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Abstract

We exploit the relationship between multiobjective integer linear problem
(MOILP) and data envelopment analysis (DEA) to develop an approach to
a resource reallocation problem. The general purpose of the mathematical

formulation of this multicriteria allocation model based on DEA is to enable
decision-makers to take into account the efficiency of units under control
to allocate additional resources for a new period of operation. We develop
a formal approach based on DEA and MOILP to find the most preferred

allocation plan taken account additional resources. The mathematical model
is given, and we illustrate it with a numerical example.

AMS(2010): 90B99.
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1 Introduction

The use of the data envelopment analysis (DEA) approach [1, 4] provides
useful information for monitoring and management in a production orga-
nization. The essential elements are knowledge reference units, sources of
inefficient units, variations of productivity from one period to the next, and
variable returns to scale.

Multicriteria decision aiding (MCDA) and DEA are two techniques in
operations research, which attract the attention of many researchers. Some
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authors are interested in their relationship and how to exploit [2, 3, 7–9, 11,
13,15,16]. We propose a mathematical model of multiobjective optimization
based on DEA that can help managers or decision-makers adjust investments
in different units of the control system by additional assignments to bring.

The general purpose of the mathematical formulation of this multicriteria
allocation model based on DEA is to enable decision-makers to take into ac-
count the performance of units under control to allocate additional resources
for a new period of operation. So, it is necessary to determine information
intermediaries:
– information on production or performance efficiencies;
– information on the returns to scale presented by each unit;
– optimal targets for each production unit.

The mathematical model, we propose, takes into account all this infor-
mation intermediaries. The objective is, on the basis of additional quan-
tity of resources and demands expressed by the different DMUs, to allocate
optimally and efficiently these resources available to maximize estimates of
product returns based on information gathered from performance measures
and returns of the ladder. In a given production system, the reference units
(the efficient units) are those that use resources (inputs) rationally, at best,
to achieve optimal results. This transformation of inputs into outputs is sup-
posed to follow a function the best of which is that used by efficient units.
These efficient units give an idea of best practices and thus provide the best
possible production plans. On the basis of information on the units, namely
the identification of the efficient and the inefficient, it is important to consider
how this information can be used to assist the decision-maker in allocating
resources for a new production period with the assumption that the system
will use the same process of transformation. One of the information that
can be provided by the application of the DEA method is the identification
of the variable returns to scale associated with each unit of the system on
a production function basis. Efficient and inefficient units can be either of
increasing returns to scale, constant returns to scale, or decreasing returns
to scale.

In this paper, we present the modeling of the problem, the mathematical
model and illustrate with a numerical example.

2 Issue and literature review

The DEA methodology is one of the most widely used decision aiding ap-
proaches in the literature. Emrouznejad and Yang (2017) [5] listed more
than 10,300 published articles. The fields of application are very diverse and
broad. “Resource allocation is the generic problem of assigning available re-
sources to users in the best possible way. Usually the resources are limited,
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thus sets of activities compete for these resources establishing explicit and
implicit dependencies, which may be subject to uncertainty. The resulting
decision problem on the best use of the resources can be decomposed in sev-
eral problems that have been intensively studied in the field of operations
research in the last few decades. Examples of such problems are 1:
Scheduling problem. Scheduling is used to optimally allocate scarce resources
to activities and includes problems like the allocation of plant and machinery
resources, the organization of human resources, and the control of production
processes and materials purchase.
Knapsack problem. The main idea is to consider the capacity of the knapsack
as the available amount of resource and the item types as activities to which
this resource can be allocated.
Cutting stock problem. It is a general resource allocation problem, where
the objective is to cut pieces of stock material into pieces of specified sizes,
minimizing the wasted material.
Power generation scheduling problem. Power generation scheduling is re-
quired in order to find the optimum allocation of energy such that the an-
nual operating cost of a power system is minimized, or the obtained profit is
maximized.”

There is a large literature dealing with these problems and several solving
techniques have been proposed. Several authors have been interested in the
problem of resource allocation. Fang, [6] used a generalized DEA model for
centralized resource allocation to uncover the sources of such total input con-
traction. Wu et al. [14] integrated DEA and MOLP to deal with the resource
allocation problem. Several authors have been interested in the linkage of
the two methods, the DEA method coupled with the MOILP method (rkc et
al. [10] and Sueyoshi [12]). We looked at questions such as: how can we take
into account the performance indices of the different units of a production
system to reallocate additional resources. To answer this question, we have
made certain assumptions. First, the observed efficient production boundary
of the system provides the best production function of the moment. Second,
the lower expected returns to scale of a unit is an indicator to minimize the
risk of resource waste. Indeed, when a unit has a variable returns to scale,
the methods give a forecast of the expected yield. This random aspect led
us to focus on the lowest expected return. In developing countries, the prob-
lem of allocating additional resources concerns more than one. Donors and
technical and financial partners, not only do they want to have measurable
performance indicators, but they also want to know if an efficient unit is not
going to lose performance if we add too many resources to it. With respect to
inefficient units, the same questions arise. Our approach is to address these
two types of concerns: to take into account the performance indices calculated
by DEA and to maximize the expected returns to scale of the units taking
into account the risks of waste. For example, if the minimum return to scale

1 Dimitri Thomopulos, Models and Solutions of Resource Allocation Problems based on
Integer Linear and Nonlinear Programming
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is zero, then the risk of waste is high. As a precautionary measure, we have
to wait for another evaluation period before adding additional resources.

3 Modeling of the problem

The Modeling of the problem requires intermediate steps to calculate, on the
one hand, coefficients of improvement of efficiency, according to the increase
inputs, and on the other hand, minimum values of variable returns to scale
of the different units.

3.1 Determination of reference units and estimation of
the “technical” function for improving returns

One of the major information in the process of modeling the problem is
knowledge of reference units that are technically effective units of system.
These units are determined using the Charnes, Cooper and Rhodes (CCR)
model [4]. We note

E = {j ∈ {1, . . . , NE} such as Decision Making Unit (DMU) : j is CCR efficient} ,

which contains the technical efficient DMUs. To obtain E , we use the DEA
techniques [1, 4]. Once the set E is determined, we use the Banker, Charnes
and Cooper (BCC) model [1] with input orientation analyzing the technical
efficient units by taking turns, individually each output factor associated with
all input factors. This step consists of measuring the performance of technical
efficient units relative to each output factor obtained with input factors. It
is a question of measuring the performance of the NE units in E with a
single output k and the m input factors. Thus, we estimate the possible
maximum efficiency for each output factor in relation to the observed data.
This mathematically translates into resolution for each unit d ∈ E and for
each output factor k ∈ {1, . . . , s} the following problem.

max ft(k, d) = µd
kykd + uk,d

subject to the constraints (s.c)


µd
kykj −

m∑
i=1

νk,di xij + uk,d ≤ 0, j = 1, . . . , n,

m∑
i=1

νk,di xid = 1,

µd
k ≥ ε, νk,di ≥ ε, for all i, uk,d ∈ R,

(1)
Remark: Although the units under evaluation are all technically effective,
therefore using the full BCC model, they are not necessarily efficient here
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since only one output factor is considered and the unit may be less efficient for
this single factor. In other words, the optimal value simply checks f̃ t(k, d) ≤
1.

To avoid problems related to situations of multiple optimal solutions, we
use the following minmax model (2).

min ∆d
k

s.c.



µd
k(ykj − ykd)−

m∑
i=1

νk,di (xij − xid)− δk,dj ≤ 0, j = 1, . . . , n,

m∑
i=1

νk,di xid = 1,

∆d
k − δk,dj ≥ 0, j = 1, . . . , n,

µd
k ≥ ε, νk,di ≥ ε, i = 1, . . . ,m.

(2)

The above formulation indicates that for a given output factor k, the hyper-
plane representing the maximum efficiency of that factor with the reference
unit d is defined by

µ̃d
k(yk − ykd)−

m∑
i=1

ν̃k,di (xi − xid) = ∆̃d
k.

It can therefore be seen that, for the output factor k and for the DMU d,
µ̃d
k(yk − ykd) is provided by poor performance

m∑
i=1

ν̃k,di (xi − xid) + ∆̃d
k.

The contribution of the various input factors to this increase can therefore

be measured by the expression
m∑
i=1

ν̃k,di xi, where xi represents the increase in

factor input i. In order to take into account all the reference units d ∈ E , we
consider the average of these values by introducing the quantity

m∑
i=1

αk
i xi, where αk

i =
1

NE

NE∑
d=1

ν̃k,di . (3)

The coefficients αk
i ≥ 0 reflect the relationship between the increase of the

input factor i and the maximum average return to which it contributes for
the improvement of the output k.

3.2 Determination of returns to scale values

However, it is also necessary to take into account the information on the vari-
able returns to scale of the different units in order to allocate the additional
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amount of available input optimally. In order to do this, we determine the
minimum values of the returns to scale that each unit can present. These
values are calculated for projections obtained on the efficient frontier, that
is, if the unit is not efficient, we project it on the efficient border before cal-
culating the minimum value of return to scale it can present. We use the
input-oriented BCC model to determine the values of the projections and
the minimum values of the returns to scale. We note X̂j and Ŷj the vectors
of the inputs and outputs, respectively, corresponding to the projection of
unit j on the efficient frontier. For each unit d, d = 1, . . . , n, we calculate
ρmin,d the finite minimum value of the present returns to scale by solving the
following problem:

umin,d = min ud

s.c.


s∑

r=1
µd
ryrj −

m∑
i=1

νdi xij + ud ≤ 0, j = 1, . . . , n, j ̸= d,

s∑
r=1

µd
r ŷrd + ud = 1,

µd
r ≥ 0, νdi ≥ 0, for allr, i, ud ∈ R,

(4)
According to Banker and Thrall [1],

ρmin,d =
1

1− umin,d
≥ 0.

Note γj = ρmin,j , j = 1, . . . , n. We note that the objective is to determine
the smallest theoretically observable scale performance.

4 Mathematical model

We now describe the formulation of the model, starting with the constraints
and then the objective functions.

4.1 Constraints on resource availability

We consider the following:
–that for each input factor i, a bi quantity is available to be distributed
between the different units j.
–that each DMU j expresses a request aij units for input i (we assume aij ≤
bi, for all j. ) by introducing binary variables ti,j by ti,j = 1, if the request
for input i of the DMU j is retained and ti,j = 0, otherwise. The constraints
of the MOILP-DEA model are then written
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n∑
j=1

aijti,j ≤ bi, i = 1, . . . ,m. (5)

4.2 Criteria

In the multicriteria model, we introduce s objective functions zk, k = 1, . . . , s
corresponding to the s output factors. zk will translate the additional return
(expected) of the factor k due to the increase of inputs i granted to the
different DMUs j. In order to calculate this increase it is necessary to take
into account both the coefficients αk

i determined in 3.1 and the coefficients
γj determined in 3.2.
Also the zk function is written

zk =
m∑
i=1

n∑
j=1

ckijti,j ,

where ckij = αk
i γjaij .

(6)

4.3 MOILP-DEA

The multicriteria problem that we propose to allocate additional resources
to DMUs is thus finally formulated by

“max ” zk =
m∑
i=1

n∑
j=1

ckijti,j , k = 1, . . . , s

s.c.


n∑

j=1

aijti,j ≤ bi, i = 1, . . . ,m,

ti,j ∈ {0, 1} for all i, for all j.

(7)

It should be noted that, since no interaction is involved in the constraints
between the variables relating to two different inputs, the problem can be
broken down into separate problems, considering each input separately.
For a fixed input i, the problem can be written

“max ” zk,i =
n∑

j=1

ckijti,j , k = 1, . . . , s

s.c.


n∑

j=1

aijti,j ≤ bi,

ti,j ∈ {0, 1} for all j.

(8)
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These m problems are each presented as a multicriteria “Knapsack prob-
lem” for which many methods of resolution exist. We have of course

zk =
m∑
i=1

zk,i.

5 Illustration

We consider the illustrative example with 3 input and 3 output factors, the
data of which are presented in Table 1.

Table 1: Data and Results of the Example

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 score CCR ρmin,d

1 8 4 6 5 4 8 1.0000 0.6748
2 7 8 4 3 7 4 0.9960 0.6772
3 11 6 4 11 11 5 1.0000 0.3423
4 10 10 2 9 14 1 1.0000 0.0732
5 2 7 3 4 1 4 1.0000 0.9582
6 6 10 10 8 10 13 1.0000 0.0000
7 11 7 11 11 2 16 1.0000 0.0000
8 5 14 8 6 13 9 0.8885 0.2899
9 10 11 9 9 5 12 0.9101 0.8969
10 1 8 2 9 13 2 1.0000 0.0388
11 6 5 3 12 5 5 1.0000 0.1574
12 5 9 1 10 8 1 1.0000 0.0845
13 9 12 8 14 17 10 1.0000 0.0000
14 13 13 7 15 12 9 0.8099 0.0000

Using the CCR model, we get all the technically efficient DMUs

E = {1, . . . , 14} \ {2, 8, 9, 14} .

Using the approach proposed by Banker and Thrall in [1] (see problem (4)
above), we obtain the minimum values of the variable returns to scale ρmin,d

of the 14 DMUs considered (see the last column of Table 1). To analyze each
d ∈ E and each output factor k, we use the problem (2) and we obtain the
following results (see Table 2). The results in Table 3 allow the calculation
of the coefficients αk

i .

Let us consider that the requests aij expressed in units i for the different
DMUs j are those shown in Table 4.
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Table 3: Results of the coefficients αk
i

k αk
1 αk

2 αk
3

1 0.0233 0.0876 0.1560
2 0.0306 0.0812 0.0973
3 0.0406 0.0698 0.1513

Table 4: Quantities requested aij

DMU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bi

Inputs i
1 1 2 0 3 0 1 1 0 2 1 1 0 2 0 10
2 1 1 1 0 1 1 0 1 1 1 0 2 0 1 5
3 2 0 0 1 2 1 1 1 0 0 2 1 1 2 8

With this example, the MOILP-DEA model is equivalent to solving the
3 following multicriteria “knapsack problems”.

“max ”



z1,1 = α1
1

14∑
j=1

a1jγjt1,j

z2,1 = α2
1

14∑
j=1

a1jγjt1,j

z3,1 = α3
1

14∑
j=1

a1jγjt1,j

s.c.


14∑
j=1

a1,jt1j ≤ 10,

t1,j ∈ {0, 1} j = 1, . . . , 14.

“max ”



z1,2 = α1
2

14∑
j=1

a2jγjt2,j

z2,2 = α2
2

14∑
j=1

a2jγjt2,j

z3,2 = α3
2

14∑
j=1

a2jγjt2,j

s.c.


14∑
j=1

a2jt2,j ≤ 5,

t2,j ∈ {0, 1} j = 1, . . . , 14.
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“max ”



z1,3 = α1
3

14∑
j=1

a3jγjt3,j

z2,3 = α2
3

14∑
j=1

a3jγjt3,j

z3,3 = α3
3

14∑
j=1

a3jγjt3,j

s.c.


14∑
j=1

a3jt3,j ≤ 8,

t3,j ∈ {0, 1} j = 1, . . . , 14.

Individual maximizations of the 3 criteria give:
– k = 1, t1,1 = t1,2 = t1,4 = t1,9 = t1,10 = t1,11 = 1, and t1,j = 0 otherwise
– k = 2, t2,1 = t2,2 = t2,3 = t2,5 = t2,9 = 1, and t2,j = 0 otherwise
– k = 1, t3,1 = t3,5 = t3,8 = t3,11 = 1, and t3,j = 0 otherwise.

6 Conclusion

In this article, using the relationship between DEA efficiency and MOILP, we
have proposed a mathematical model, a multicriteria linear problem for ad-
ditional resources allocation, and we have solved an illustrative sample. The
formulation described here can provide an efficient framework for optimizing
investment taking into account analyses of the performance efficiency of a
production system. On the one hand, the determination of the units of refer-
ence can facilitate the planning of the development programs of a given unit
(efficient or inefficient); on the other hand, the minimum values of variable
returns to scale make it possible to analyze the minimum need for additional
input factors to improve returns. This different information provided by the
use of DEA makes it possible to efficiently allocate additional resources so,
to search and performance efficiency, and stability of efficiency of the units
of the system. We then hope, for validation purposes, to apply these models
to specific cases relating to public sectors such as education. In the case of
aid and financing projects for farmers, it is important to note that this is the
case in the case of health and a private sector such as agriculture. This would
then allow validation of this initial model proposal and could be re-designed
if needed.
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