A new approximate inverse preconditioner based on the Vaidya's maximum spanning tree for matrix equation $A X B=C$

K. Rezaei, F. Rahbarnia* and F. Toutounian

Abstract

We propose a new preconditioned global conjugate gradient (PGL-CG) method for the solution of matrix equation $A X B=C$, where A and B are sparse Stieltjes matrices. The preconditioner is based on the support graph preconditioners. By using Vaidya's maximum spanning tree preconditioner and BFS algorithm, we present a new algorithm for computing the approximate inverse preconditioners for matrices A and B and constructing a preconditioner for the matrix equation $A X B=C$. This preconditioner does not require solving any linear systems and is highly parallelizable. Numerical experiments are given to show the efficiency of the new algorithm on CPU and GPU for the solution of large sparse matrix equation.

AMS(2010): 65F10.

Keywords: Krylov subspace methods; matrix equation; approximate inverse preconditioner; global conjugate gradient; support graph preconditioner; Vaidya's maximum spanning tree preconditioner.

[^0]
1 Introduction

The solution of linear systems of equations is at the heart of many computations in science, engineering, and other disciplines; see [2, 8-10] and their references. Hence, many researches have been performed on various types of matrix equations; for example, see $[1,8,11,16,18,19,27,28]$.

The principal goal of this paper is to use support graph preconditioning techniques to solve the matrix equation

$$
\begin{equation*}
A X B=C \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$ are large sparse Stieltjes matrices. The linear matrix equation (1) can be written as the following $n m \times n m$ linear system:

$$
\begin{equation*}
\left(B^{T} \otimes A\right) \operatorname{vec}(X)=\operatorname{vec}(C) \tag{2}
\end{equation*}
$$

where $\operatorname{vec}(X)$ is the vector of $\mathbb{R}^{n m}$ obtained by stacking the columns of the $n \times m$ matrix X and \otimes denotes the Kronecker product $\left(A \otimes B=\left[a_{i j} B\right]_{i j}\right)$. The CG algorithm [24] can be used to solve the linear system (2). However, for large problems, this approach cannot be applied directly. In addition, the number of iterations of conjugate gradient method for the solution of linear system of equations $A x=b$ is bounded by the square root of the spectral condition number $\kappa(A)$ of A. The condition number is the ratio of extreme eigenvalues of $A, \kappa(A)=\lambda_{\max }(A) / \lambda_{\min }(A)$. Preconditioner accelerates the convergence of iterative methods for solving linear systems.

In this paper, we use the preconditioned global conjugate gradient (PGLCG) method for obtaining the approximate solution of matrix equation (1). The preconditioner is based on the support graph preconditioners. Predecessors of support-graph methods can be found in the work from the late 80s by Notay, Beauwens, and collaborators in which graph-theoretic notions (principally paths) are used in the analysis of preconditioners; see [3,4,21-23]. These insights were extended by Vaydia [26], who described his work in a talk in 1991 but did not publish a paper. Vaidya used support-graph techniques to design a family of preconditioners based on spanning trees in graphs. Later, Gremban, Miller, and Zagha $[14,15]$ extended the technique and used it to construct another family of preconditioners. In Section 3, we use Vaidya's maximum spanning tree preconditioners of matrices A and B for developing fast and efficient preconditioner to precondition equation (2).

Throughout this paper, all matrices are assumed to be real. For two matrices $X, Y \in \mathbb{R}^{n \times s}$, the inner product $\langle X, Y\rangle_{F}=\left(Y^{T} X\right)$ is used and the associated norm is the Frobenius norm denoted by $\|.\|_{F}$.

The rest of the paper is organized as follows. In the next section, we implement the preconditioned global CG method for solving matrix equation (1) and we introduce Vaidya's maximum spanning tree preconditioner. In section 3, we present a new algorithm for computing the inverse of this kind
of preconditioners. In section 4, numerical examples are given to illustrate the efficiency of the proposed preconditioner. Conclusions are summarized in Section 5.

2 Preconditioned GL-CG method for solving the matrix equation $\boldsymbol{A X B}=C$

In this section, we consider the matrix equation $A X B=C$, where A and B are symmetric and positive definite and assume that the preconditioners P_{A} and P_{B} are available. The preconditioners P_{A} and P_{B} are the matrices that approximate A and B in some sense, respectively. It is assumed that P_{A} and P_{B} are also symmetric positive definite. Then, we can precondition system (1) as follows:

$$
\begin{equation*}
\left(P_{B} \otimes P_{A}\right)^{-1}(B \otimes A) \operatorname{vec}(X)=\left(P_{B} \otimes P_{A}\right)^{-1} v e c(C) \tag{3}
\end{equation*}
$$

where the preconditioner $\left(P_{B} \otimes P_{A}\right)$ is a symmetric positive definite matrix. In addition, from the fact that $\|A \otimes B\|=\|A\|\|B\|$ [17], we have

$$
\operatorname{cond}\left(\left(P_{B} \otimes P_{A}\right)^{-1}(B \otimes A)\right)=\operatorname{cond}\left(P_{B}^{-1} B\right) \operatorname{cond}\left(P_{A}^{-1} A\right)
$$

The straightforward application of PCG algorithm [24] to the linear system (3) yields the following preconditioned global CG algorithm for solving the matrix equation (1).

```
Algorithm 1 PGL-CG for solving AXB=C
    . Compute \(R_{0}=C-A X_{0} B, Z_{0}=P_{A}^{-1} R_{0} P_{B}^{-1}\) and \(P_{0}=Z_{0}\)
    for \(j=0,1, \ldots\), until convergence do
    \(\alpha_{j}=\frac{\left\langle R_{j}, Z_{j}\right\rangle_{F}}{\left\langle A P_{j} B, P_{j}\right\rangle_{F}}\)
    \(X_{j+1}=X_{j}+\alpha_{j} P_{j}\)
    \(R_{j+1}=R_{j}-\alpha_{j} A P_{j} B\)
        \(Z_{j+1}=P_{A}^{-1} R_{j+1} P_{B}^{-1}\)
        \(\beta_{j}=\frac{\left\langle R_{j+1}, Z_{j+1}\right\rangle_{F}}{\left\langle R_{j}, Z_{j}\right\rangle_{F}}\)
        \(P_{j+1}=Z_{j+1}+\beta_{j} P_{j}\)
    end for
```

We focus on applying Vaidya's preconditioner of the first class to the matrices A and B for constructing the preconditioners P_{A} and P_{B}. In order to explain Vaidya's preconditioner, we first present the following definition from [7].

Definition 1. The underlying graph $G_{A}=\left(V_{A}, E_{A}\right)$ of an n-by- n symmetric matrix A is a weighted undirected graph whose vertex set is $V_{A}=\{1,2, \ldots, n\}$
and whose edges set is $E_{A}=\left\{(i, j): i \neq j, a_{i, j} \neq 0\right\}$. The weight of an edge (i, j) is $-a_{i, j}$. The weight of a vertex i is the sum of elements in the row i of A.

Graph preconditioner, introduced by Vaidya [26] in the early nineties, uses maximum-weight spanning tree (MWST) preconditioners to bound the condition number of a preconditioned system. Vaidya's method constructs a preconditioner M whose underlying graph G_{M} is a subgraph of G_{A} (graph of $A)$. The graph G_{M} of preconditioner has the same set of vertices as G_{A} and a subset of the edges of G_{A}. Vaidya proposed two classes of preconditioners. The first class of MWST preconditioners guarantees a condition number bound of $O\left(n^{2}\right)$ for any $n \times n$ sparse diagonally dominant symmetric (SDD) matrix; see [7]. The second class of preconditioners is based on MWST augmented with a few extra edges. This class of preconditioners guarantees that the work in the linear solver is bounded by $O\left(n^{1.75}\right)$ for any sparse diagonally dominant matrix. In this paper, we focus on applying Vaidya's preconditioners of the first class to a subclass of SDD matrices, the class of SDD matrices with nonpositive off-diagonal elements (Stieltjes matrices).

In order to construct the MWST preconditioner P_{A} for A, we first construct the maximum-weight spanning tree T_{A} in G_{A} and then modify the diagonal elements of preconditioner P_{A} such that A and P_{A} have the same row sums. In other words, T_{A} is a connected graph with no cycles (i.e., a spanning tree), and the total weight of its edges is maximal among all spanning trees of G_{A}. The preconditioner P_{A} is a diagonally dominant Stieltjes matrix whose underlying graph is $G_{P_{A}}=T_{A}$, and whose row sums are identical to those of A.

When the condition number of the matrix $B \otimes A$ is high, it becomes necessary to develop a fast and efficient preconditioner for the iterative solution of (2). In order to precondition the system (2), we first construct Vaidya's preconditioners (maximum-weight spanning tree) P_{A} and P_{B} for A and B, respectively, and then we use $P_{B} \otimes P_{A}$ as a preconditioner for the matrix $B \otimes A$. The implementation of this preconditioner is based on computation of the inverse matrices P_{A}^{-1} and P_{B}^{-1}. In Section 3, we show that, by using the breadth first search (BFS) algorithm [25], we can easily compute these inverse matrices.

3 Computation of inverse of a MWST preconditioner

Let M be a symmetric positive definite matrix whose underlying graph T_{M} is a tree. In order to compute the inverse of M, we need the following definition.

Definition 2. The elimination matrix $L_{p q}(-\alpha) \in \mathbb{R}^{n \times n}$ with $p \neq q$, is an identity matrix with one nonzero off-diagonal entry in the row p and the column q. Therefore the entries of $L_{p q}(-\alpha)$ are as follows:

$$
\left(L_{p q}(-\alpha)\right)_{(i, j)}= \begin{cases}1 & \text { if } i=j \\ -\alpha & \text { if }(i, j)=(p, q) \\ 0 & \text { otherwise }\end{cases}
$$

Now we investigate the result of symmetric transformation

$$
\begin{equation*}
\bar{M}=L_{p q}(-\alpha) M L_{p q}^{T}(-\alpha) \tag{4}
\end{equation*}
$$

Now $L_{p q}(-\alpha) M$ changes only the row p of M, while $M L_{p q}^{T}(-\alpha)$ changes only the column p. Thus, multiplying out equation (4) and using the symmetry of M, we get the explicit formulas

$$
\begin{array}{ll}
\bar{m}_{p j}=\bar{m}_{j p}=m_{p j}-\alpha m_{q j}, & j \neq p, \\
\bar{m}_{p p}=m_{p p}-2 \alpha m_{p q}+\alpha^{2} m_{q q}, & \tag{5}\\
\bar{m}_{i j}=\bar{m}_{j i}=m_{i j} & \text { otherwise. }
\end{array}
$$

The idea of our method is to try to zero the off-diagonal elements of M by a series of transformations (4) and using the leaves of graph T_{M} and its subtrees.

Let us assume that the vertex q is a leaf in T_{M} and its neighbor is the vertex p. In order to zero the off-diagonal $m_{p q}$, accordingly, to set $\bar{m}_{p q}=0$, equation (5) gives the following expression for the parameter α :

$$
\begin{equation*}
\alpha=\frac{m_{p q}}{m_{q q}} . \tag{6}
\end{equation*}
$$

From (5) and (6), the entries of $\bar{M}=L_{p q}(-\alpha) M L_{p q}^{T}(-\alpha)$ are as follows:

$$
\begin{array}{ll}
\bar{m}_{p p}=m_{p p}-2 \alpha m_{p q}+\alpha^{2} m_{q q}, & \\
\bar{m}_{p q}=\bar{m}_{q p}=0, & \text { otherwise. } \\
\bar{m}_{i j}=m_{i j} &
\end{array}
$$

This process which eliminates the nonzero entries $m_{p q}$ and $m_{q p}$ of M, is equivalent to eliminate the edge (p, q) from the tree T_{M}. If \widetilde{M} denotes the matrix obtained from the matrix \bar{M} by removing the row q and the column q, then it is trivial that the underlying graph of this submatrix is the induced subtree of T_{M} on $V\left(T_{M}\right)-\{q\}$. Let $M_{1}=M, p_{1}=p, q_{1}=$ $q, \alpha_{1}=\alpha, \bar{M}_{1}=L_{p q}(-\alpha) M L_{p q}(-\alpha)^{T}$, and $M_{2}=\widetilde{M}$; then, we can successively transform M to diagonal form by means of transformations of the type (4) in $(n-1)$ steps with the elimination matrices $L_{p_{j}, q_{j}}\left(-\alpha_{j}\right)$ and $\alpha_{j}=\left(m_{p_{j}, q_{j}} / m_{q_{j}, q_{j}}\right), j=1,2, \ldots, n-1$, which are defined by choosing the edges $\left(p_{j}, q_{j}\right), j=1,2, \ldots, n-1$ such that the vertex q_{j} is a leaf in the subtree $T_{M_{j}}$. To achieve this, we need to apply the BFS algorithm (Algorithm 2) to the maximum-weight spanning tree T_{M} to obtain the vector $V=\left[j_{1}, j_{2}, \ldots, j_{n}\right]$, which represents an array of vertices that are traversed
and sorted by the BFS algorithm and $\operatorname{Level}\left(u_{j}\right), j=1,2, \ldots, n$, which represent the level of traversed vertices $u_{j}, j=1,2, \ldots, n$ in the BFS tree.

By using the array of vertices $V=\left[j_{1}, j_{2}, \ldots, j_{n}\right]$, we can diagonalize the $\operatorname{matrix} M$ in $n-1$ steps. In step $k, k=1,2, \ldots, n-1$, by choosing the vertex $q_{k}=j_{n-k+1}$ from V and considering its parent $p_{k}=i_{n-k+1}$ and the edge $\left(p_{k}, q_{k}\right)$, we define the elimination matrix $L_{p_{k}, q_{k}}\left(-\alpha_{k}\right)$ for eliminating the offdiagonal element $m_{p_{k}, q_{k}}$. In Lemma 1, we show that the vertex $q_{k}=j_{n-k+1}$ at step k is a leaf in the subtree $T_{M_{k}}$. In what follows, we show that by using Level $\left(u_{j}\right), j=1,2, \ldots, n$, we can reduce the overall time of producing the inverse of M.

```
Algorithm 2 Breadth first search algorithm as BFS(G,s)
    \(V=\varnothing\)
    for each vertex \(u \in V(G)-s\) do
        state \((u)="\) undiscovered"
        \(p(u)=\) nil, i.e. no parent is in the BFS tree
    end for
    state \((s)="\) discovered"
    \(V=V \cup\{s\}\)
    \(\operatorname{Level}(s)=0\)
    \(p(s)=n i l\)
    \(Q=\{s\}\)
    while \(Q \neq \varnothing\) do
        \(u=\) dequeue \((Q)\)
        process vertex \(u\) as desired
        for each \(v \in \operatorname{Adj}(u)\) do
            process edge \((u, v)\) as desired
            if \(\operatorname{state}(v)=" u n d i s c o v e r e d "\) then
                state \((v)="\) discovered"
                \(V=V \cup\{v\}\)
                \(p(v)=u\)
                \(\operatorname{Level}(v)=\operatorname{Level}(p(v))+1\)
                enqueue \((Q, v)\)
            end if
            \(\operatorname{state}(u)=" p r o c e s s e d "\)
        end for
    end while
```

Lemma 1. Let $V=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ be the set of vertices obtained by the BFS algorithm. If we isolate the vertex j_{n} and $T_{M}^{\left(j_{n}\right)}$ denotes the induced subtree of T_{M} on the vertex set $V\left(T_{M}\right)-\left\{j_{n}\right\}$, then j_{n-1} is a leaf in the induced subtree $T_{M}^{\left(j_{n}\right)}$.

Proof. Let i_{n} be the parent of j_{n} and $\operatorname{Level}\left(j_{n}\right)=l$. According to the BFS algorithm, if $s<t$, then $\operatorname{Level}\left(j_{s}\right) \leqslant \operatorname{Level}\left(j_{t}\right)$. Suppose that we isolate the
vertex j_{n}; then we must consider the $\operatorname{Level}\left(j_{n-1}\right)$. If $\operatorname{Level}\left(j_{n-1}\right)=l$, then it is trivial that the vertex j_{n-1} is a leaf in the induced subtree $T_{M}^{\left(j_{n}\right)}$. If $\operatorname{Level}\left(j_{n-1}\right)=l-1$, then it means that there is no vertex in level l, so the vertex j_{n-1} has no children, according to the BFS algorithm, and it is a leaf in the subtree $T_{M}^{\left(j_{n}\right)}$.

Let M be Vaidya's maximum-weight spanning tree preconditioner for the diagonally dominant spd matrix A and let $V=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ be the array obtained by the BFS algorithm. We observe that we can diagonalize M by $n-1$ elimination matrices $L_{p_{k}, q_{k}}\left(-\alpha_{k}\right), k=1,2, \ldots, n-1$, where $q_{k}=$ j_{n-k+1}. So, the elimination process yields the diagonal matrix D as follows:

$$
D=L_{n-1} L_{n-2} \ldots L_{1} M L_{1}^{T} \ldots L_{n-2}^{T} L_{n-1}^{T}
$$

where $L_{k}=L_{p_{k}, q_{k}}\left(-\alpha_{k}\right), k=1,2, \ldots, n-1$. Therefore, we have

$$
M^{-1}=\left(L_{n-1} L_{n-2} \ldots L_{1}\right)^{T} D^{-1}\left(L_{n-1} L_{n-2} \ldots L_{1}\right)
$$

In addition, by supposing that level $\left(j_{n}\right)=l$, we can write

$$
M^{-1}=\left(G_{1} G_{2} \ldots G_{l}\right)^{T} D^{-1}\left(G_{1} G_{2} \ldots G_{l}\right)
$$

where $G_{k}=L_{\nu_{k}+s_{k}-1} \ldots L_{\nu_{k}}$ for $k=1, \ldots, l$, and s_{k} represents the number of vertices that have the level k in the graph T_{M}, and the matrices $L_{\nu_{k}+s_{k}-1}, \ldots, L_{\nu_{k}}$ are generated by the vertices $j_{n-\left(\nu_{k}+s_{k}-1\right)+1}, \ldots, j_{n-\nu_{k}+1}$, which have level k. In Lemma 2, we show that the nonzero off-diagonal elements of G_{k} are equal to the nonzero off-diagonal elements of matrices $L_{\nu_{k}+s_{k}-1}, \ldots, L_{\nu_{k}}$.

Lemma 2. Let $S_{k}=\left\{j_{n-\left(\nu_{k}+s_{k}-1\right)+1}, \ldots, j_{n-\nu_{k}+1}\right\}$ be the set of vertices in level k of algorithm BFS and let $G_{k}=L_{\nu_{k}+s_{k}-1} \ldots L_{\nu_{k}}$, where $L_{r}=$ $L_{p_{r}, q_{r}}\left(-\alpha_{r}\right)$ for $r=\nu_{k}, \ldots, \nu_{k+s_{k}-1}$ and p_{r} is the parent of $q_{r}=j_{n-r+1}$. Then the entries of G_{k} are as follows:

$$
G_{k}(i, j)= \begin{cases}1 & \text { if } i=j \\ -\alpha_{r}=-\frac{m_{p_{r}, q_{r}}}{m_{q_{r}, q_{r}}} & \text { if }(i, j)=\left(p_{r}, q_{r}\right), q_{r}=j_{n-r+1} \in S_{k} \\ & \quad \text { and }\left(p_{r}, q_{r}\right) \in E\left(T_{A}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. From the definition of elimination matrix $L_{r}=L_{p_{r}, q_{r}}\left(-\alpha_{r}\right)$, we have

$$
L_{r}=L_{p_{r}, q_{r}}\left(-\alpha_{r}\right)=I-\alpha_{r} E_{p_{r}, q_{r}}
$$

where $E_{p_{r}, q_{r}}$ contains only 0 s except for 1 in the $\left(p_{r}, q_{r}\right)$ th position. From the fact that all the vertices in S_{k} have level k, for all $q_{r}\left(=j_{n-r+1}\right), q_{r^{\prime}}(=$ $\left.j_{n-r^{\prime}+1}\right) \in S_{k}$, we have

$$
E_{p_{r}, q_{r}} \times E_{p_{r^{\prime}}, q_{r^{\prime}}}=0 \quad \text { for } q_{r} \neq p_{r^{\prime}}
$$

So, by the induction on the number of elimination vertices in level k, we can easily show that

$$
G_{k}=I-\sum_{r=\nu_{k}}^{\nu_{k}+s_{k}-1} \alpha_{r} E_{p_{r}, q_{r}}
$$

which completes the proof.
Finally, summarizing the previous results, we describe the tree inverse algorithm for computing the inverse of M as follows:

```
Algorithm 3 Tree inverse
    input \(\left(T_{A}\right.\), root \()\)
    \((v\), Level \()=\operatorname{BFS}\left(T_{A}\right.\), root \()\)
    \(\tilde{M}=I\)
    \(d=\operatorname{Diag}(A)\)
    for \(k=l\) to 1 step -1 ( \(l\) is the number of levels obtained from the BFS
    algorithm) do
        \(G=I\)
        for all vertices in level \(k\) do
            \(j=\) current vertex
            \(i=\) the parent of current vertex
            \(\alpha=-\frac{m_{i j}}{m_{j j}}\)
            \(g_{i j}=\alpha\)
            \(d_{i i}=d_{i i}-\alpha a_{i j}\)
        end for
        \(\tilde{M}=G \tilde{M}\)
    end for
    set \(P_{A}^{-1}=\tilde{M}^{T} D^{-1} \tilde{M}\)
```


4 Numerical experiments

In this section, we compare the experimental results obtained by solving the preconditioned system of equation (1). Four preconditioners will be compared: MWST, AINV (right-looking version) [5], incomplete Cholesky, and RIF [6] preconditioners. In addition, the following approaches are used for applying the MWST preconditioners:

1. We use the matrices P_{A}^{-1} and P_{B}^{-1} computed by the tree inverse algorithm (Algorithm 3).
2. We use the Cholesky factorization of the MWST preconditioners P_{A} and P_{B} for computing Z_{j+1} in lines 1 and 6 of Algorithm 1.
3. In order to reduce the fill-in, first, we apply the reverse Cuthill-McKee ordering $[12,13]$ to the preconditioners P_{A} and P_{B} and then we use the Cholesky factorizations of the resulting matrices.

Finally, for large matrices, we compare the results obtained by the approach 1 on GPU and CPU.

The examples have been coded in MATLAB with double-precision and have been executed on a quad-processor 4.2 GHz i7 computer with 32 GBytes of main memory. In all examples, the initial iteration matrix is zero. We stop the iterations when

$$
\text { RError }=\frac{\left\|R_{k}\right\|_{F}}{\left\|R_{0}\right\|_{F}} \leq \epsilon
$$

where R_{k} is the residual of the k th iterate and ϵ is a proper stopping tolerance. In all the tables, the CPU time is in second and a dagger (\dagger) indicates that no convergence is achieved after 10000 iterations except for Tables 5 and 6, where the maximum number of iterations is 30000 . We also set the stopping tolerance 10^{-9}. The matrix C is chosen such that the exact solution X has the entries $x_{i j}=i * j$ for $i=1, \ldots, n$ and $j=1, \ldots, m$.

For the first set of examples, we consider the matrix NOS6 from HarwellBoeing collection [20] and the matrix $S T_{n}$, which is obtained by discretizing the poisson equation

$$
\left.\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f \quad \text { in } \Omega=\right] 0,1[\times] 0,1[
$$

with the Dirichlet boundary condition on a uniform grid of mesh size $h=\frac{1}{n+1}$ via central differences. These matrices with their properties are presented in Table 1. In this table, cond denotes the condition number of the matrices in 2 -norm.

Table 1: First set of test problems information

Test matrix	n	nnz	cond
$S T_{5}$	25	105	20.77
$S T_{10}$	100	460	69.8634
$S T_{20}$	400	1920	258.4520
$S T_{30}$	900	4380	564.9227
$S T_{40}$	1600	7840	989.2690
$S T_{50}$	2500	12300	1531.5
Nos6	675	3255	8×10^{6}

In Table 2, we compare the number of iterations (It) and the CPU iteration time (It-time) for the preconditioners: the approximate inverse with drop tolerance equal to 0.1 (AINV) [5], the incomplete Cholesky factorization

［9．98	$99^{\circ} 0$	6L＇も9	㕵 \quad \％	$67 \cdot 69$	82．0	9L＇もU	\＆9 ${ }^{\text {I }}$	切切	$6{ }^{\circ} 6$	02＇\＆z	08°	9SON	9SON
も\％¢0LI	78．0］	9T：89\％I	$9 \chi^{\circ} \mathrm{g}$ L	t	70＇2I	99． 888	98．0］	$07^{\circ} \mathrm{Z}$ ¢ 9	09．8も\％	¢¢． 988	9t＇\％	${ }^{09} L S$	9 SON
70．688	¢ 9°	20.027	Z6．9	$67 \cdot 886$	$68^{\circ} \mathrm{T}$	00．0も¢	$88^{\circ} \mathrm{\square}$	\＆1．869	\＆9＊98		閁 1	${ }^{0 \dagger} L S$	9SON
£ ${ }^{\prime} 90$ I	68°	62.68 I	$26^{\circ} \mathrm{Z}$	L．98を	91＇${ }^{\text {I }}$	98＇\％0I	$0 L^{\prime} \mathrm{Z}$	88．88I	L6．$¢ \%$	［6．98	76．0	${ }^{0} \varepsilon_{L S}$	9 SON
99＇LZ	$68^{\circ} 0$	90．97	顽 L	90.98	$87^{\circ} 0$	80\％ 7	0［＇I	もL＇Z7	$9 \mathrm{CB}^{\circ} \mathrm{L}$	Et＇LI	99°	${ }^{0 z_{L S}}$	9SON
78．${ }^{\text {I }}$	$67^{\circ} 0$	$78^{\circ} \mathrm{Z}$	LI＇I	$\varepsilon \square^{\circ} \mathrm{Z}$	07.0	$09^{\prime} 7$	$28^{\circ} 0$	99.9	02\％	$97^{\text { }}$ I	$67^{\circ} 0$	${ }^{01} L S$	9SON
$99^{\circ} 0$	$2 Z^{\circ} 0$	87^{\prime} I	80＇ I	79°	$07^{\circ} 0$	96.0	$98^{\circ} 0$	L8＇も	19＇も	L9\％	$96^{\circ} 0$	${ }^{9} L S$	9SON
әш！̣४－L	әu！̣－d	әш！̣－L	әu！̣－d	әแ！̣४－L	әu！̣ı－d	әш！̣7－L	әш！7－d	әш！̣－Ј	әu！̣？－d	әш！̣－	әu！̣－d	G	V
HIC		（0） PI		UNIV		$\varepsilon_{L S M}$ M		${ }^{Z}$ LSMW		${ }^{\text {L }}$ LSM $M W$		səoupeJ	

90.98	992	99＊79	LELI	LG．88	9L0Z	ZI＇\＆Z	モ69	$9 \chi^{\circ} 98$	モ69	06．7\％	972	9SON	9 SON
あ＇も60T	乙\＆\＆¢	$6 \mathrm{ZもZI}$	029才	t	t	\＆¢ L8	8tIE	L．88ZI	Z9tE	81＇788	L9TE	${ }^{09}$ LS	9 SON
T9．988	968%	9T•89t	L8E¢	TG826	LLLL	ZI｀GE¢	02もて	90 ZL9	02も\％	09＊80¢	687 \％	${ }^{0 \dagger} L S$	9 SON
	L69	78．981	987%	¢9．9¢Z	9867	9700I	L6LI	76．791	L6LI	66.78	LI8I	${ }^{0} \varepsilon_{L S}$	9 SON
$\angle Z^{\prime} L \zeta$	396	L9．も\％	\＆gEL	89.78	8\＆LZ	\＆6．07	glti	$67^{\circ} 98$	gilt	8L＇9］	LELI	${ }^{0} z_{L S}$	9SON
$69^{\circ} \mathrm{L}$	907	LL＇I	g\＆g	$80 \cdot 7$	0LLI	89 ${ }^{\text {I }}$	987	98° I	987	$\angle 6.0$	667	${ }^{0}{ }_{L} L S$	9SON
$67^{\circ} 0$	665	0Z\％	\＆LZ	ஏて＇0	LEt	［ ${ }^{\circ} 0$	76	07°	961	$91^{\circ} 0$	$\angle 07$	${ }^{9}$ LS	9SON
әแ！̣マ－7	7 I	әu！̣४－7I	7 I	әu！̣१－7I	7 I	әய！̣४－7I	7 I	әய！̣マ－7I	7 I	әш！̣－7I	7 I	g	V
H1		（0） PI		\NIV		$\varepsilon_{L S M}$		${ }^{7}$ LS M W		${ }^{\text {L }}$ LSM ${ }^{\text {W }}$		sәoぃтел	

($\mathrm{IC}(0))$, MWST using the approaches $1-3\left(M W S T_{1}, M W S T_{2}, M W S T_{3}\right.$, respectively), and the robust incomplete factorization with drop tolerance equal to 0.1 (RIF). The CPU time for computing the preconditioner (Ptime) and the total time for computing an approximate solution (T-time) are given in Table 3. Table 2 reveals that the preconditioner $M W S T_{1}$ is faster (in terms It-time) than the other preconditioners (except for $M W S T_{3}$ with $A=$ NOS6 and $B=S T_{5}, S T_{50}$) and it requires a lower number of iterations than AINV and IC(0) preconditioners. Table 3 shows that the preconditioners $M W S T_{1}$ is faster (in terms T-time) than the other preconditioners (except for $M W S T_{3}$ with $A=$ nos6 and $B=S T_{50}$, and RIF for NOS6 and $S T_{5}$). In addition, for large matrices (NOS6 with $S T_{40}$, and $S T_{50}$), $M W S T_{1}$ preconditioner is better (in terms of P-time) than the other preconditioners. For small matrices (NOS6 with $S T_{5}, S T_{10}, S T_{20}$, and $S T_{30}$), we observe that the time of constructing the preconditioner RIF is smaller than that of the other preconditioners. For the second set of examples, we define matrices $S T M_{n}=S T_{n}+D I_{n}$, where $D I_{n}$ is a diagonal matrix such that the matrix $S T M_{n}$ has zero row weights (except for one row, where we increase the row sums to obtain a nonsingular matrix). Table 4 represents the properties of these matrices.

Table 4: Second set of test problems information

Test matrix	n	nnz	cond
STM_{5}	25	105	2.0002×10^{6}
STM $_{10}$	100	460	8.0012×10^{6}
STM $_{20}$	400	1920	3.2006×10^{7}
STM $_{30}$	900	4380	7.2016×10^{7}
STM $_{40}$	1600	7840	1.2803×10^{8}
STM $_{50}$	2500	12300	2.0005×10^{8}

The results obtained for these matrices (which have large condition number) are presented in Tables 5 and 6. The results of Table 5 show that $M W S T_{1}$ is the best in terms of iteration time (except for $M W S T_{3}$ with $A=S T M_{5}, B=S T M_{30}$ and RIF with $\left.A=S T M_{20}, B=S T M_{20}\right)$. From the results of Table 6, we observe that, for large matrices, $M W S T_{1}$ is better (in terms of total time) than the other preconditioners (except for RIF with $A=S T M_{10}, B=S T M_{10}$ and $A=S T M_{20}, B=S T M_{20}$). Finally, we consider the results obtained for the preconditioner $M W S T_{1}$ in terms of CPU time, GPU time, and the number of iterations. We mention that the preconditioner was computed on the CPU. All numerical experiments in this section were computed in double precision with a MATLAB code. We used a Geforce GTX 1070 GPU with 8 GBytes VRAM memory. The results are listed in Tables 7 and 8. The notations CIT (GIT) and CIT-time (GIT-time) represent the number of iterations and CPU iteration time (GPU iteration time) on the CPU (GPU) required for convergence, respectively. These tables show that the number of iterations for the CPU and the GPU are close

78． 8 ¢¢	$69^{\circ} 0$	t	$\varpi \sigma^{\prime} \square$	t	06.0	20．99\％	8．${ }^{\text {I }}$	L6．787	90.8%	EF＇LIZ	$99^{\circ} 0$	${ }^{0 \varepsilon^{W}}$ ULS	${ }^{0 z_{W}}$ WLS
$97 \cdot 67$	$65^{\circ} 0$	$89^{\prime} 77$	DL．0	$08^{\circ} 02$	$81^{\circ} 0$	61．9才	790	98．76	$99^{\circ} \mathrm{G}$	86．98	07°	${ }^{0 z_{W}}$ WLS	${ }^{0 z_{W}}$ NLS
LZ＇L9	L9\％	$88 \cdot 89$	06．${ }^{\circ}$	t	$78^{\circ} 0$	88．98	89．${ }^{\circ}$	\％L＇ 72	88．0Z	$09^{\prime} \dagger \mathcal{E}$	$09^{\circ} 0$	${ }^{08}$ WLLS	${ }^{01} W L S$
も．9	01．0	70．0］	$07^{\circ} 0$	Lg＇ti	01 0	96.9	08°	Z9．LI	$68^{\circ} \mathrm{Z}$	$26^{\circ} \mathrm{F}$	g． 0	${ }^{0 z^{\prime} \text { WLS }}$	${ }^{01} W L L S$
07＇0	Z0\％	$28^{\circ} 0$	90°	$67^{\prime} 0$	70\％	$28^{\circ} 0$	$80 \cdot 0$	LL．0	Z $7^{\circ} 0$	$87^{\circ} 0$	01．0	${ }^{01}$ WLLS	${ }^{01} W L L S$
モ¢ $\underbrace{\circ} \mathrm{G}$	L9 0	20.27	88° I	t	$78^{\circ} 0$	90.0 I	g．${ }^{\circ}$	96.67	$67^{\circ} 07$	\＆$\varepsilon^{\circ} 6$	$27^{\circ} 0$	${ }^{08}$ WLLS	${ }^{9}$ WLLS
88%	0． 0	$69^{\circ} \mathrm{E}$	88°	$\angle 6.9$	01．0	$98^{\cdot} \mathrm{I}$	$L Z^{\circ}$	78＇ワ	$08^{\circ} \mathrm{Z}$	87^{\prime} I	Z\％\％	${ }^{0 z^{\prime}}$ WLS	${ }^{9}$ WLSS
$0{ }^{\circ} 0$	$20 \cdot 0$		70．0	\＆10	70\％	$0 L^{\circ} 0$	900	61．0	\＆1．0	0 ${ }^{\circ} 0$	200	${ }^{01} W L L S$	${ }^{9}$ WLSS
800	70．0	80.0	70.0	70.0	$70^{\circ} 0$	$80^{\circ} 0$	70\％	90.0	70．0	900	70．0	${ }^{9}$ WLLS	${ }^{9} W N L S$
әய！̣४－L	әu！̣－d	әш！ิ－山	әш！ิ－d	әu！̣－【	әu！̣？－d	әu！̣－	әu！̣ı－d	әШ！̣－Ј	әш！7－d	әШ！̣－	әШ！̣－¢	¢	V
HIC		（0） PI		\NIV		$\varepsilon_{L S M}{ }^{\text {d }}$		$z_{L S M W}$		${ }^{\text {L }}$ LSMW		səo！̣ұеN	

Table 6：Preconditioning times and total times for the second set of examples

\＆I＇\＆\＆\％	6088	t	t	t	t	LZ®g\％	8092	98＊ 197	LTGL	8L．9LZ	6692	${ }^{08}$ WLLS	${ }^{0 z_{W}}{ }_{\text {WLS }}$
20．67	L997	78．LT	LZLE	z7＊69	98L6	29 顽	6I研	$67 \cdot 68$	0ZTも	89．98	8997	${ }^{0 z^{W}}$ WLS	${ }^{07}$ NLLS
99＊09	LTIG	87.99	6899	t	t	08．7¢	万L98	7¢ $\overbrace{}^{\prime} 9$	0798	00＇も \mathcal{E}	9698	${ }^{08}$ W $/$ LS	${ }^{01} N L L S$
$08^{\circ} 9$	Z 78%	79.6	67 TE	IT． I $^{\text {I }}$	7202	$99^{\circ} \mathrm{G}$	98LZ	89＇8	L8LZ	Z $L^{\circ} \mathrm{F}$	モ97\％	${ }^{0 z^{2}}$ WLS	${ }^{01} W L S$
$8 \mathrm{I}^{0}$	IEォ	LE 0	Z99	$L Z^{\circ} 0$	780L	$67^{\circ} 0$	\％92	$67^{\circ} 0$	892	810	LE8	${ }^{01} W L L S$	${ }^{01} W L S$
\＆L $\quad 7 \%$	LZEE	6 I＇g $^{\text {c }}$	6677	t	t	$09^{\circ} 8$	ceti	$\angle 96$	L8もI	$98^{\circ} 8$	L67I	${ }^{08}$ W W LS	${ }^{9}$ W W LS
$87^{\prime} 7$	9891	L \mathcal{E}＇ \mathcal{L}	Z¢LZ	$28^{\circ} \mathrm{G}$	9゙27	60° I	L88	Z9．${ }^{\circ}$	788	$90^{\text { }}$	Z\＆6	${ }^{0 z^{W}}$ WLS	${ }^{9}$ WLS
$80 \cdot 0$	LTD	01．0	699	L＇0	GELI	90.0	L98	$90^{\circ} 0$	098	800	068	${ }^{01} W L L S$	${ }^{9}$ WLSS
L0．0	¢8	L0．0	991	70．0	965	L0．0	78	L0．0	98	L0．0	LOL	${ }^{9}$ WLLS	${ }^{9}$ WLSS
әu！̣？－7I	7 I	ขш！̣－7I	7 I	ขu！̣จ－7I	7 I	әu！̣จ－7I	7 I	ขแ！̣7－7I	7 I	ขu！̣？－7I	7 I	¢	V
HIY		（0） PI		\NIV		$\varepsilon_{L S M W}$		${ }^{z_{L S ~ M W}}$		${ }^{〔} L S M W$		səo！̣ıe／N	

Table 5：Number of iterations and CPU times to converge for the second set of examples
together and that the GPU time is very smaller than the CPU time for large matrices. So, we can conclude that $M W S T_{1}$ preconditioner in the GL-CG method offers a great potential in a parallel processing environment.

Table 7: The performance of the preconditioner $M W S T_{1}$ on CPU and GPU for the first set of examples

Matrices		$M W S T_{1}$			
A	B	CIt	CIt-time	GIt	GIt-time
NOS6	$S T_{5}$	207	0.16	208	0.56
NOS6	$S T_{10}$	499	0.97	500	1.39
NOS6	$S T_{20}$	1131	16.78	1131	11.95
NOS6	$S T_{30}$	1817	84.99	1815	57.91
NOS6	$S T_{40}$	2489	308.60	2487	200.15
NOS6	$S T_{50}$	3167	884.18	3162	591.95
NOS6	NOS6	725	22.90	729	18.10

Table 8: The performance of the preconditioner $M W S T_{1}$ on CPU and GPU for the second set of examples

Matrices		$M W S T_{1}$			
A	B	CIt	CIt-time	GIt	GIt-time
$S T M_{10}$	$S T M_{10}$	831	0.18	833	1.09
$S T M_{10}$	$S T M_{20}$	2264	4.72	2267	4.73
$S T M_{10}$	$S T M_{30}$	3596	34.00	3604	20.35
$S T M_{10}$	$S T M_{40}$	4926	152.78	4931	71.82
$S T M_{10}$	$S T M_{50}$	6274	488.41	6287	197.01
$S T M_{20}$	$S T M_{20}$	4568	36.58	4578	24.91
$S T M_{20}$	$S T M_{30}$	7599	216.78	7611	143.72
$S T M_{20}$	$S T M_{40}$	10343	840.34	10354	520.89
$S T M_{20}$	$S T M_{50}$	13010	2234.6	13027	1500.6
$S T M_{30}$	$S T M_{30}$	11171	712.07	11199	491.93
$S T M_{30}$	$S T M_{40}$	15489	2563.8	15504	1731.5
$S T M_{30}$	$S T M_{50}$	19497	6225.7	19521	4999.5
$S T M_{40}$	$S T M_{40}$	20170	6165.1	20207	4156.8
$S T M_{40}$	$S T M_{50}$	25848	15348.00	25873	12075.00
$S T M_{50}$	$S T M_{50}$	31525	30637.00	31573	24410.00

5 Conclusion

We have proposed an approach for computing an approximate solution of matrix equation $A X B=C$, where A and B are Stieltjes matrices. In this approach, by using the BFS algorithm, we presented a new algorithm for
obtaining the inverse of Vaidya's maximum spanning tree preconditioner as an approximate inverse preconditioner. This preconditioner does not require solving any linear systems and is highly parallelizable. We observed that this algorithm furnishes an efficient preconditioner for the matrix equations. The numerical experiments showed that, for large matrices, this preconditioner is better than the other preconditioner in terms of iteration time and total time and the new algorithm is very efficient on the GPU.

Acknowledgements

Authors are grateful to the anonymous referees and editor for their constructive comments.

References

1. Bai, Z.Z. On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math. 29(2) (2011), 185198.
2. Baur, U., Benner, P. Cross-gramian based model reduction for data-sparse systems, Electron. Trans. Numer. Anal. 31 (2008), 256-270.
3. Beauwens, R. Upper eigenvalue bounds for pencils of matrices, Linear Algebra Appl. 62 (1984), 87-104.
4. Beauwens, R. Approximate factorizations with modified S / P consistently ordered M-factors, Numer. Linear Algebra Appl. 1(1) (1994), 3-17.
5. Benzi, M., Meyer, C.D. and Tuma, M. A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput.17(5) (1996), 1135-1149.
6. Benzi, M. and Tuma, M. A robust incomplete factorization preconditioner for positive definite matrices, Preconditioning, 2001 (Tahoe City, CA). Numer. Linear Algebra Appl.10(5-6) (2003), 385-400.
7. Bern, M., Gilbert, J.R., Hendrickson, B., Nguyen, N. and Toledo, S. Support-graph preconditioners, SIAM J. Matrix Anal. Appl. 27(4) (2006), 930-951.
8. Bouhamidi, A., Jbilou, K., Reichel, L. and Sadok, H. An extrapolated TSVD method for linear discrete ill-posed problems with kronecker structure, Linear Algebra Appl. 434(7) (2011), 1677-1688.
9. Calvetti, D. and Reichel, L. Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl. 17(1) (1996), 165-186.
10. Datta, B.N. Numerical methods for linear control systems: design and analysis, Elsevier, Academic Press, 2004.
11. Deng, Y.B., Bai, Z.Z. and Gao, Y.H. Iterative orthogonal direction methods for hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl. 13(10) (2006), 801-823.
12. George, J.A. Computer implementation of the finite element method, Technical report, Department of Computer Science, Stanford University, 1971.
13. George, J.A. and Liu, J.W.H. Computer Solution of Large Sparse Positive Definite System, Prentice-Hall, 1981.
14. Gremban, K. D. Combinatorial preconditioners for sparse, symmetric, diagonally dominant linear systems, PhD thesis, Carnegie Mellon University, 1996.
15. Gremban, K.D., Miller, G.L. and Zagha, M. Performance evaluation of a new parallel preconditioner, 9th International Parallel Processing Symposium, IEEE, (1995), 65-69.
16. Guennouni, A.E., Jbilou, K. and Riquet, A.J. Block Krylov subspace methods for solving large Sylvester equations, Matrix iterative analysis and biorthogonality (Luminy, 2000).Numer. Algorithms, 29(1-3) (2002), 75-96.
17. Horn, R.A., and Johnson, C.R. Topics in matrix analysis, Cambridge University Press, 1991.
18. Khojasteh-Salkuyeh, D. Cg-type algorithms to solve symmetric matrix equations, Appl. Math. Comput. 172(2) (2006), 985-999.
19. Khojasteh-Salkuyeh, D. and Toutounian, F. New approaches for solving large Sylvester equations, Appl. Math. Comput. 173(1) (2006), 9-18.
20. Matrix Market, Available at http//math.nist.gov/Matrix Market, May 2007.
21. Notay, Y. Solving positive (semi) definite linear systems by preconditioned iterative methods, Preconditioned Conjugate Gradient Methods, Lectures Notes in Mathematics, Springer, 1990.
22. Notay, Y. Conditioning analysis of modified block incomplete factorizations, Linear Algebra Appl. 154 (1991), 711-722.
23. Notay, Y. Conditioning of Stieltjes matrices by S / P consistently ordered approximate factorizations, Appl. Numer. Math. 10(5) (1992), 381-396.
24. Saad, Y. Iterative methods for sparse linear systems, SIAM, 2003.
25. Skiena, S.S. The algorithm design manual: Text, Springer Science \& Business Media, 1998.
26. Vaidya, P.M. Solving linear equations with symmetric diagonally dominant matrices by constructing good preconditioners, Unpublished manuscript UIUC, A talk based on the manuscript was presented at the IMA Workshop on Graph Theory and Sparse Matrix Computation, 1991.
27. Wang, M. and Feng, Y. An iterative algorithm for solving a class of matrix equations, J. Control Theory Appl. 7(1) (2009), 68-72.
28. Xie, L., Ding, J. and Ding, F. Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl. 58(7) (2009), 14411448.

[^0]: * Corresponding author

 Received 23 January 2018; revised 27 May 2018; accepted 13 August 2018
 K. Rezaei

 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran e-mail: k.rezai1985@gmail.com
 F. Rahbarnia

 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran. e-mail: Rahbarnia@ferdowsi.um.ac.ir

 ## F. Toutounian

 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Iran.
 The Center of Excellence on Modeling and Control Systems, Ferdowsi University of Mashhad, Iran. e-mail: toutouni@math.um.ac.ir

