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multidimensional time-fractional order
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Abstract

‘We propose a numerical scheme to solve a general class of time-fractional
order telegraph equation in multidimensions using collocation points nodes
and approximating the solution using double shifted Jacobi polynomials. The
main characteristic behind this approach is to investigate a time-space collo-
cation approximation for temporal and spatial discretizations. The applica-
bility and accuracy of the present technique have been examined by the given
numerical examples in this paper. By means of these numerical examples,
we ensure that the present technique is simple, applicable, and accurate.
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1 Introduction

Fractional differential equations [2, 20] are exhibited as capable mathemati-
cal tools for factual and more precise depiction of various phenomena. They
show up in different territories, counting mathematical chemistry [12, 19],
viscoelasticity [25], biology [20], electrochemistry, physics [17], semiconduc-
tors, seismology, scattering theory, heat conduction, fluid flow, metallurgy,
population dynamics, optimal control theory, mathematical economics, and
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chemical reaction. As the increasing of employing fractional partial differen-
tial equations [21, 10, 30] in many social and scientific fields, the principle
challenge we defy is that getting answers for them. Unfortunately, for most
of these fractional partial differential equations, no one able to achieve an-
alytic solutions for such problems. There are an extraordinary number of
demonstrating and fractional order differential equations, which have been
illuminated numerically utilizing different methods, see [5, 6, 1, 8, 23, 24].

There are many applications of the telegraph equation such as signal anal-
ysis for transmission, propagation of electrical signals, and modeling of the
reaction diffusion. Sinc-Legendre collocation method [26] has been used to
solve the time-fractional order telegraph equation (T-FOTE). By means of
radial basis functions, Hosseini, Chen, and Avazzadeh [18] treated with time-
fractional telegraph equation. Wei et al. [27] applied the fully discrete local
discontinuous Galerkin method to solve fractional telegraph equation. In [28],
space- and time-fractional telegraph equations have been solved by using ho-
motopy perturbation method. Furthermore, the authors in [16] transformed
a wavelet method based on Haar wavelets to solve space and time fractional
telegraph equations.

In this work, we mean to build up some successful and productive collo-
cation schemes to comprehend time-fractional order telegraph equation. One
great advantage of such schemes is that it reduces the problems under con-
federation to systems of algebraic equations by using combination of basis
functions of shifted Jacobi polynomials and the Gauss-shifted Jacobi nodes
as the collocation nodes. The collocation method has successfully been ap-
plied to many situations [9, 4, 3, 14, 13, 15]. The main advantage of the
proposed method is that is easy to implement, and also, we obtain highly
accurate semi-analytic solutions via few number of retained modes.

The framework of this paper is as per the following: In the following area,
we present few relevant properties of fractional derivatives and shifted Jacobi
polynomials in the coming section. Section 3 is assigned to the theoretical
derivation of the shifted Jacobi collocation (SJC) method for one-dimensional
T-FOTE with the homogeneous and nonhomogeneous conditions. Section 4
is assigned to applying the SJC method for two-dimensional T-FOTE with
the homogeneous and nonhomogeneous conditions. Moreover, in Section 6,
several numerical examples and simulations are presented to clarify the effec-
tiveness and accuracy of the proposed underlying method. Finally, related
conclusions and observations are introduced.

2 Mathematical preliminaries

Some definitions and preliminaries related to fractional calculus [25] are
stated in this section. Also, we listed some properties related to the shifted
Jacobi polynomials.
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2.1 The fractional integration

For fractional integration of order p > 0, we can find different definitions,
which are not necessarily equivalent; see [22]. The more used definitions are
Riemann—Liouville and Caputo fractional definitions.

Definition 1. The Riemann-Liouville integral of order p > 0 is defined
as

1@ = s [ @0 w0 oo,
Pf() = f(@),

The operator J* satisfies the following properties:

(1)

JTYf(x) =J (), TR f(2) = IV T f (),
T+ @
JhaP — m Pre,

Definition 2. The Riemann-Liouville fractional derivatives of order v is
obtained by

1 dTﬂ
Dt (@) = ¢

o e ([ @0 @), -1 <<, o>
(m— ) dzm o

here m is used as the ceiling function of .

Definition 3. The Caputo fractional derivatives of order p is defined as

c — 1 * _ m—u—lﬂ —
D*‘f(ar:)—r(m_'u)/0 (z—1) dtmf(t)dt, m—1<pu<m, z>0.
With simple calculations, we obtain
DrC =0, (C is a constant) (3)
0, for m € Ny and m < [u],
DHg™ = P(m+1) - for m € Nog and m > [u] (4)
Fm+1—p) ' orm ¢ N and m > |u],

where [p] and |p] are used as usual for the ceiling and floor functions,
respectively.
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2.2 Properties of shifted Jacobi polynomials
By means of the main properties of Jacobi polynomials, we conclude the
following:
a,?) a,B a, a, a, a,
PD(z) = (0 z — b NPLE (@) — PP (), k> 1,

[a'N « 1 1
PP () = 1, me@%:?a+ﬁ+mx+§m—ﬁy

~D*r(k+B8+1)

P () = (MR @), Py = EHEERED )
where a, 8> —1, 2 € [-1,1], and
Jod) _ @hto+B+ D)2k +a+p+2)
k 2k+1)(k+a+B+1)
plesd) _ (B2 —a®)2k+a+B+1) ‘
k 2+ 1)(k+a+pB+1)2k+a+p3)’
lad) (k+a)k+B8)2k+a+5+2)
k (k+1)(k+a+B+1)2k+a+8)
Furthermore, the rth derivative of PJ(»O“'B )(x), is computed as
a lj+a+B+q+1) (atrfer)
D P (z) = P : 6
;@)= 2T(j+a+p4+1) (@) (©6)
where 7 is an integer. For the shifted Jacobi polynomial ’P( 5)( ) =
P,ia’m(%’” —1), £ >0, the explicit analytic form is written as
PEB) (5 :Zk: i Pk+B+DIG+k+atft+l)
ok = L+ B8+ DIk +a+B+1)(k - j)jILs -
7
=Z’°: I(k+a+1)(k+j+a+p+1) s
= k=T +a+1)T(k+a+p+1)L7Y ’
Thereby, we deduce the following;:
o8 RL(k+B84+1)
Pé,k '(0) = (-1) TG+ A
' i (8)
'p(a 5)([,) — Fktatl)
F(a+1) k!’
o —1)* T (k 1(k 1),

L'T(k—r+1)I(r+5+1) ’
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rpie) _Pletat+l)(k+atp+1),

D (£) = LT(k—r+1D0(r+a+1)"’ (10)
(s Tr+k+a+B84+1) (atrpgir

D PE(z) = ( )7?2,:'_;“)(1:). (11)

LT(k+a+pB+1)

Taking ng’ﬁ ) () = (L —2)%2”, we list the following norm and inner product
related to the weighted space: Li(‘" 510, L] as
L

L
(11,0) o = / (@) v(z) wi? (@) de, o], o = (@, v)? o (12)
0

A complete Li(aﬁ) [0, £]-orthogonal system is consisted of a set of shifted

Jacobi polynomials, where

v+ B+1
”,P(a .B) ”2 (ﬁ)a a h(a’B) _ h(aﬁ) (13)
R ) ko= ek
‘We used x N’ﬁ ) and w(a ) , 0 < j <N, as the nodes and Christoffel numbers

of the standard Jacobl—Gauss mterpolatlon in the interval [—1,1].

The corresponding nodes and corresponding Christoffel numbers of the
shifted Jacobi-Gauss interpolation in the interval [0, £] can be given by

a, L «@,
= Sl v,

c
B = ()T 0< <.

For any positive integer N, ¢ € Son+1[0, £] and by means of Jacobi-Gauss
quadrature property, we obtain

£ atBH1 ]
— 2)%2P P(x)dx = (£> (1—2)*(1+2)%¢ (z+1))d
[ ) (=

a+ﬁ+1
> e ﬁ)¢( ( X}“;f)ﬂ)) (14)

N
=2 =0 (w(é’ﬁ),)

Use Caputo’s fractional derivative given in (3) and (4) for the shifted
Jacobi polynomials 791: >h )( t) to obtain its fractional derivative as

DYPEP(6) =0, j=0,1,....[u] —1, u>0, (15)
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PLt () = DYPEO (1) = Zé"’*‘”tw G=1[ul, ] +1,..., (16)

=[]

where 5](-70;"5 ) i3 given by
g“‘fm (—1)i—n FG+8+DI'n+j+a+ 8+ 1)t"#

Tn+ B+ +a+B+1)(G—n)l(n—p+1)Lr

3 One-dimensional T-FOTE

3.1 One-dimensional T-FOTE with homogeneous
conditions

Here, we are occupied with utilizing the SJC method to solve one-dimensional
T-FOE [29]:

Mu(z,t) O Lu(x, t)

0%u(z, t)
Dtk N g1

Ox2

+72u(z,t) =73 +H(z,t),0< < L,

(17)
0<t<T,

where 1 < p < 2 and the term #H(z,t) denotes the field variable. We also
assume the homogeneous conditions:

ou(z,t)
ot

u(0,t) = u(L,t) = u(z,0) = lt—o = 0, (18)
OHu(x,t)

OtH
derivative. In addition, 71, 2 and 73 are given constant coefficients. The

point of our method is to get solution can be extended, using combination of
basis functions of shifted Jacobi polynomials, in the form

where £ and 7T are given and represents the Caputo fractional

N—-2M-2 5
ci g (@)l (1) = p(x, 1)C, (19)
i=0 j=0

where, ¢; j, 1 =0,1,...,N =2, §=0,1,...,M — 2 are the unknown coeffi-
cients,

C = [c0,0,C0,1,---+C0O,M=2;C1,0,C1,1,- - - C1,M—2;

T
CN—-20,CN—21y--+, CN—2,M—2] 5
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N and M are any arbitrary positive integers, and

o (@) = PEP (@) + P () + e PR (@), (20)
[e% mﬁ « ,, a3 o
P22 (1) = P2 (1) 4 p PRI (1) 4 g PITER) (1), (21)

From the boundary conditions gb(cajﬁ D(0) = d)(LallB (L) = 0 and the two
relations (8), we have the accompanying framework

(1+1+1) (t+1+1)(i+14+2)
e . =-1 22
CrD T GG+ | #2)
(i+1+1) G+1+1D)(GE+1+2)
% - + & " =-1 23
RS i+ 1)(i+2) (23)
Thus €; and ¢; can be remarkably resolved to give
o G+D)(I1-1)(2i+1+1+3)
‘ ((+1+D)GE+1+1)(2i+14+1+4) (24)
o G+DE+2)(2i+1+1+2)
! ((+1+1)GE+1+1)(204+1+1+4)
Also, one can without much of a stretch check that
20+ D)(2j+2+2+3)
T G2+ D2 +2+24+4) (25)
DG+ +2+2+2)
T G2+ ) +2+2)212+2+4)
From (15) and (16), we have that
,(/)ggjj B2 M)( ) DH'(/)(OQ z)( ) _ ,Pé?fj‘ B “)(t) + Pij(rofjff M)(t) (26)

+ ngﬁifQQ’“)(t),
and

(D ,,32, - a> 2 ao,Bo,t— o ’3"1’_
’(/)’(7’7; n 1)(t) D“ 11/}( :B2) ():,Pg—7j5 ® D@)‘*’Pﬂjg—jﬂ“ 1)(t)

By, pu—1
+gﬂ>¥’;+‘§“ (1).

(27)
Also ¢(z,t) is the 1 x (N — 1)(M — 1) matrix introduced as follows:

o(x,t) =[roo(z,t), 701 (2, 1), ..., ro,m—2(x, t); 11 ,0(, ), 71,1 (2, 1),
corim—2(@,t)srv_g0(,t), rv_2a(x,t), .. T N—2 m—2(T, 1)),

where
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rig(@,t) = o @ (@), i=0,1,

=0,1,...,M—2.
Substituting (19) into (17) yields

gn N=2M-2

(O D cagdid ™ @erT (1)

lO]O

gu-1 N=2M-2
o Z Z C$]¢(W17ﬁ1) d)(azyﬁz)( £))
i—0 =0

N—-2M-2

b3 S el @

L,i 7,5 (t)
=0 75=0

52 NozM-2

_ vgw( CL]¢(QI7H1) w(ﬂzyﬁz)( ) + H(x, t),
v =0 j=0

+’Yl

N 2

«1.,01 a“ a2,P2
Do bt ™ @) g (o)
i=0 j

g

<
Il
o

=
o
S
o

+ 7 Ci,jq&(cﬂgﬁl)

S
Il
=3
<.
Il
=3

az,B2
@0 )

2
N}
g
N}

+ 72 cijoe
=0

[}

(29)
(@)™ (1)

<.

82 N—-2M-2

(X 3 st

D (@)l (1)) + H(z, 1)
=0 4j=0

Therefore, adopting (26) and (27), enable one to write (29) in the following
form:
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N—-2M-2

> D ol M @y )

=0 4=0
2M—2

N—

=0 j=0

N—-2M-2
0

a ag,f:
D> o @™ )
=0
2

+ 7 ci j¢(0¢1ﬁl) )w(ﬂzﬁzylt 1)( t)
+ 72

i=0 j=

Assume that
Fiaa,t) = OE P @pes 0 (8) + g™ @)y 1)
« as, 0 o ag,B
F 0 @ (0) = 1 5 (5 @ (1),
at that point, (30) can be modified as
N—2M-2
Z Cq’,yij‘,’j(:r,t) = H(Ji,t). (31)
i=0 j=0

Collocating (31) in N—1 and M —1 roots of the shifted Jacobi polynomials
Pl(:ajfil(x), the Gauss-shifted Jacobi nodes, we obtain

2
w

M—2

Cig fog (000 42020y — (00 gl ey

-
Il

o
<.

j=0

forn=0,1,....N—-2, m=0,1,.

which can be written in the following matrix form

FT'C =R,

where

R =[Ro,0,Ri0,---,Rn—20;R0,1, Ri,1,-... RN—2.1;

T
Ron—2, Riv—2, ..., Rv—2,v—2]" s

Rij=H(a@ 40202y =01, N -2, j=0,1,...,M -2,
and

F = (fijnm), t&n=0,1,....N—=2, jym=0,1,...,.M —2

)
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in which the elements of the matrix F are determined as follows:
fijnm = fh]( 20'117,’?1) tg?;;,ﬁj))7 i7n = 07 17 s 7N - 27 j7m = 07 17 s aM —2.

In our implementation, this system has been solved using the Mathemat-
ica function FindRoot with zero initial approximation. In this manner, the
approximate solution of (17) is given by u(x,t) = ¢(x,t)C.

3.2 One-dimensional T-FOTE with nonhomogeneous
conditions

In the accompanying, we simplify alter the right-hand side to deal with the
nonhomogeneous initial-boundary conditions. Give us a chance to consider,
for example, one-dimensional time-fractional order telegraph equation (17)
with the nonhomogeneous initial-boundary conditions:

U(Ov t) :q()(t)v u(ﬁvt) = QI(t)v 0<t< T7

ou(x,t (33)
u(z,0) =po(z), %h:o =pi(x), 0<z <L,

where qg, q1, po, p1 are known functions and the function w is unknown.
Presently, assume the accompanying transformation

V(x,t) = u(@,t) + ao(t) + ar () + 2(x — £)(bo(z) + br(x)t),  (34)
where
ao(t) = —aoft). () = LOZ90,
bo() = L= 2)0(0) + a1(0)z = Lpo(x)
0 La(z—L) ’
aro(f) 3%(1‘) afh(f)
_ li=0 — p1(2) — (&5 lt=0 — lt=0)
bule) = x(x — L)

The mapping (34) changes the nonhomogeneous conditions (33) into the
following homogeneous conditions:

OV (z,t)

V(0,t) =V (L, t) =V(z,0) = e

lt=o=0, 0<t<T,0<z<L  (39)

Subsequently it suffices to solve the following time-fractional order tele-
graph equation:
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oMV (x,t) OV (x,t) 9V (x,t)
otr QAR vy + 72V (2, 1) =BT o +G(z,1),

0<z<L 0<t<T,

(36)

with the homogeneous conditions (35), where V(z, ) is obtained by (34) and

B O ap(t) O ag(t)
g(l’, t) _,H($7t) + ( (975“’ + T 8t;1,—1
9"a () Oty (t)
(g TN T ea(t)

+a(z - 'C)(bl(m)r(l;(f)ﬂ)

+ 72a0(t))

G
I'(3— )
anlolo) + i(a)) — o E00E)  E02),

Obaoi:c) i abél’f) t) = 273(bo () + br (2)1))).

thow + ‘/1b1(l‘) 2

= 2y3(27 — L)(

4 Two-dimensional T-FOTE

4.1 Two-dimensional T-FOTE with homogeneous
conditions

In this section, we test the following two-dimensional T-FOTE:

oMu(z,y,1) o' u(z,y, 1)

8t“ 71 at”’_l +72u(1"7 y7t)
Pu(z,y,t)  u(z,y,t) (37)
:73( an ayg ) +H(‘7"7yat)»
0<z<L),0<y<Ly,0<t<T,
with the homogeneous conditions
U(O, Y, t) = u(£1> y,t) = u(x, 0, t) = U(II?, £2,t) = U(ZL', Y, 0)
_ Ou(x,y,t) (38)

lt=0 = 0.

ot

The point of our method is to get solution can be extended, using combination
of basis functions of shifted Jacobi polynomials, in the form
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2
b
i
&
N
&

, , 3,83
u(w g )= 3 Z " cad S (@)l (e 0
i=0 j=0 k=0
= x(z,y,t)C, (39)
where, ¢; ik, 1=0,1,...,N=2, j=0,1,.... M -2, k=0,1,..., K — 2 are
the unknown coefficients,
=[€0,0,0,€0,0,1,+ ++1€0,0,K—25C0,1,05C0,1,15+++5C0,1,K—25++C0O,M—2,K—2;
€1,0,0,€1,0,15---5C1,0,K—25C1,1,0,C1,1,15-++>C1,1,K—25--+,Cl,M—2,K—2;
CN-2,0,0)CN—2,0,15---yCN—2,0,K—2,CN—2,1,0,CN—2,1,15---,CN—2,1,K—2)
.. 7CN72,M72,K72]T7
N, M, and K are any arbitrary positive integers, and
B
o @) = PE @) + PR (@) + s P (0, (40)
B B B B
o W) = PES W) + PENE W) +ePEE W), (D)
3,83 3,83 3,83 3,33
G @) = PEV @) + i PR ) + e PR @), (42)

where €;, €;, €, €5, pr and g are defined in (24) and (25).

Also x(z,y,t) is the 1 x (N — 1)(M — 1)(K — 1) matrix introduced as

follows:

X(xv Y, t) =[T0,0,0(x7 Y, t)v 7'0,0,1(*%'7 Y, t)) e 7TO,O,K—2(xv Y, t)v 7’0,1’0(17, Y, t)a

ro.1,1(7,y,t

741.0,1(‘177 Y, t

),
)

o) Tl,O,K—2<x» Y, t)v T1,1,0 (1‘, Y, t)v

) TO,M—2,K—2(177 Y, t); 7‘150,0(17, Y, t)v

riu(@,y,t), . Lk —2 (@Y, t), - T -2, k—2(T, Y, E);
rN=2,0,0(,9,t),"N=20,1(z,Y, 1), ..., "TN=2,0,K—2(,Y,1),

rN—2.1,0x, Y, 1), rN—21,1(T,y,t), ..., N2, K—2(7, Y. ), ...

rN—o.M—2Kk—2(z,y,t)],

where

at, as, a3,83 .
ri (@, 1) =680 ()02 ) (y) P (1), i = 0,1,

)

j=0,1,....M -2, k=0,1,...,K—2.

Substituting (39) into (37) yields

N -2

)

)
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ogn N-2M-2K-2

otr (32 20 D canse @l ™ o)

Lo,j
=0 j=0 k=0
6#_1 N-2M-2K-2

+’Ylat” 1 Z — I;)cwkfb(al’ﬁl) ) (az,ﬁz)( W}(as ﬂ3)( ))

a e} a3,B3
Fn Y S Yt @ )
k=

L)Pr,y.j
=0 4=0 0 : (43)
N—-2M-2K-2
o (@1.81) [y, (2,2) 1. (a3.63)
—’)’3@(2 C,jkfbgh ()Socz,j (yW}T,k (t)
Y =0 j=0 k=0
N—-2M-2K-2
§ (@1.81) )\ (a2.Ba) [\, (a3,83)
+ 7353 ( ikl (@)l )ra (1)
Y~ 120 j=0 k=0
+ H(x,y,t),
N—-2M-2K-2
aq, o a3 3
3 cuandS @A ) v )
=0 j=0 k=0
EEE (01,81 (o) 71 (a3.83)
Y D0 D agndi i @eln ) W) g vk ()
i=0 j=0 k=0
N—2M-2K-2
o s, B CM3 3)
+9 ciind o @) ()R (1) "
i=0 j=0 k=0 (44)

= gm0 D0 D e @ W™ )

=0 j=0 k=0
5 N-2M-2K-2 P
1 2 3,83
+35 5 ( cigrde M (@) () (1)
L j=0 k=0
+H(z,y,1)

Therefore, adopting (40), (41), and (42), enables one to write (44) in the
form
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aq, o a3,63,
37 cigwdE ) (@)l ()l P (1)
k=

i=0 =0 0
N-2M-2K-2
’ s 3,63,u—1
+7 ciinde ) @) ) @)
=0 j=0 k=0
N—2M-2K-2
a e} a3,B3
+72 ciandin @e e U™ )
i=0 j=0 k=0 (45)
o2 N—2M-2K-2
s s 3.83
=35> crgude ™ @ W™ 1)
Y i=0 j=0 k=0
92 N—2M-2K-2
« 1 B2 3,83
5,5 cardf @ W™ (1)
Y~ 120 j=0 k=0

Assume that

! o 3,83,
fi,j-,k(x7y7 ) (bijoillﬂ ( )(pi:;Jﬂz)( )w(a M)()
a s, B2 3,83, 1—1
+71¢(£11,i51)( )gp(ﬁ;f (y )1/)( B3, p— )(t)

+7 ¢%Tfﬁw )wgf/h)()d*“3d3()

ag, as, 3 a3,
o B @l i 1)
0?

3,63
~ g2 G5 @RS W ),
at that point, (45) can be modified as:

N—-2M-2K-2

Z Cijkfigr(®,y,t) = H(z,y,t). (46)

i=0 j=0 k=0

Collocating (46) in N —1, M — 1 and K — 1 roots of the shifted Jacobi
polynomials ’P(a .8) /1 (z), the Gauss-shifted Jacobi nodes, we obtain

2
w

M—

m
N

-2

(a1,81)  (a2.B2) ,(a3,83)
Ci »j:kfi7<7yk(x£1 n,i 9 Lo,m,j 7t7’l k )

S
Il

o
<.

j=0

x~
Il

0

443 (47)
'H( (a1,B1) | (a2,B2) t(U‘ ,83)

Tponi Yromi tTk ), forn=0,1,...,N — 2,
m=0,1,...,M—2 1=0,1,...,K —2,

which can be written in the matrix form FZC' = R, where
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R = [Ro,0,0, Ro,0,15- - -5 Ro,0,5—2,Ro,1,0. Ro,1,1,- -, Ro1, k-2, - - -
Roar—2,x-2:R100,R1,01,---» Ri0x-2, R11,0,Ri11,- -,
Riix—2, .., Rim—2x—2,RN_200,RN_201,---,RN_20K-2,

T
Rn_21,0,RN-211,-...BRN_21,K-2,.... RN_om—2,xk-2]",

Rijn =M@y a2, =01, N =2,
j=01,....M—2, k=0,1,...,K — 2,

and

F:(fijknml)» i,n:O,l,...,N—Q, j?mzoala"'7M_27
k1=01,... K—2,

in which the elements of the matrix F are determined as follows:

_ (a1,81) | (a2,82) ,(a3,83)
Fijinmt =Fi 40T i Yy mi trig )

in=0,1,...,N—2,
jom=0,1,...,M—2, k1=01,...,K—2.

In our implementation, this system has been solved using the Mathemat-
ica function FindRoot with zero initial approximation. In this manner, the
approximate solution of (37) is given by u(z,y,t) = x(z,y,t)C.

4.2 Two-dimensional T-FOTE with nonhomogeneous
conditions

In the accompanying, we simplify alter the right-hand side to deal with the
nonhomogeneous conditions. Give us a chance to treat with two-dimensional
(2D) T-FOTE (37) with the nonhomogeneous initial-boundary conditions:

u(0,y,t) =qo(y, 1), u(L1,y,t) = q1(y,t), 0<y<L,0<t<T,

u(z,0,t) =g2(z,t), u(z, L2,t) = g3(z,t), 0<ax<Ly,0<t<T,

Ou(z,y,t)
ot

(48)

U(%yﬁ) =q4(a:,y), It:o=q5($,y)7 0§9€§£170§y§£27

where qO(y7 t)v q1 (y7 t)? Q2(33» t)7 QB(% t)v Q4(1'7 y) and qs (33, y) are given func-
tions.

Presently, assume the accompanying transformation
V(.Z‘, Y, t) ZU(IL’, Y, t) + aO(y’ t) +zay (yv t)

+ x(x — L1)(bo(x,t) + ybi(z,t)) (49)
+z(x — L1)y(y — L2)(co(w,y) + tei(z,9)),
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where
q(y,t) —q1(y,1
olyst) =~ ), an(yr) = LD,
(L1 —2)q0(0,t) — L1ga(, t) + 2q1(0,1)
bo(l’, t) = )
l?(CL‘ — El)ﬁl
by(w,t) = L1(g2(z,t) — q3(z,t)) + (L1 — x)(q0(L2,t) — q0(0,t)) + z(q1(L2,t) — q1(0,1))
e = Lilax(z — L1) '
Co(m,y)

_ L1(g2(z,0) + q0(y,0) — g4z, y)) + 2(q1(y, 0) — q1(0,0) — qo(y,0)) — q0(0,0)(£1 — )

a zyLly(z — L1)(y — L2)

y£L1(g3(z,0) — g2(,0)) + y(L1 — 2)(90(0,0) — go(£2,0)) + zy(g1(0,0) — q1(£2,0))
xyLliLa(z — L1)(y — L2) ’

+

c1(z,y)

Ll(ﬁqna(tw) ~ag(z.y) — 3%8<tO,t) + aqz@(f,t)wrm(@ma(?,t) _ qua(ty,t) + Oqogf,t) _ 0q18<;3,t))
B eyl (z — £1)(y — L2) —o

{yﬁﬂaqﬁéf't) _ 9(125::?’))_'_ y(Lq — z)(aqoa(?yf) _ 9705362'f))+zy(6q1§3’” _ 9qy (Blézvt))}
t=0

zyLyLo(e — L1)(y — L2)

The mapping (49) changes the nonhomogeneous conditions (48) into the
following homogeneous conditions:

V(0,y,t) = V(Ly,y,t) =V (2,0,t) = V(x, Lo, t) = V(x,y,0)
OV (a,y, t)| . (50)
- ot t=0 — Y,
Subsequently it suffices to solve the following 2D T-FOTE:

oMV (z,y,t) N MV (2, y,1)

at” 71 at“_l +72V('1"3y’t)
PV (a,y,t) | 9PV (x,p.0) (51)
_’73( 8172 8y2 )—f—g(;r:,y,t),

OSxS‘ClaOSyS‘CQaOStSTv

subject to the homogeneous initial-boundary conditions (50), where V(x, y, t)
is given by (49), and
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0"ay(y,t) " Lag(y,t)

g(l‘, Y, t) :H(xv y,t) + Otr it Bt“—l +’Y2a0(yv t)
82(1/(] (yv t) 8“(1’1 (yv t)
— 293(bo(z, t) + yb1(z,t)) — 73 y? a( B
" ay(y,t) Pai(y,t)

+ RE vy + y2a1(y,t) — ’YSTyQ)
O bo(z,t) OHby(x,t)

+ x(x — L1)( o Y
8“_1bo($,t) 8”_1b1($,t)
+ 71( otr—1 Y otr—1 )

+ 72(bo (2, t) + ybi(z,t))

9%by(z,1) 0%by(z,t)  O%co(x,y) | 0%ci(m,y)
T TV T T g
660(%, y) 8Cl (l’, y)
2 2t

oy + 2t By )

+az(x — L1)(y — La)(c1(z, y)

+

r)tt—+~

T(2—p)
2—p
?E?t_ﬂ) + ’yQ(Co(!L‘, y) + tCl(I, y))

Peoloyy) | Pela.y)

— sl Ox2 " Qa2 )
oy LB Y 0D
—273(y — L2)(co(2, y) + ter(z,y))

(z
— 2,-)/3(23;_ £1)(y_L2)(8CO(§i,y) +t801(§:; y))

+ v (z,y)

)

5 Convergence and error analysis

In this section, following the analysis given in [11], we have the following
theorems. It is worthy to note here that the proofs of the next theorems are
similar to the proofs given in [11].

Lemma 1. The Caputo fractional derivative of the shifted Jacobi poly-
nomials satisfies the following estimate:

|D* PE (@) < CitHe

where C is a positive generic constant and ¢ = max(«, 5, —%)
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(2i + A+ 1)2
L2+ +1)(i+ P +1)

, then we have the following two connection formulas:

and

Theorem 1. If §; =

_(2i A+ 1)
R Byt 1)a

$ilz) = & (L — o) PLF D (@),
P;(t) = t2P;7i2,52+2)(x)'

Proof. The two formulas are easily obtained by application of the moment
formula given in Doha [7]. O

Theorem 2. The following two orthogonality relations are valid

c
./0 di(x)pj(x) P71 (L — )P da

DM TR MDD 2+ M +2) T+ + DI+ A+ 1)
" (i+a1+1) G+ +1)idT0E+ A +2) ’

/OT Yo () (£) 17272 (1 — £)*2dL

_; L2 22m 4+ X +1)2(2m+ Ao +2)T(m+ag + 1) T(m + 2+ 1)
— Ymn .

(m+,82+1)2m!1“(m+)\2+2)

Proof. The proof is a direct consequence from the orthogonality relation (13).
O

Theorem 3. (Convergence) If u(x,t) the exact solution of (17) is separa-
ble in the sense that u(x,t) = x(L — z)tf(x)g(t) and f,g are C® functions
with | () |< a, | ¢ (t) |< b, where a,b are positive constants, then the
expansion coefficients ¢;; in (19) satisfy the following estimate:

Moreover the series in (19) converges absolutely as N, M — oc.

Theorem 4. If u,un p are the exact and approximate solutions of (17),
respectively, and under the assumptions of Theorem 3, then we have the
following truncation error estimate

lu = un s = O(N "2 M%),

Theorem 5. If enx n = v — un,ar is the truncation error of the solution of
(17) and under the assumptions of Theorem 3, then we have the following
global error estimate:
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| °D¥ enoar + 71 “DF " enar +v2enar — 3 D2 enaslla
<p MMTITENTE 4y | MPHTE NS
+p3 72| M3 N3 + py |ys| M™3 Ne¥3.

Theorem 6. [Convergence] If u(z,t) the exact solution of (37) is separable
in the sense that u(x,y, t) = 2(Lo — x)y(Le —y)tf(z)g(y) h(t) and f,g,h
are C? functions with | f () [<a, | g (z) |[< b, | b (t) |< ¢, where a,b, ¢
are positive constants, then the expansion coefficients ¢;; in (39) satisfy the
following estimate:

| cijk |= O~ 2575k3) for all i,5,k > 3.
Moreover the series in (39) converges absolutely as N, M, K — oc.

Theorem 7. If u,un ar, i are the exact and approximate solutions of (37),
respectively, and under the assumptions of Theorem 6, then we have the
following truncation error estimate:

Ju— un sl = O(N"EM 3K~3).

Theorem 8. If ey yx = © — un v,k is the truncation error of the so-
lution of (37) and under the assumptions of Theorem 6, then we have the
following global error estimate:

|°D} enarie + 1 DI eno i + 2 enanx — 73 (D2 + D) enarkll2
< pr KR MTENTE Ay | KPR MR N
sl M N LK

+7s] (ﬁ4 M~3 N9+3 =3 + ps N—2 path K‘%) .

6 Numerical results

In this section, a few examples are outlined to demonstrate the pertinence
and proficiency of the novel technique in homogeneous and nonhomogeneous
conditions. The calculations are executed by utilizing Mathematica of Ver-
sion 8, and all counts are completed in a PC of CPU Intel(R) Core(TM)
i3-2350M 2 Duo CPU 2.30 GHz, 6.00 GB of RAM.

The distinction between the measured value of approximate solution and
its actual value (absolute error), are given by

E(z,t) = |u(z,t) — u(z,1)], (52)
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E(x,y,t) = [u(z,y,t) — u(z,y,t)], (53)

where u(x,t) and u(x,t) are the exact solution and the numerical solution
at the point (z,t), respectively. Also w(z,y,t) and u(z,y,t) are the exact
solution and the numerical solution at the point (z,y,t), respectively.

Moreover, the maximum absolute errors (MAESs) is given by

MAEs = Max{E(z,t) : V(z,t) € [0,£] x [0,T]} = L™, (54)

MAEs = Max{E(z,y,t) : V(z,y,t) € [0,L1] x [0, L] x [0, T} =L>. (55)

Also we can denote to the root mean square error (RMSE) by

N-2
> (el o)~ ) (56)
RMSE =\| =
N )
or
N—-2M-2
, B 7 ) ’
5% (e a0 — WG R0 (5
RMSE =\ ==
NM

Example 1. Give us initial a chance to consider the accompanying T-FOTE
(17) in the domain 0 < z < £, with taking after initial and boundary condi-
tions,

w(0,t) =u(L,t) =0, 0<wz<L,

w(z,0) = 8ug;, t)

|t=0 = 07 t> 0.

The exact solution is given by
u(z,t) = t3(L — z) sin?(z),
and

221 (x — L) sin*(x) (u — yit — 3)
I'(4—p)
+ 2t%73((x — L) cos(2z) + sin(22))

H(x,t) = + 122 (L — 2) sin2(x)’

RMSE is shown in Table 1 for different values of oy, B1, a2, B2, 71, V2
and 3 and H(x,t). Figure 1 shows the exact solution and numerical solutions
of Example 1, where N =14, M =4, yy =y =v3=1, L=T =5, p=
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Table 1: Comparison of RMSE for Example 1, where £ =7 =1 and N =12, M = 4.

V1,725 V3 Our method (p = 1.25) Our method (p = 1.75)
alzﬂlz_l7 alzﬁlz%f alzﬂlz_lz alzﬁl_%f
0422/32:—5 02:52=§ 02252:—5 a2:52=§

7 =0,7%=v=1] 5884510~ [ 2.6905.10"1° [ 6.0047.10~ ™7 | 8.1272.10~ "
Yo=07m=v=1] 1.7662.10~10 | 4.6050.10~° | 6.3574.10~'" | 1.2146.10~ 0
v3=0,71 =7 =1 | 1.8565.10~T | 2.4882.10~™ | 9.0080.10~ 2 | 7.2685.10~ 2
y=1,7%=~=0] 1.7330.10~T | 2.2806.10~™ | 1.0194.10~ ™ | 1.1746.10~ 11
yo=1,m1=7v=0] 22531.10~"" | 2.3049.10~'" | 6.4857.10"'% | 8.7682.10~ 12
y3=1,71=7v% =0 3.3257.10° " | 2.6122.10° 10 | 8.2929.10 T | 2.6548.10~1°

Figure 1: The exact u(x,t) and numerical u(z,t) solutions for Example 1, where N =
14, M =4, vy =y =~ =1, L=T =5, and p = 1.95.

1.95, and vy = 1 = as = B3 = 0. In Figures 2 and 3, we depicted the
following:

Fig. 2 The curves-graph of exact u(z,t) and numerical u(x,t) solutions for
Example 1, where N =14, M =4, vy =y =73=1, L=T =5, p=
1.95 and ay = 81 = ap = By = 0 at five different values of ¢,

Fig. 3 The curves-graph of exact u(z,t) and numerical u(x,t) solutions for
Example 1, where N =14, M =4, y1 =v=v=1, L=T =5, p=
1.95 and oy = 81 = ae = P2 = 0 at five different values of x.

It should be noted here that the CPU time 7 used to implement our
algorithm was computed using the TimeUsed command in Mathematica and
was found to be 15 < 7 < 22, 17 < 7 < 28 in seconds for N = 12, M = 4,
N =14, M = 4, respectively.

Example 2. In this example, we considered the T-FOTE (17) with the
coefficients 71 = 79 = 1, 73 = 7 and the following initial and boundary
conditions:
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Figure 2: The curves-graph of exact u(z,t) and numerical @(x,t) solutions for Example
1, where N =14, M =4, vy1 =y =73 =1, L =T =5, and p = 1.95 at five different
values of ¢.

Figure 3: The curves-graph of exact u(z,t) and numerical u(z, t) solutions for Example
1 where N =14, M =4, i =y =~v3 =1, L=T =5 and p = 1.95 at five different
values of x.

u(0,t) =0, w(L,t)=tsin*(L), 0<t<T,
Ou(x,t)

u(x,O) =0, ot

|t=0=0> OSLUS[:

where the source term H(x,t) is chosen to be consistent with the exact
solution u(z,t) = t3sin’(x).

The results of Example 2 are reported in Table 2 and Figures 4, 5, and 6.
Table 2 compares RMSE with [26] at different values of pu, N, M, aq, B1, as,
and ;. The space-time graphs of the exact and approximate solutions at
N =20, M =3, L=T =10, and p = 1.05 are plotted in Figure 4. We
plotted in Figures 5 and 6.

Fig. 5 The curves-graph of exact u(z,t) and numerical u(x,t) solutions for
Example 2, where N =20, M =3, L=T =10, and p = 1.05 at five
different values of ¢,

Fig. 6 The curves-graph of exact u(z,t) and numerical u(x,t) solutions for
Example 2, where N =20, M =3, L =7 = 10 and pu = 1.05 at five
different values of x.

It should be noted here that the CPU time 7 used to implement our
algorithm was computed using the TimeUsed command in Mathematica and
was found to be 33 < 7 < 41 for N =20, M = 3.

Example 3. Let us test the T-FOTE (17) with the coefficients v = 72 =
73 = 1, and H(x,t) according to the exact solution u(x,t) = xcos(z? + t?)
and the following initial and boundary conditions:



Shifted Jacobi collocation scheme for multidimensional ... 217
Table 2: RMSE for Example 2 at £ =7 = 1.
I Sweilam et al. Our method (N =12, M =3)
(m=20,n=3) |y =PF=—5,| a1 =51 =0 a1=51=$17
[26] a=0r=—35 | aa=02=0 | aa =02 =3
1.75 1.0474.107° 4.2800.10~ 1 7.4066.10~ 11 | 7.8044.10~ !
1.95 1.0080.107° 1.8994.10~ 11 | 2.7463.10~ 1 | 9.4081.10~ !
I Sweilam et al. Our method (N =12, M =4)
(m=20,n=4) |y =P1=—5,| a1 =51 =0 a1=51=$17
[26] a=0r=—35 | aa=02=0 | aa =02 =3
1.75 1.0429.107° 8.2456.10 1 7.9494.10~ 11 | 2.2020.10~ 10
1.95 9.8685.10~° 3.5018.10~ 11 1.3740.10~10 | 3.8586.10~1°

Figure 4: The exact u(x,t) and numerical u(z,t) solutions for Example 2, where N =

20, M =3, L=T =10, and g = 1.05.
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Figure 5: The curves-graph of exact u(x,t) and numerical @(x, t) solutions for Example
2, where N =20, M =3, L =T =10, and p = 1.05 at five different values of ¢.

Figure 6: The curves-graph of exact u(x,t) and numerical @(x, t) solutions for Example
2, where N =20, M =3, L=7T =10, and p = 1.05 at five different values of z.
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Table 3: TRMSE for Example 3 at £L =7 = 1.

p | Hosseini et al. Our method (N =12=M = 3)
(N =n=150) a1=51=—§1, a;=p31=0 a1=51=§1,

1.25 | 2.6551.1073 5.7636.10~8 5.9213.10~% | 5.8662.10~%
1.5 | 4.1743.1073 3.4483.10°8 5.8363.10~% | 1.0047.10~7
1.75 | 5.4164.10~3 4.2018.10°8 9.7424.10°% | 2.2745.10~7
1.95 | 3.8800.1073 1.4632.10~8 4.6185.10~% | 4.3415.10°%

Figure 7: The exact u(x,t) and numerical u(z,t) solutions for Example 3, where N =
20, M =20, £L=T =3, and pu = 1.05.

u(0,6) =0, w(L,t)=Lsin(L*+t?), 0<t<T,
Ou(x,t)
ot

u(x,0) = x cos(z?), lt=0 =0, 0<z<L.

In Table 3, we give the RMSE with various choices of pu, oy, £1, as,
B2, and L = T = 1. The outcomes are contrasted with the outcome of
radial basis function [18]. It is clear from this table that the solution gotten
by our technique is great in examination with radial basis function [18]. The
numerical and exact solutions are compared in Figure 7, where N = M = 20,
a; =01 =apy=p =1, p=1.05 and L = T = 3 Moreover, in Figures 8
and 9, we sketched the following:

Fig. 8 The curves-graph of exact u(x,t) and numerical u(z, ) solutions for
Example 3, where N =M =20, L=T =3, a1 = 1 = ay = ff3 =1,
and p = 1.05 at five different values of ¢,

Fig. 9 The curves-graph of exact u(z,t) and numerical u(x,t) solutions for
Example 3, where N =M =20, L=T =3, a1 =1 = ay = 3 = 1,
and p = 1.05 at five different values of z.



Shifted Jacobi collocation scheme for multidimensional ...

wrld)
f if08)
\ I '.:Ex:l.l}

{ x1.2)

o 6
-

‘|' w18
t 11 |-y
oy urld)
f 1 xl4)
uix3)

ifx3)

219

- {184

w060
.64
11t
iy
wlig

wlig
244
ui
3.0

Figure 8: The curves-graph of exact u(z,t) and numerical @(x,t) solutions for Example
3, where N =20, M =20, L=7T =3, and p = 1.05 at five different values of t¢.

Figure 9: The curves-graph of exact u(x,t) and numerical @(x, t) solutions for Example
3, where N =20, M =20, L =7 =3, and p = 1.05 at five different values of z.

Table 4: RMSE for Example 4 at p = 1.5.

L =1= —1, 1 =1=0, 1 =1= 5,
) __ 1 o __1
(N,M,K) 2 =2= 3 2 =2=0, 2 =2= 5
3=3=—3 3=3=0 3=3=3
(2,2,2) 4.8245 x 107° | 1.2683 x 10~* | 1.9055 x 10~ *
(4,4,4) 2.3555 x 1075 | 2.1954 x 1075 | 2.0665 x 10~°
(6,6,6) 1.5245 x 10~7 | 1.6220 x 10~7 | 3.9732 x 10~ 7
(8,8,8) 2.9602 x 10710 | 3.4822 x 10719 | 3.9732 x 1010
(10,10,10) | 3.7346 x 10713 | 5.1405 x 10~13 | 7.0877 x 10~13

Example 4. We consider the 2D T-FOTE (37) with the coefficients v,
Y2 = v3 = 1, and H(x,y,t) according to the analytical solution u(z,y,t)

t? sin(x + y) and the following initial and boundary conditions:

Q

o,
u(x,
(

u(z,y,0) =

y,t) = t?sin(y),

3U(1’, y,t)
ot

lieo=0,0<2<1,0<y<1.

u(ly, ) = t?sin(y+1), 0<y <1, 0<t <1,
0,t) = t*sin(z), u(x,1,t) =t?*sin(z +1), 0<z <1, 0<t <1,

Tables 4 and 5 show the RMSE and the MAEs, respectively, with different
values of «, 8, N, M, and K.
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Table 5: MAEs for Example 4 at u = 1.5.

1=1= _%7 1:1:07 1 =1= %7
(N»ALK) 2 —2=— _517 2 —2=— 07 2 —=2— %»
3=3=—3 3=3=0 3=3=3

(2,2,2) 4.0454 x 1072 [ 3.7132 x 10=3 | 3.4097 x 1073

(4,4,4) 41167 x 107> | 3.7308 x 107° | 3.4409 x 10~°

(6,6,6) 2.1882 x 1077 | 2.2566 x 10~7 | 2.2929 x 1077

(8,8,8) | 4.5656 x 10710 | 5.5665 x 10710 | 6.4892 x 10~1Y

(10,10,10) | 5.6932 x 10713 | 9.0227 x 1071* | 1.3389 x 10713

7 Conclusions

The SJC method is effectively connected for finding the agreement of T-
FOTEs. We have accomplished a decent understanding between the approx-
imate solution acquired by SJC and the exact one. The aftereffects of the
examples demonstrate that the shifted Jacobi collocation method is depend-
able and effective technique for solving time fractional telegraph equation and
also other equations. The key feature of the proposed method is to obtain
highly accurate semi-analytic solutions via few number of retained modes.
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