
G
al
le
y
P
ro
of

Iranian Journal of Numerical Analysis and Optimization

Vol. 9, No. 2, (2019), pp 1–16
DOI:10.22067/ijnao.v9i2.70454
————————————————————————————————————
Research Article

A new approximate inverse
preconditioner based on the Vaidya’s
maximum spanning tree for matrix

equation AXB = C

K. Rezaei, F. Rahbarnia∗ and F. Toutounian

Abstract

We propose a new preconditioned global conjugate gradient (PGL-CG)
method for the solution of matrix equation AXB = C, where A and B
are sparse Stieltjes matrices. The preconditioner is based on the support
graph preconditioners. By using Vaidya’s maximum spanning tree precon-

ditioner and BFS algorithm, we present a new algorithm for computing the
approximate inverse preconditioners for matrices A and B and constructing a
preconditioner for the matrix equation AXB = C. This preconditioner does
not require solving any linear systems and is highly parallelizable. Numerical

experiments are given to show the efficiency of the new algorithm on CPU
and GPU for the solution of large sparse matrix equation.

AMS(2010): 65F10.

Keywords: Krylov subspace methods; matrix equation; approximate in-
verse preconditioner; global conjugate gradient; support graph precondi-
tioner; Vaidya’s maximum spanning tree preconditioner.

∗Corresponding author

Received 23 January 2018; revised 27 May 2018; accepted 13 August 2018
K. Rezaei
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi Univer-
sity of Mashhad, Iran e-mail: k.rezai1985@gmail.com

F. Rahbarnia
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi Univer-
sity of Mashhad, Iran. e-mail: Rahbarnia@ferdowsi.um.ac.ir

F. Toutounian
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi Univer-
sity of Mashhad, Iran.

The Center of Excellence on Modeling and Control Systems, Ferdowsi University of Mash-
had, Iran. e-mail: toutouni@math.um.ac.ir

1



G
al
le
y
P
ro
of

2 K. Rezaei, F. Rahbarnia and F. Toutounian

1 Introduction

The solution of linear systems of equations is at the heart of many compu-
tations in science, engineering, and other disciplines; see [2, 8–10] and their
references. Hence, many researches have been performed on various types of
matrix equations; for example, see [1, 8, 11,16,18,19,27,28].

The principal goal of this paper is to use support graph preconditioning
techniques to solve the matrix equation

AXB = C, (1)

where A ∈ Rn×n and B ∈ Rm×m are large sparse Stieltjes matrices. The
linear matrix equation (1) can be written as the following nm × nm linear
system:

(BT ⊗A)vec(X) = vec(C), (2)

where vec(X) is the vector of Rnm obtained by stacking the columns of the
n ×m matrix X and ⊗ denotes the Kronecker product (A ⊗ B = [aijB]ij).
The CG algorithm [24] can be used to solve the linear system (2). However,
for large problems, this approach cannot be applied directly. In addition, the
number of iterations of conjugate gradient method for the solution of linear
system of equations Ax = b is bounded by the square root of the spectral
condition number κ(A) of A. The condition number is the ratio of extreme
eigenvalues of A, κ(A) = λmax(A)/λmin(A). Preconditioner accelerates the
convergence of iterative methods for solving linear systems.

In this paper, we use the preconditioned global conjugate gradient (PGL-
CG) method for obtaining the approximate solution of matrix equation (1).
The preconditioner is based on the support graph preconditioners. Predeces-
sors of support-graph methods can be found in the work from the late 80s by
Notay, Beauwens, and collaborators in which graph-theoretic notions (princi-
pally paths) are used in the analysis of preconditioners; see [3,4,21–23]. These
insights were extended by Vaydia [26], who described his work in a talk in
1991 but did not publish a paper. Vaidya used support-graph techniques to
design a family of preconditioners based on spanning trees in graphs. Later,
Gremban, Miller, and Zagha [14, 15] extended the technique and used it to
construct another family of preconditioners. In Section 3, we use Vaidya’s
maximum spanning tree preconditioners of matrices A and B for developing
fast and efficient preconditioner to precondition equation (2).

Throughout this paper, all matrices are assumed to be real. For two
matrices X,Y ∈ Rn×s, the inner product ⟨X,Y ⟩F = (Y TX) is used and the
associated norm is the Frobenius norm denoted by ∥.∥F .

The rest of the paper is organized as follows. In the next section, we
implement the preconditioned global CG method for solving matrix equation
(1) and we introduce Vaidya’s maximum spanning tree preconditioner. In
section 3, we present a new algorithm for computing the inverse of this kind



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 3

of preconditioners. In section 4, numerical examples are given to illustrate
the efficiency of the proposed preconditioner. Conclusions are summarized
in Section 5.

2 Preconditioned GL-CG method for solving the matrix
equation AXB = C

In this section, we consider the matrix equation AXB = C, where A and B
are symmetric and positive definite and assume that the preconditioners PA

and PB are available. The preconditioners PA and PB are the matrices that
approximate A and B in some sense, respectively. It is assumed that PA and
PB are also symmetric positive definite. Then, we can precondition system
(1) as follows:

(PB ⊗ PA)
−1(B ⊗A)vec(X) = (PB ⊗ PA)

−1vec(C), (3)

where the preconditioner (PB ⊗ PA) is a symmetric positive definite matrix.
In addition, from the fact that ∥A⊗B∥ = ∥A∥∥B∥ [17], we have

cond((PB ⊗ PA)
−1(B ⊗A)) = cond(P−1

B B)cond(P−1
A A).

The straightforward application of PCG algorithm [24] to the linear system
(3) yields the following preconditioned global CG algorithm for solving the
matrix equation (1).

Algorithm 1 PGL-CG for solving AXB=C

1. Compute R0 = C −AX0B,Z0 = P−1
A R0P

−1
B and P0 = Z0

2. for j = 0, 1, . . . , until convergence do
3. αj =

<Rj ,Zj>F

<APjB,Pj>F

4. Xj+1 = Xj + αjPj

5. Rj+1 = Rj − αjAPjB
6. Zj+1 = P−1

A Rj+1P
−1
B

7. βj =
<Rj+1,Zj+1>F

<Rj ,Zj>F

8. Pj+1 = Zj+1 + βjPj

9. end for

We focus on applying Vaidya’s preconditioner of the first class to the ma-
trices A and B for constructing the preconditioners PA and PB . In order
to explain Vaidya’s preconditioner, we first present the following definition
from [7].

Definition 1. The underlying graph GA = (VA, EA) of an n-by-n symmetric
matrixA is a weighted undirected graph whose vertex set is VA = {1, 2, . . . , n}



G
al
le
y
P
ro
of

4 K. Rezaei, F. Rahbarnia and F. Toutounian

and whose edges set is EA = {(i, j) : i ̸= j, ai,j ̸= 0}. The weight of an edge
(i, j) is −ai,j . The weight of a vertex i is the sum of elements in the row i of
A.

Graph preconditioner, introduced by Vaidya [26] in the early nineties,
uses maximum-weight spanning tree (MWST) preconditioners to bound the
condition number of a preconditioned system. Vaidya’s method constructs a
preconditioner M whose underlying graph GM is a subgraph of GA (graph of
A). The graph GM of preconditioner has the same set of vertices as GA and
a subset of the edges of GA. Vaidya proposed two classes of precondition-
ers. The first class of MWST preconditioners guarantees a condition number
bound of O(n2) for any n× n sparse diagonally dominant symmetric (SDD)
matrix; see [7]. The second class of preconditioners is based on MWST aug-
mented with a few extra edges. This class of preconditioners guarantees that
the work in the linear solver is bounded by O(n1.75) for any sparse diagonally
dominant matrix. In this paper, we focus on applying Vaidya’s precondition-
ers of the first class to a subclass of SDD matrices, the class of SDD matrices
with nonpositive off-diagonal elements (Stieltjes matrices).

In order to construct the MWST preconditioner PA for A, we first con-
struct the maximum-weight spanning tree TA in GA and then modify the
diagonal elements of preconditioner PA such that A and PA have the same
row sums. In other words, TA is a connected graph with no cycles (i.e., a
spanning tree), and the total weight of its edges is maximal among all span-
ning trees of GA. The preconditioner PA is a diagonally dominant Stieltjes
matrix whose underlying graph is GPA

= TA, and whose row sums are iden-
tical to those of A.

When the condition number of the matrix B⊗A is high, it becomes nec-
essary to develop a fast and efficient preconditioner for the iterative solution
of (2). In order to precondition the system (2), we first construct Vaidya’s
preconditioners (maximum-weight spanning tree) PA and PB for A and B,
respectively, and then we use PB ⊗ PA as a preconditioner for the matrix
B ⊗ A. The implementation of this preconditioner is based on computation
of the inverse matrices P−1

A and P−1
B . In Section 3, we show that, by using

the breadth first search (BFS) algorithm [25], we can easily compute these
inverse matrices.

3 Computation of inverse of a MWST preconditioner

Let M be a symmetric positive definite matrix whose underlying graph TM is
a tree. In order to compute the inverse of M , we need the following definition.

Definition 2. The elimination matrix Lpq(−α) ∈ Rn×n with p ̸= q, is
an identity matrix with one nonzero off-diagonal entry in the row p and the
column q. Therefore the entries of Lpq(−α) are as follows:



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 5

(Lpq(−α))(i,j) =


1 if i = j,

−α if (i, j) = (p, q),

0 otherwise.

Now we investigate the result of symmetric transformation

M = Lpq(−α)MLT
pq(−α). (4)

Now Lpq(−α)M changes only the row p of M , while MLT
pq(−α) changes only

the column p. Thus, multiplying out equation (4) and using the symmetry
of M , we get the explicit formulas

m̄pj = m̄jp = mpj − αmqj , j ̸= p,
m̄pp = mpp − 2αmpq + α2mqq,
m̄ij = m̄ji = mij otherwise.

(5)

The idea of our method is to try to zero the off-diagonal elements of M
by a series of transformations (4) and using the leaves of graph TM and its
subtrees.

Let us assume that the vertex q is a leaf in TM and its neighbor is the
vertex p. In order to zero the off-diagonal mpq, accordingly, to set m̄pq = 0,
equation (5) gives the following expression for the parameter α :

α =
mpq

mqq
. (6)

From (5) and (6), the entries of M = Lpq(−α)MLT
pq(−α) are as follows:

m̄pp = mpp − 2αmpq + α2mqq,
m̄pq = m̄qp = 0,
m̄ij = mij otherwise.

This process which eliminates the nonzero entries mpq and mqp of M ,

is equivalent to eliminate the edge (p, q) from the tree TM . If M̃ denotes
the matrix obtained from the matrix M by removing the row q and the
column q, then it is trivial that the underlying graph of this submatrix is
the induced subtree of TM on V (TM ) − {q}. Let M1 = M,p1 = p, q1 =

q, α1 = α,M1 = Lpq(−α)MLpq(−α)T , and M2 = M̃ ; then, we can succes-
sively transform M to diagonal form by means of transformations of the
type (4) in (n − 1) steps with the elimination matrices Lpj ,qj (−αj) and
αj = (mpj ,qj/mqj ,qj ), j = 1, 2, . . . , n − 1, which are defined by choosing the
edges (pj , qj), j = 1, 2, . . . , n − 1 such that the vertex qj is a leaf in the
subtree TMj . To achieve this, we need to apply the BFS algorithm (Al-
gorithm 2) to the maximum-weight spanning tree TM to obtain the vector
V = [j1, j2, . . . , jn], which represents an array of vertices that are traversed



G
al
le
y
P
ro
of

6 K. Rezaei, F. Rahbarnia and F. Toutounian

and sorted by the BFS algorithm and Level(uj), j = 1, 2, . . . , n, which rep-
resent the level of traversed vertices uj , j = 1, 2, . . . , n in the BFS tree.

By using the array of vertices V = [j1, j2, . . . , jn], we can diagonalize the
matrix M in n−1 steps. In step k, k = 1, 2, . . . , n−1, by choosing the vertex
qk = jn−k+1 from V and considering its parent pk = in−k+1 and the edge
(pk, qk), we define the elimination matrix Lpk,qk(−αk) for eliminating the off-
diagonal element mpk,qk . In Lemma 1, we show that the vertex qk = jn−k+1

at step k is a leaf in the subtree TMk
. In what follows, we show that by using

Level (uj), j = 1, 2, . . . , n, we can reduce the overall time of producing the
inverse of M .

Algorithm 2 Breadth first search algorithm as BFS(G,s)

V = ∅
for each vertex u ∈ V (G) − s do
state(u) = ”undiscovered”
p(u) = nil, i.e. no parent is in the BFS tree

end for
state(s) = ”discovered”
V = V ∪ {s}
Level(s) = 0
p(s) = nil
Q = {s}
while Q ≠ ∅ do
u = dequeue(Q)
process vertex u as desired
for each v ∈ Adj(u) do
process edge (u, v) as desired
if state(v) = ”undiscovered” then

state(v) = ”discovered”
V = V ∪ {v}
p(v) = u
Level(v) = Level(p(v)) + 1
enqueue(Q, v)

end if
state(u) = ”processed”

end for
end while

Lemma 1. Let V = {j1, j2, . . . , jn} be the set of vertices obtained by the BFS

algorithm. If we isolate the vertex jn and T
(jn)
M denotes the induced subtree

of TM on the vertex set V (TM ) − {jn}, then jn−1 is a leaf in the induced

subtree T
(jn)
M .

Proof. Let in be the parent of jn and Level(jn) = l. According to the BFS
algorithm, if s < t, then Level(js) ⩽ Level(jt). Suppose that we isolate the



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 7

vertex jn; then we must consider the Level(jn−1). If Level(jn−1) = l, then

it is trivial that the vertex jn−1 is a leaf in the induced subtree T
(jn)
M . If

Level(jn−1) = l − 1, then it means that there is no vertex in level l, so the
vertex jn−1 has no children, according to the BFS algorithm, and it is a leaf

in the subtree T
(jn)
M .

Let M be Vaidya’s maximum-weight spanning tree preconditioner for the
diagonally dominant spd matrix A and let V = {j1, j2, . . . , jn} be the array
obtained by the BFS algorithm. We observe that we can diagonalize M by
n − 1 elimination matrices Lpk,qk(−αk), k = 1, 2, . . . , n − 1, where qk =
jn−k+1. So, the elimination process yields the diagonal matrix D as follows:

D = Ln−1Ln−2 . . . L1MLT
1 . . . LT

n−2L
T
n−1,

where Lk = Lpk,qk(−αk), k = 1, 2, . . . , n− 1. Therefore, we have

M−1 = (Ln−1Ln−2 . . . L1)
TD−1(Ln−1Ln−2 . . . L1).

In addition, by supposing that level(jn) = l, we can write

M−1 = (G1G2 . . . Gl)
TD−1(G1G2 . . . Gl),

where Gk = Lνk+sk−1 . . . Lνk
for k = 1, . . . , l, and sk represents the num-

ber of vertices that have the level k in the graph TM , and the matrices
Lνk+sk−1, . . . , Lνk

are generated by the vertices jn−(νk+sk−1)+1, . . . , jn−νk+1,
which have level k. In Lemma 2, we show that the nonzero off-diagonal
elements of Gk are equal to the nonzero off-diagonal elements of matrices
Lνk+sk−1, . . . , Lνk

.

Lemma 2. Let Sk = {jn−(νk+sk−1)+1, . . . , jn−νk+1} be the set of vertices
in level k of algorithm BFS and let Gk = Lνk+sk−1 . . . Lνk

, where Lr =
Lpr,qr (−αr) for r = νk, . . . , νk+sk−1 and pr is the parent of qr = jn−r+1.
Then the entries of Gk are as follows:

Gk(i, j) =


1 if i = j,

−αr = −mpr,qr

mqr,qr
if (i, j) = (pr, qr), qr = jn−r+1 ∈ Sk,

and (pr, qr) ∈ E(TA),

0 otherwise.

Proof. From the definition of elimination matrix Lr = Lpr,qr (−αr), we have

Lr = Lpr,qr (−αr) = I − αrEpr,qr ,

where Epr,qr contains only 0s except for 1 in the (pr, qr)th position. From
the fact that all the vertices in Sk have level k, for all qr(= jn−r+1), qr′(=
jn−r′+1) ∈ Sk, we have



G
al
le
y
P
ro
of

8 K. Rezaei, F. Rahbarnia and F. Toutounian

Epr,qr × Epr′ ,qr′ for= 0 qr ̸= pr′ .

So, by the induction on the number of elimination vertices in level k, we can
easily show that

Gk = I −
νk+sk−1∑

r=νk

αrEpr,qr ,

which completes the proof.

Finally, summarizing the previous results, we describe the tree inverse
algorithm for computing the inverse of M as follows:

Algorithm 3 Tree inverse

input(TA, root)
(v, Level) = BF S(TA, root)
M̃ = I
d = Diag(A)
for k = l to 1 step -1 (l is the number of levels obtained from the BFS 
algorithm) do
G = I
for all vertices in level k do
j =current vertex
i =the parent of current vertex

mijα = −mjj

gij = α
dii = dii − αaij

end for
˜ ˜M = GM

end for
˜ ˜1 T 1set P − = M D− MA

4 Numerical experiments

In this section, we compare the experimental results obtained by solving the
preconditioned system of equation (1). Four preconditioners will be com-
pared: MWST, AINV (right-looking version) [5], incomplete Cholesky, and
RIF [6] preconditioners. In addition, the following approaches are used for
applying the MWST preconditioners:

1. We use the matrices P−1
A and P−1

B computed by the tree inverse algo-
rithm (Algorithm 3).



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 9

2. We use the Cholesky factorization of the MWST preconditioners PA

and PB for computing Zj+1 in lines 1 and 6 of Algorithm 1.

3. In order to reduce the fill-in, first, we apply the reverse Cuthill–McKee
ordering [12,13] to the preconditioners PA and PB and then we use the
Cholesky factorizations of the resulting matrices.

Finally, for large matrices, we compare the results obtained by the approach 1
on GPU and CPU.

The examples have been coded in MATLAB with double-precision and
have been executed on a quad-processor 4.2 GHz i7 computer with 32 GBytes
of main memory. In all examples, the initial iteration matrix is zero. We stop
the iterations when

RError =
∥Rk∥F
∥R0∥F

≤ ϵ,

where Rk is the residual of the kth iterate and ϵ is a proper stopping tolerance.
In all the tables, the CPU time is in second and a dagger (†) indicates that
no convergence is achieved after 10000 iterations except for Tables 5 and 6,
where the maximum number of iterations is 30000. We also set the stopping
tolerance 10−9. The matrix C is chosen such that the exact solution X has
the entries xij = i ∗ j for i = 1, . . . , n and j = 1, . . . ,m.

For the first set of examples, we consider the matrix NOS6 from Harwell–
Boeing collection [20] and the matrix STn, which is obtained by discretizing
the poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f in Ω = ]0, 1[× ]0, 1[

with the Dirichlet boundary condition on a uniform grid of mesh size h = 1
n+1

via central differences. These matrices with their properties are presented in
Table 1. In this table, cond denotes the condition number of the matrices in
2-norm.

Table 1: First set of test problems information

Test matrix n nnz cond

ST5 25 105 20.77
ST10 100 460 69.8634

ST20 400 1920 258.4520
ST30 900 4380 564.9227
ST40 1600 7840 989.2690
ST50 2500 12300 1531.5

Nos6 675 3255 8× 106

In Table 2, we compare the number of iterations (It) and the CPU itera-
tion time (It-time) for the preconditioners: the approximate inverse with drop
tolerance equal to 0.1 (AINV) [5] , the incomplete Cholesky factorization



G
al
le
y
P
ro
of

10 K. Rezaei, F. Rahbarnia and F. Toutounian

T
ab

le
2:

N
u
m
b
er

o
f
itera

tio
n
s
a
n
d
C
P
U

tim
es

to
co

n
v
erg

e
fo
r
th

e
fi
rst

set
o
f
ex

a
m
p
les

M
a
trices

M
W

S
T
1

M
W

S
T
2

M
W

S
T
3

A
IN

V
IC

(0
)

R
IF

A
B

It
It-tim

e
It

It-tim
e

It
It-tim

e
It

It-tim
e

It
It-tim

e
It

It-tim
e

N
O
S
6

S
T
5

2
0
7

0
.1
6

1
9
6

0
.2
0

1
9
4

0
.1
1

4
3
1

0
.2
4

2
7
3

0
.2
0

1
9
9

0
.2
9

N
O
S
6

S
T
1
0

4
9
9

0
.9
7

4
8
5

1
.8
6

4
8
6

1
.6
3

1
1
1
0

2
.0
3

5
7
5

1
.7
1

4
0
5

1
.5
9

N
O
S
6

S
T
2
0

1
1
3
1

1
6
.7
8

1
1
1
5

3
5
.4
9

1
1
1
5

2
0
.9
3

2
7
3
8

3
4
.5
8

1
3
5
3

2
4
.6
1

9
6
2

2
1
.2
7

N
O
S
6

S
T
3
0

1
8
1
7

8
4
.9
9

1
7
9
7

1
6
2
.9
2

1
7
9
7

1
0
0
.2
6

4
9
3
6

2
3
5
.5
4

2
2
8
5

1
3
6
.8
2

1
5
9
1

1
0
5
.3
4

N
O
S
6

S
T
4
0

2
4
8
9

3
0
8
.6
0

2
4
7
0

5
1
2
.0
5

2
4
7
0

3
3
5
.1
2

7
7
7
1

9
7
8
.5
1

3
3
8
1

4
6
3
.1
5

2
3
9
6

3
8
5
.5
1

N
O
S
6

S
T
5
0

3
1
6
7

8
8
4
.1
8

3
1
5
2

1
2
8
3
.7

3
1
4
8

8
7
3
.3

†
†

4
5
7
0

1
2
4
2
.9

3
3
3
2

1
0
9
4
.4

N
O
S
6

N
O
S
6

7
2
5

2
2
.9
0

6
9
4

3
5
.2
5

6
9
4

2
3
.1
2

2
0
1
6

3
8
.5
1

1
7
3
7

6
2
.6
5

7
6
6

3
5
.0
5

T
ab

le
3
:
P
reco

n
d
ition

in
g
tim

es
an

d
total

tim
es

for
th
e
fi
rst

set
of

ex
am

p
les

M
a
trices

M
W

S
T
1

M
W

S
T
2

M
W

S
T
3

A
IN

V
IC

(0
)

R
IF

A
B

P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e

N
O
S
6

S
T
5

0
.4
5

0
.6
1

4
.6
1

4
.8
1

0
.8
5

0
.9
6

0
.4
0

0
.6
4

1
.0
8

1
.2
8

0
.2
7

0
.5
6

N
O
S
6

S
T
1
0

0
.4
9

1
.4
6

4
.7
0

6
.5
6

0
.8
7

2
.5
0

0
.4
0

2
.4
3

1
.1
1

2
.8
2

0
.2
9

1
.8
2

N
O
S
6

S
T
2
0

0
.6
5

1
7
.4
3

7
.2
5

4
2
.7
4

1
.1
0

2
2
.0
3

0
.4
8

3
5
.0
6

1
.4
4

2
6
.0
5

0
.3
9

2
1
.6
6

N
O
S
6

S
T
3
0

0
.9
2

8
5
.9
1

2
3
.9
1

1
8
8
.8
3

2
.1
0

1
0
2
.3
6

1
.1
6

2
3
6
.7

2
.9
7

1
3
9
.7
9

0
.8
9

1
0
6
.2
3

N
O
S
6

S
T
4
0

1
.3
4

3
0
9
.9
4

8
5
.6
3

5
9
8
.1
3

4
.8
8

3
4
0
.0
0

4
.8
9

9
8
3
.4
9

6
.9
2

4
7
0
.0
7

3
.5
3

3
8
9
.0
4

N
O
S
6

S
T
5
0

2
.1
5

8
8
6
.3
3

2
4
8
.5
0

1
5
3
2
.2
0

1
0
.3
5

8
8
3
.6
5

1
7
.0
2

†
1
5
.2
5

1
2
5
8
.1
5

1
0
.8
4

1
1
0
5
.2
4

N
O
S
6

N
O
S
6

0
.8
0

2
3
.7
0

9
.1
9

4
4
.4
4

1
.6
3

2
4
.7
5

0
.7
8

5
9
.2
9

2
.1
4

6
4
.7
9

0
.5
6

3
5
.6
1



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 11

(IC(0)), MWST using the approaches 1–3 (MWST1, MWST2, MWST3,
respectively), and the robust incomplete factorization with drop tolerance
equal to 0.1 (RIF). The CPU time for computing the preconditioner (P-
time) and the total time for computing an approximate solution (T-time) are
given in Table 3. Table 2 reveals that the preconditioner MWST1 is faster
(in terms It-time) than the other preconditioners (except for MWST3 with
A =NOS6 and B = ST5, ST50) and it requires a lower number of iterations
than AINV and IC(0) preconditioners. Table 3 shows that the precondi-
tioners MWST1 is faster (in terms T-time) than the other preconditioners
(except for MWST3 with A =nos6 and B = ST50, and RIF for NOS6 and
ST5). In addition, for large matrices (NOS6 with ST40, and ST50), MWST1

preconditioner is better (in terms of P-time) than the other preconditioners.
For small matrices (NOS6 with ST5, ST10, ST20, and ST30), we observe that
the time of constructing the preconditioner RIF is smaller than that of the
other preconditioners. For the second set of examples, we define matrices
STMn = STn +DIn, where DIn is a diagonal matrix such that the matrix
STMn has zero row weights (except for one row, where we increase the row
sums to obtain a nonsingular matrix). Table 4 represents the properties of
these matrices.

Table 4: Second set of test problems information

Test matrix n nnz cond

STM5 25 105 2.0002× 106

STM10 100 460 8.0012× 106

STM20 400 1920 3.2006× 107

STM30 900 4380 7.2016× 107

STM40 1600 7840 1.2803× 108

STM50 2500 12300 2.0005× 108

The results obtained for these matrices (which have large condition num-
ber) are presented in Tables 5 and 6. The results of Table 5 show that
MWST1 is the best in terms of iteration time (except for MWST3 with
A = STM5, B = STM30 and RIF with A = STM20, B = STM20). From
the results of Table 6, we observe that, for large matrices, MWST1 is bet-
ter (in terms of total time) than the other preconditioners (except for RIF
with A = STM10, B = STM10 and A = STM20, B = STM20). Finally,
we consider the results obtained for the preconditioner MWST1 in terms of
CPU time, GPU time, and the number of iterations. We mention that the
preconditioner was computed on the CPU. All numerical experiments in this
section were computed in double precision with a MATLAB code. We used
a Geforce GTX 1070 GPU with 8 GBytes VRAM memory. The results are
listed in Tables 7 and 8. The notations CIT (GIT) and CIT-time (GIT-time)
represent the number of iterations and CPU iteration time (GPU iteration
time) on the CPU (GPU) required for convergence, respectively. These ta-
bles show that the number of iterations for the CPU and the GPU are close



G
al
le
y
P
ro
of

12 K. Rezaei, F. Rahbarnia and F. Toutounian

T
ab

le
5:

N
u
m
b
er

o
f
iteration

s
an

d
C
P
U

tim
es

to
con

verge
for

th
e
secon

d
set

of
ex
am

p
les

M
a
trices

M
W

S
T
1

M
W

S
T
2

M
W

S
T
3

A
IN

V
IC

(0
)

R
IF

A
B

It
It-tim

e
It

It-tim
e

It
It-tim

e
It

It-tim
e

It
It-tim

e
It

It-tim
e

S
T
M

5
S
T
M

5
1
0
1

0
.0
1

8
5

0
.0
1

8
4

0
.0
1

1
9
5

0
.0
2

1
6
5

0
.0
1

8
3

0
.0
1

S
T
M

5
S
T
M

1
0

3
9
0

0
.0
3

3
6
0

0
.0
6

3
5
7

0
.0
5

1
1
3
5

0
.1
1

6
6
9

0
.1
0

4
4
7

0
.0
8

S
T
M

5
S
T
M

2
0

9
3
2

1
.0
6

8
8
2

1
.5
2

8
8
1

1
.0
9

4
7
4
5

5
.8
7

2
1
5
2

3
.3
1

1
5
8
5

2
.2
8

S
T
M

5
S
T
M

3
0

1
4
9
1

8
.8
6

1
4
3
7

9
.6
7

1
4
3
5

8
.5
0

†
†

4
2
9
9

2
5
.1
9

3
3
2
7

2
4
.7
3

S
T
M

1
0

S
T
M

1
0

8
3
1

0
.1
8

7
6
8

0
.4
9

7
6
2

0
.2
9

1
0
8
4

0
.2
7

6
6
2

0
.3
1

4
3
1

0
.1
8

S
T
M

1
0

S
T
M

2
0

2
2
6
4

4
.7
2

2
1
8
7

8
.6
3

2
1
8
6

5
.6
6

7
0
7
4

1
4
.4
1

3
1
4
9

9
.6
2

2
3
2
2

6
.3
0

S
T
M

1
0

S
T
M

3
0

3
5
9
6

3
4
.0
0

3
5
2
0

5
2
.3
4

3
5
1
4

3
4
.8
0

†
†

6
5
8
9

6
6
.4
8

5
1
4
1

6
0
.6
6

S
T
M

2
0

S
T
M

2
0

4
5
6
8

3
6
.5
8

4
4
2
0

8
9
.2
9

4
4
1
9

4
4
.6
7

9
1
8
5

6
9
.2
2

3
7
2
1

4
1
.8
4

2
6
6
7

2
9
.0
7

S
T
M

2
0

S
T
M

3
0

7
5
9
9

2
1
6
.7
8

7
5
1
7

4
6
1
.8
6

7
5
0
8

2
5
3
.2
7

†
†

†
†

8
3
0
9

3
3
3
.1
3

T
ab

le
6:

P
recon

d
ition

in
g
tim

es
an

d
total

tim
es

for
th
e
secon

d
set

of
ex
am

p
les

M
a
trices

M
W

S
T
1

M
W

S
T
2

M
W

S
T
3

A
IN

V
IC

(0
)

R
IF

A
B

P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e
P
-tim

e
T
-tim

e

S
T
M

5
S
T
M

5
0
.0
4

0
.0
5

0
.0
4

0
.0
5

0
.0
2

0
.0
3

0
.0
2

0
.0
4

0
.0
2

0
.0
3

0
.0
2

0
.0
3

S
T
M

5
S
T
M

1
0

0
.0
7

0
.1
0

0
.1
3

0
.1
9

0
.0
5

0
.1
0

0
.0
2

0
.1
3

0
.0
4

0
.1
4

0
.0
2

0
.1
0

S
T
M

5
S
T
M

2
0

0
.2
2

1
.2
8

2
.8
0

4
.3
2

0
.2
7

1
.3
6

0
.1
0

5
.9
7

0
.3
8

3
.6
9

0
.1
0

2
.3
8

S
T
M

5
S
T
M

3
0

0
.4
7

9
.3
3

2
0
.2
9

2
9
.9
6

1
.5
5

1
0
.0
5

0
.8
2

†
1
.8
8

2
7
.0
7

0
.6
1

2
5
.3
4

S
T
M

1
0

S
T
M

1
0

0
.1
0

0
.2
8

0
.2
2

0
.7
1

0
.0
8

0
.3
7

0
.0
2

0
.2
9

0
.0
6

0
.3
7

0
.0
2

0
.2
0

S
T
M

1
0

S
T
M

2
0

0
.2
5

4
.9
7

2
.8
9

1
1
.5
2

0
.3
0

5
.9
6

0
.1
0

1
4
.5
1

0
.4
0

1
0
.0
2

0
.1
0

6
.4

S
T
M

1
0

S
T
M

3
0

0
.5
0

3
4
.5
0

2
0
.3
8

7
2
.7
2

1
.5
8

3
6
.3
8

0
.8
2

†
1
.9
0

6
8
.3
8

0
.6
1

6
1
.2
7

S
T
M

2
0

S
T
M

2
0

0
.4
0

3
6
.9
8

5
.5
6

9
4
.8
5

0
.5
2

4
5
.1
9

0
.1
8

7
0
.3
0

0
.7
4

4
2
.5
8

0
.1
9

2
9
.2
6

S
T
M

2
0

S
T
M

3
0

0
.6
5

2
1
7
.4
3

2
3
.0
5

4
8
4
.9
1

1
.8

2
5
5
.0
7

0
.9
0

†
2
.2
4

†
0
.6
9

3
3
3
.8
2



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 13

together and that the GPU time is very smaller than the CPU time for large
matrices. So, we can conclude that MWST1 preconditioner in the GL-CG
method offers a great potential in a parallel processing environment.

Table 7: The performance of the preconditioner MWST1 on CPU and GPU
for the first set of examples

Matrices MWST1

A B CIt CIt-time GIt GIt-time

NOS6 ST5 207 0.16 208 0.56
NOS6 ST10 499 0.97 500 1.39

NOS6 ST20 1131 16.78 1131 11.95
NOS6 ST30 1817 84.99 1815 57.91
NOS6 ST40 2489 308.60 2487 200.15

NOS6 ST50 3167 884.18 3162 591.95
NOS6 NOS6 725 22.90 729 18.10

Table 8: The performance of the preconditioner MWST1 on CPU and GPU
for the second set of examples

Matrices MWST1

A B CIt CIt-time GIt GIt-time

STM10 STM10 831 0.18 833 1.09
STM10 STM20 2264 4.72 2267 4.73
STM10 STM30 3596 34.00 3604 20.35

STM10 STM40 4926 152.78 4931 71.82
STM10 STM50 6274 488.41 6287 197.01
STM20 STM20 4568 36.58 4578 24.91
STM20 STM30 7599 216.78 7611 143.72

STM20 STM40 10343 840.34 10354 520.89
STM20 STM50 13010 2234.6 13027 1500.6
STM30 STM30 11171 712.07 11199 491.93
STM30 STM40 15489 2563.8 15504 1731.5

STM30 STM50 19497 6225.7 19521 4999.5
STM40 STM40 20170 6165.1 20207 4156.8
STM40 STM50 25848 15348.00 25873 12075.00
STM50 STM50 31525 30637.00 31573 24410.00

5 Conclusion

We have proposed an approach for computing an approximate solution of
matrix equation AXB = C, where A and B are Stieltjes matrices. In this
approach, by using the BFS algorithm, we presented a new algorithm for



G
al
le
y
P
ro
of

14 K. Rezaei, F. Rahbarnia and F. Toutounian

obtaining the inverse of Vaidya’s maximum spanning tree preconditioner as
an approximate inverse preconditioner. This preconditioner does not require
solving any linear systems and is highly parallelizable. We observed that this
algorithm furnishes an efficient preconditioner for the matrix equations. The
numerical experiments showed that, for large matrices, this preconditioner is
better than the other preconditioner in terms of iteration time and total time
and the new algorithm is very efficient on the GPU.

Acknowledgements

Authors are grateful to the anonymous referees and editor for their construc-
tive comments.

References

1. Bai, Z.Z. On Hermitian and skew-Hermitian splitting iteration methods
for continuous Sylvester equations, J. Comput. Math. 29(2) (2011), 185–
198.

2. Baur, U., Benner, P. Cross-gramian based model reduction for data-sparse
systems, Electron. Trans. Numer. Anal. 31 (2008), 256–270.

3. Beauwens, R. Upper eigenvalue bounds for pencils of matrices, Linear
Algebra Appl. 62 (1984), 87–104.

4. Beauwens, R. Approximate factorizations with modified S/P consistently
ordered M-factors, Numer. Linear Algebra Appl. 1(1) (1994), 3–17.

5. Benzi, M., Meyer, C.D. and Tuma, M. A sparse approximate inverse
preconditioner for the conjugate gradient method, SIAM J. Sci. Com-
put.17(5) (1996), 1135–1149.

6. Benzi, M. and Tuma, M. A robust incomplete factorization preconditioner
for positive definite matrices, Preconditioning, 2001 (Tahoe City, CA).
Numer. Linear Algebra Appl.10(5-6) (2003), 385–400.

7. Bern, M., Gilbert, J.R., Hendrickson, B., Nguyen, N. and Toledo, S.
Support-graph preconditioners, SIAM J. Matrix Anal. Appl. 27(4) (2006),
930–951.

8. Bouhamidi, A., Jbilou, K., Reichel, L. and Sadok, H. An extrapolated
TSVD method for linear discrete ill-posed problems with kronecker struc-
ture, Linear Algebra Appl. 434(7) (2011), 1677–1688.



G
al
le
y
P
ro
of

A new approximate inverse preconditioner based on ... 15

9. Calvetti, D. and Reichel, L. Application of ADI iterative methods to the
restoration of noisy images, SIAM J. Matrix Anal. Appl. 17(1) (1996),
165–186.

10. Datta, B.N. Numerical methods for linear control systems: design and
analysis, Elsevier, Academic Press, 2004.

11. Deng, Y.B., Bai, Z.Z. and Gao, Y.H. Iterative orthogonal direction meth-
ods for hermitian minimum norm solutions of two consistent matrix equa-
tions, Numer. Linear Algebra Appl. 13(10) (2006), 801–823.

12. George, J.A. Computer implementation of the finite element method,
Technical report, Department of Computer Science, Stanford University,
1971.

13. George, J.A. and Liu, J.W.H. Computer Solution of Large Sparse Positive
Definite System, Prentice-Hall, 1981.

14. Gremban, K. D. Combinatorial preconditioners for sparse, symmetric,
diagonally dominant linear systems, PhD thesis, Carnegie Mellon Uni-
versity, 1996.

15. Gremban, K.D., Miller, G.L. and Zagha, M. Performance evaluation of
a new parallel preconditioner, 9th International Parallel Processing Sym-
posium, IEEE, (1995), 65–69.

16. Guennouni, A.E., Jbilou, K. and Riquet, A.J. Block Krylov subspace
methods for solving large Sylvester equations, Matrix iterative analysis
and biorthogonality (Luminy, 2000).Numer. Algorithms, 29(1-3) (2002),
75–96.

17. Horn, R.A., and Johnson, C.R. Topics in matrix analysis, Cambridge
University Press, 1991.

18. Khojasteh-Salkuyeh, D. Cg-type algorithms to solve symmetric matrix
equations, Appl. Math. Comput. 172(2) (2006), 985–999.

19. Khojasteh-Salkuyeh, D. and Toutounian, F. New approaches for solving
large Sylvester equations, Appl. Math. Comput. 173(1) (2006), 9–18.

20. Matrix Market, Available at http//math.nist.gov/Matrix Market,

May 2007.

21. Notay, Y. Solving positive (semi) definite linear systems by preconditioned
iterative methods, Preconditioned Conjugate Gradient Methods, Lectures
Notes in Mathematics, Springer, 1990.

22. Notay, Y. Conditioning analysis of modified block incomplete factoriza-
tions, Linear Algebra Appl. 154 (1991), 711–722.



G
al
le
y
P
ro
of

16 K. Rezaei, F. Rahbarnia and F. Toutounian

23. Notay, Y. Conditioning of Stieltjes matrices by S/P consistently ordered
approximate factorizations, Appl. Numer. Math. 10(5) (1992), 381–396.

24. Saad, Y. Iterative methods for sparse linear systems, SIAM, 2003.

25. Skiena, S.S. The algorithm design manual: Text, Springer Science &
Business Media, 1998.

26. Vaidya, P.M. Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners, Unpublished
manuscript UIUC, A talk based on the manuscript was presented at
the IMA Workshop on Graph Theory and Sparse Matrix Computation,
1991.

27. Wang, M. and Feng, Y. An iterative algorithm for solving a class of
matrix equations, J. Control Theory Appl. 7(1) (2009), 68–72.

28. Xie, L., Ding, J. and Ding, F. Gradient based iterative solutions for gen-
eral linear matrix equations, Comput. Math. Appl. 58(7) (2009), 1441–
1448.




