the efficiency of the proposed method based on cen-
tral limit theorem, a test problem from the address (http : //people.brunel.
ac.uk/mastjjb/jeb/info.html) with 100 nodes and 396 links is considered.
Four scenarios with probabilities {0.1, 0.25, 0.45, 0.2} for the network links’
traveling speeds have been considered. For each link eij the traveling speed
in state r = 1, 2, 3, 4 is assumed as sprij = (r + i+ j)0.25.

We have considered 1000 different situations for vector of weights with
discrete uniform distribution and each of components for random weights of
nodes are taken from the interval [0, 850]. Using the calculated mean and
variance for Wh, h = 1, . . . , 100, the proposed method based on central limit
theorem is applied for different values of threshold T = 104(1300 + 50i); i =
1, . . . , 10. In each case, the resulted nonlinear problems are solved by using
the interior-point solver in Matlab R2014a, and the best optimal solutions are
determined. Then, the optimality of the solutions is verified by comparing

the values of estimated objective function ϕ
(T − µEWD(x∗)

σEWD(x∗)

)
by the central

limit theorem with the values obtained from the objective function (6) for
the obtained solutions x∗; see Figure 5.

In addition, the variations of the estimated relative error

|ϕ(T − µEWD(x∗)

σEWD(x∗)
)− f(x∗)|

f(x∗)
, where f(x∗) is computed by (6) for the optimal

solution x∗ and T is selected from the set {104(1300 + 50i); i = 1, . . . , 10}
is depicted in Figure 6. As it is seen, increasing the value of T results in
increasing the objective function optimal value and therefore decreasing the
relative error.
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Figure 5: Comparison between ϕ(
T − µEWD(x∗)

σEWD(x∗)
) and objective function (6).

Figure 6: Variations of relative error for different values of T .

5 Summary and conclusions

The median problem is one of the most common problems in location the-
ory specially with nondeterministic parameters. In this paper, the 1-median
problem on a network with independent discrete demand weights and trav-
eling times is investigated. The objective function is devoted to maximizing
the probability that the expected 1-median function does not exceed a given
threshold. First, a precise algorithm to obtain the optimal solution in small-
sized networks is presented. Next, by using the central limit theorem, an
approach to find the optimal solution in large-sized networks is proposed,
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where the original problem is reduced to some linear and nonlinear problems
with a linear constraint. The numerical examples are given to illustrate the
efficiency of the proposed methods.
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گسسته حرکت زمان و یال طول با ای شبکه روی بر ١-میانه مساله بررسی

زعفرانیه مهدی و ابارشی مریم

کاربردی ریاضی گروه کامپیوتر، علوم و ریاضی دانشکده سبزواری، حکیم دانشگاه

١٣٩٧ شهریور ٧ مقاله پذیرش ،١٣٩٧ مرداد ٣ شده اصلاح مقاله دریافت ،١٣٩۶ آبان ٣٠ مقاله دریافت

حرکت زمان و یال طول با جهت بدون درختی های شبکه روی بر ١-میانه مساله مقاله،  این در : چکیده
وزنی مجموع که است احتمالی بیشینه آوردن دست به مساله هدف تابع شود. می بررسی گسسته تصادفی
شده تعیین پیش از بالای کران مقدار یک از دهنده سرویس بهترین مکان تا شبکه رئوس فاصله انتظار مورد
اما است. شده طراحی متوسط و کوچک های شبکه در مساله حل برای تحلیلی الگوریتم یک باشد. کمتر
به اصلی مساله آن نتیجه در که است شده گرفته کار به مرکزی حد قضیه بزرگ های شبکه در مساله حل برای
کارایی و دقت تضمین دهنده نشان پایانی بخش در شده ارائه مثالهای شود. می تبدیل غیرخطی مساله یک

هستند. پیشنهادی روشهای

احتمالی. سفر های زمان احتمالی؛ وزنهای ١-میانه؛ مساله مکانیابی؛ مساله : کلیدی کلمات
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