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Abstract

We apply a primal-dual simplex algorithm for solving the biobjective min-

imum cost-time network flow problem such that the total shipping cost and
the total shipping fixed time are considered as the first and second objective

functions, respectively. To convert the proposed model into a single-objective

parametric one, the weighted sum scalarization technique is commonly used.
This problem is a mixed-integer programming, which the decision variables

are directly dependent together. Generally, the previous works have consid-

ered the linear biobjective problem with the traditional network flow con-
straints, while in this paper, corresponding to each flow variable, a binary

variable is defined. These zero-one variables are utilized to describe a fixed
shipping time for positive flows. The proposed method is successful in finding

all supported efficient solutions of a real numerical example.
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1 Introduction

In multi-objective network flow optimization, several objective functions,
which generally are time, cost, risk, environmental concerns, and so on, have
to be optimized such that the flow conservation and capacity constraints are
satisfied. In actual problems, since the objectives are frequently conflicting,
finding a feasible solution optimizing all objectives simultaneously is difficult
or in most cases is impossible. Therefore, the aim of multi-objective opti-
mization is to compute nondominated points rather than optimal values. A
perfect review of the multi-objective cost flow problem is done in [14, 25].

The minimum cost-time network flow problem (MCTNFP) is a well-
known and valuable topic in the scientific researches, which can be classified
in a subset of the fixed charge network flow problems (FCNFPs). The first
objective function considers the total shipping cost of flow, and the second
objective function measures the total fixed shipping time of flow. Correspond-
ing to any flow variables, there is a zero-one decision variable that is utilized
to compute the total fixed shipping time on each directed arc. The weighted
sum scalarization technique is used to convert the reformulated model into a
parametric single objective optimization. Eusébio, Figueria, and Ehrgott [11]
presented a modified primal-dual simplex algorithm based on the work done
in [8] to find nondominated extreme points of the linear biobjective network
flow problems. The main idea in both algorithms is that the scalarization
parameter λ ∈ (0, 1) is broken into subintervals such that each nondominated
extreme point is associated with one and only one set in the partition. Ac-
cording to these papers, the primal-dual approach is considered for computing
all efficient solutions of MCTNFP (see also [22, 4]).

FCNFP is a classical NP-hard combinatorial problem, (see [13]). This
problem consists of two costs corresponding to each incident arc in the net-
work: A fixed cost for the use of the arc and a variable cost proportional to
the number of units sending along the arc (see [7]). The end of the FCNFP
is to choose some arcs and assign feasible flows to them in order to transfer
commodities from an origin to a destination at a minimal total cost. Some
important traditional problems such as transportation problem, facility loca-
tion problem, and network design problem can be formulated as an FCNFP.
Many exact and heuristic techniques have been applied for solving the FC-
NFP. Analytic procedures commonly utilize branch and bound method to
search an exact solution of the FCNFP (see [21]). Heuristic and evolutionary
techniques have been developed to find a near-optimal solution to the under
regarded problem (see [19, 20]).

Raith and Ehrgott [24] presented an algorithm to compute a complete set
of efficient solutions for the biobjective integer minimum cost flow (BOIMCF)
problem based on a two-phase method (see [23]). Using the mean of weighted
sum technique, Abo-Sinna and Rizk-Allah [2] introduced a new gradient-
based neural network approach for solving biobjective optimization, which
is stable in the sense of Lyapunov. According to Benson’s scalarization [6]
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and min-max methods, Mohammadi, PourKarimi, and Pedram [17] stud-
ied the scientific workflow scheduling problem in a multi-cloud environment
with cost and makespan minimization objectives. Eusébio and Figueria [10]
solved a sequence of ε-constraint problem to find all integer nondominated
extreme points of small or medium size of BOIMCF problem by a branch-
and-bound method. Ehrgott, Shao, and Schöbel [9] implemented a method
for approximating the nondominated set of a multi-objective nonlinear con-
vex programming problem. Abareshi and Zaferanieh [1] introduced a bilevel
model to solve the capacitated p-median facility location problem with the
most likely allocation solution. Applying Lagrangian dual theory, the pro-
posed bilevel problem is reduced to a new one-level nonlinear mixed-integer
problem whose solution is obtained by comparing two mixed-integer linear
problems.

In this study, we introduce a strategy for formulating and solving biob-
jective minimum cost-time network flow problems (BOMCTNFPs), which
in addition to the flow variables, some corresponding zero-one decision vari-
ables are used in their construction. Keshavarz and Toloo [16] considered
the weighted sum scalarization approach to convert their proposed model to
a corresponding parametric mixed-integer minimum cost flow problem with
single objective function and finally reported the supported efficient solutions
for only two values of the scalarization parameter λ = 0.05, 0.5. The main
difference of our work with [16] is that, by utilizing the primal-dual technique,
all of the nondominated extreme points and the supported efficient solutions
of the proposed problem are computed.

The idea of the mathematical formulation of BOMCTNFP is taken from
Hochbaum and Segev [15]. They offered an augmented formulation of the
fixed charge problem and proved that an optimal solution of the augmented
problem is an optimal solution of the fixed charge problem. The numerical
procedure that they have been implemented is based on Lagrangian relax-
ation, which behaves well empirically.

2 Mathematical formulation of the BOMCTNFP

Ehrgott and Puerto [8] suggested the primal-dual algorithm for solving a gen-
eral form of the multi-objective programming problem. This algorithm solves
the problem by constructing a partition of the set (0, 1) such that each subin-
terval of this partition is attributed to only one efficient solution. A modified
primal-dual approach for solving linear biobjective minimum cost network
flow problem was developed in [11], which uses reduced cost information to
avoid redundancy. Here, we apply a similar idea to find nondominated points
for solving a mixed BOMCTNFP.

Suppose that G = (V,A) is a directed and connected network in which V
is a finite set of nods with |V| = m, and A is a collection of directed pairs of
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elements of V called arcs, with |A| = n. Corresponding to any arc (i, j) ∈ A,
a triple label as (cij , tij , uij) is assigned, where the first, second, and third
components are shipping cost, shipping fixed time, and capacity, respectively.
Associated with every node i ∈ V, there is a value bi, which shows the supply
(if bi > 0) or demand (if bi < 0). If bi = 0 for some i ∈ V, then the node i is
called a transshipment node. The interested reader can consult [5, 3].

Consider the following BOMCTNFP with mixed continuous-binary vari-
ables:

min cx =
∑

(i,j)∈A

cijxij ,

min ty =
∑

(i,j)∈A

tijyij ,

s.t.
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk for all k ∈ V,

0 ≤ xij ≤ uij for all (i, j) ∈ A, (1)

yij =

{
1 xij > 0,

0 xij = 0,

yij ∈ {0, 1} for all (i, j) ∈ A,

where the binary variable yij is an auxiliary variable to consider the fixed
time tij for the positive flow xij on arc (i, j). If we assume that the values of
the flow variables are real, then the model (1) is a biobjective mixed-integer
problem, and if the value of the flow variables is integer, then this model
is a biobjective integer problem. We refer to the first case with minimum
cost-time continuous flow (MCTCF) problem, and to the second one with
minimum cost-time integer flow (MCTIF) problem.

The efficient solution is an important concept in the problem of multi-
objective optimization. In fact, an efficient solution to a multi-objective
problem is the response, which cannot improve some of the objectives with-
out worsening other objectives. Assume that X is a set of feasible solutions
to problem (1), providing the constraint yij ∈ {0, 1}, (i, j) ∈ A is replaced
with the continuous constraint yij ∈ [0, 1], (i, j) ∈ A. The set X is called
the decision space. We denote the feasible set in the objective space as
Z(x, y) = {(cx, ty)|(x, y) ∈ X}.

Definition 1. [12] Let (x, y), (x′, y′) ∈ X. If cx 6 cx′, ty 6 ty′ and
(cx, ty) 6= (cx′, ty′), then it is called (x, y) dominates (x′, y′) in the decision
space, and equivalently (cx, ty) dominates (cx′, ty′) in the objective space.
This notion is denoted by Z(x, y) � Z(x′, y′).

Definition 2. [18] The feasible solution (x, y) ∈ X is an efficient so-
lution, if there is no other feasible solution like (x′, y′) ∈ X such that
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Z(x′, y′) ≺ Z(x, y). If (x, y) is an efficient solution in the decision space
X, then its image in the objective space is non-dominated, that is, Z(x, y) is
named a nondominated point. The set of all efficient solution is denoted by
XE, and the set of all nondominated points is denoted by ZE.

Definition 3. [12] The efficient solution (x∗, y∗) ∈ XE is a supported effi-
cient solution, whenever it is an optimal solution to the following weighted
objective problem:

min{λ1cx+ λ2ty : (x, y) ∈ X}, (2)

where (λ1, λ2) ∈ Λ0 and Λ0 = {(λ1, λ2) : λ1 > 0, λ2 > 0, λ1 + λ2 = 1}.

Remark 1. [8] If (x∗, y∗) is a supported efficient solution, then Z(x∗, y∗) is
also called a supported nondominated point. We use XsE and ZsN to denote
sets of supported efficient solutions and supported nondominated points, re-
spectively. The efficient solution (x∗, y∗) is a nonsupported efficient solution,
if there exist some nonpositive values of λ1 or λ2 such that (x∗, y∗) is an
optimal solution of problem (2).

3 An augmented formulation of the BOMCTNFP

In this section, we look for the supported and nonsupported efficient solutions
that are the main challenges in solving mixed BOMCTNFPs. In addition, we
show the relation between xij and yij , which is an additional challenge. We
solve this problem with an alternative linear constraint, which is expressed in
many articles in the field of fixed-charge problem (see [15, 7, 20]). First, we
reformulate model (1) by replacing the third constraint with xi,j ≤ ui,jyi,j ,
as follows:

min cx =
∑

(i,j)∈A

cijxij ,

min ty =
∑

(i,j)∈A

tijyij ,

s.t.
∑

(k,j)∈A=

xkj −
∑

(i,k)∈A

xik = bk for all k ∈ V, (3)

xij ≤ uijyij for all (i, j) ∈ A,
xij ≥ 0, yij ∈ {0, 1} for all (i, j) ∈ A.

Hochbaum and Segev [15] proved a theorem that states that an efficient so-
lution to (3) is an efficient solution to (1). On the other hand, a fundamental
theorem in multi-objective linear problem assures us that any efficient solu-
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tion can be characterized as an optimal solution of the weighted sum single-
objective problem (2). A proof for this fact can be found in [26]. Therefore,
problem (3) can be reformulated as the following parametric problem, which
provides a set of supported efficient solutions of the above problem:

minλcx+ (1− λ)ty = λ
∑

(i,j)∈A

cijxij + (1− λ)
∑

(i,j)∈A

tijyij ,

s.t
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk for all k ∈ V, (4)

xij ≤ uijyij for all (i, j) ∈ A,
xij ≥ 0, yij ∈ {0, 1} for all (i, j) ∈ A,

for all λ ∈ (0, 1).

4 Primal-dual algorithm for solving mixed BOMCTNFP

In the following, we use a primal-dual algorithm for the weighted sum single-
objective FCNFP (4) and evaluate the efficiency of the algorithm. Since
the primal-dual algorithm is based on the duality theory of problem (4), the
relaxation relation yij ∈ [0, 1] is used instead of yij ∈ {0, 1}. Hence, the dual
problem of (4) is cast as follows:

max
∑
k∈V

bkπk −
∑

(i,j)∈A

δij ,

s.t. πi − πj − µij ≤ cij(λ) for all (i, j) ∈ A, (5)

µijuij − δij ≤ tij(λ) for all (i, j) ∈ A,
µij ≥ 0, δij ≥ 0 for all (i, j) ∈ A,

where cij(λ) = λcij , tij(λ) = (1−λ)tij , for some λ ∈ (0, 1), π = (π1, . . . , πm)
is the vector of dual variables corresponding to conservation constraint∑

(k,j)∈A xkj −
∑

(i,k)∈A xik = bk, µ = (µi,j)(i,j)∈A is the vector of dual

variables corresponding to the constraint xij ≤ uijyij , and δ = (δi,j)(i,j)∈A is
the the vector of dual variables associated with the constraint yij ≤ 1, that
is, ∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk : πk for all k ∈ V,

xij ≤ uijyij : µi,j for all (i, j) ∈ A, (6)

yij ≤ 1 : δi,j for all (i, j) ∈ A.
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Since the right side of the constraints in (5) depends on λ, the feasible
solutions of this problem inevitably depends on λ. Suppose that (x∗ij , y

∗
ij) and

(π(λ)∗, µ(λ)∗, δ(λ)∗) are the feasible solutions of the primal problem (4) and
the dual problem (5), respectively. By using the complementary slackness
conditions, (x∗, y∗) and (π∗, µ∗, δ∗)(λ) are optimized for their corresponding
problems if and only if

i)
(
− π∗i + π∗j + µ∗ij + cij(λ)

)
x∗ij = 0 for all i, j ∈ V & for all (i, j) ∈ A,

ii)
(
− µ∗ijuij + δ∗ij − tij(λ)

)
y∗ij = 0 for all (i, j) ∈ A,

iii)
(
− x∗ij + uijy

∗
ij

)
µ∗ij = 0 for all (i, j) ∈ A,

iv)
(

1− y∗ij
)
δ∗ij = 0 for all (i, j) ∈ A.

If 0 < x∗ij < uij , then µ∗ij = 0 and −π∗i +π∗j +cij(λ) = 0. Also, if cij(λ)−π∗i +
π∗j > 0, then x∗ij = 0 and y∗i,j = 0. If cij(λ)− π∗i + π∗j < 0, then consequently
µ∗i,j > 0 and x∗ij = y∗ijuij . Two cases may be occurred:

a) If tij(λ) ≥ µ∗ijuij , then δ∗ij = 0; hence y∗ij = 0 and x∗ij = 0.

b) If tij(λ) < µ∗ijuij , then δ∗ij > 0; hence y∗ij = 1 and x∗ij = uij .

Let (π, µ, δ)(λ) be a feasible solution to (5) and let Λq, q = 1, 2, . . . , r be
a partition of the interval Λ0 = (0, 1). Also, let A=

q ⊂ A be a set of arcs (i, j)
such that for all λ ∈ Λq, it satisfies πi(λ)− πj(λ) = cij(λ), that is,

A=
q = {(i, j) ∈ A : πi(λ)− πj(λ) = cij(λ), λ ∈ Λq}.

For the arcs not in the set A=
x , assuming λ ∈ Λq, if πi − πj < cij(λ), then

xij = 0 and yij = 0, and if πi − πj > cij(λ), then xij = uij and yij = 1 or
xij = 0 and yij = 0. We define sets Lq and Uq for q = 1, 2, . . . , r, as follows:

Lq = {(i, j) ∈ A : πi − πj < cij(λ), λ ∈ Λq},

Uq = {(i, j) ∈ A : πi − πj > cij(λ), λ ∈ Λq}.

For each interval Λq, we now define the restricted primal problem as
follows. This problem tries to find a feasible solution for the problem of the
parametric single-objective minimum cost-time network flow (4) using the the
arcs in the set A=

q , only. Consider the following restricted primal (RP(A=
q )))

problem:
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(RP(A=
q )) min z =

∑
k∈V\{1}

sk,

s.t.
∑

(1,j)∈A=
q

x1j −
∑

(i,1)∈A=
q

xi1 − s1 +

m∑
k=2

(−1)tksk = b́1, (7)

∑
(k,j)∈A=

q

xkj −
∑

(i,k)∈A=
q

xik − (−1)tksk = b́k ∀k ∈ V\{1},

xij ≤ uijyij ∀(i, j) ∈ A=
q ,

xij ≥ 0, yij ∈ {0, 1} ∀(i, j) ∈ A=
q ,

sk ≥ 0 ∀k ∈ V,

where

tk =

{
1 b́k ≥ 0,

0 b́k < 0,

in which for each k ∈ V, b́k is defined as

b
′

k = bk +
∑

(i,k)∈Uq

xik −
∑

(k,i)∈Uq

xki.

Problem (7) has a feasible solution as follows:

xij = 0, yij = 0, s1 = 0, sk = |b́k| (k ∈ V\{1}).

Note that RP(A=
q ) does not depend on λ. Assume that (x̂, ŷ, ŝ) is the optimal

solution of problem (7). If the optimal value of the problem RP(A=
q ), ẑ, is

zero, then the optimal solutions for problem (4) are as x∗ij = x̂ij and y∗ij = ŷij
for all (i, j) ∈ A=

q , and x∗ij = 0 and y∗ij = 0 or x∗ij = uij and y∗ij = 1 for
remaining arcs in A. Now if ẑ > 0, then the given solution is not a feasible
solution to the primal problem (4). At this time, either a new feasible dual
solution should be found that improves the objective function (7) or it can be
concluded that the primal problem is infeasible. Since (x̂, ŷ, ŝ) is an optimal
solution to problem (7) with the arcs in A=

q , so a new arc in A\A=
q is needed

to reduce the value of the objective function in problem (7). We now consider
the dual of the RP(A=

q ) as follows:
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(DRP(A=
q )) max

∑
k∈V

b́kπk −
∑

(i,j)∈A=
q

δij ,

s.t. πi − πj − µij ≤ 0 for all (i, j) ∈ A=
q ,

µijuij − δij ≤ 0 for all (i, j) ∈ A=
q ,

π1 ≥ 0 (8)

(−1)tkπ1 − (−1)tkπk ≤ 1 for all k ∈ V\{1},
µij ≥ 0, δij ≥ 0 for all (i, j) ∈ A=

q .

Suppose that (π̂, µ̂, δ̂) is an optimal solution for DRP(A=
q ). According to the

complementary conditions, we obtain

î)
(
π̂i − π̂j − µ̂ij

)
x̂ij = 0 for all i, j ∈ V & for all (i, j) ∈ A=

q ,

îi)
(
− µ̂ijuij − δ̂ij

)
ŷij = 0 for all (i, j) ∈ A=

q ,

îii)
(
− x̂ij + uij ŷij

)
µ̂ij = 0 for all (i, j) ∈ A=

q ,

îv)
(

1− ŷij
)
δ̂ij = 0 for all (i, j) ∈ A=

q .

If 0 < x̂ij < uij , then µ̂ij = 0 and π̂i − π̂j = 0. In addition, if π̂i − π̂j < 0,
then x̂ij = 0 and ŷij = 0. If π̂i + π̂j > 0, then µ̂ij > 0 and x̂ij = ŷijuij . From

the dual constraint µ̂ijuij − δ̂ij ≤ 0, it can be deduced that δ̂ij > 0, therefore
ŷij = 1 and so x̂ij = 0.

We now define the following sets:

A==
q = {(i, j) ∈ A=

q : π̂i − π̂j = 0},

L=
q = {(i, j) ∈ A=

q : π̂i − π̂j < 0} = {(i, j) ∈ A=
q \A==

q : x̂ij = 0, ŷij = 0},

U=
q = {(i, j) ∈ A=

q : π̂i − π̂j > 0} = {(i, j) ∈ A=
q \A==

q : x̂ij = uij , ŷij = 1}.

Now Suppose that (π́, µ́, δ́) is a new solution to the dual problem (5),
which is defined as follows:

π́(λ) = π + θ(λ)π̂,

µ́(λ) = µ+ θ(λ)µ̂,

δ́(λ) = δ + θ(λ)δ̂,

(9)

where (π, µ, δ) is a dual feasible solution for the original dual problem (5),

(π̂, µ̂, δ̂) is a dual feasible solution for DRP(A=
q ), q = 1, . . . , r, and θ(λ) > 0.

For (i, j) ∈ A=
q , the new solution (π́, µ́, δ́) is a dual feasible solution for (5),

because
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π́i − π́j − µ́ij − cij =
(
πi + θ(λ)π̂i

)
−
(
πj + θ(λ)π̂j

)
−
(
µij + θ(λ)µ̂ij

)
− cij(λ)

=
(
πi − πj − µij − cij(λ)

)
+ θ(λ)

(
πi − πj − µij

)
≤ 0.

For (i, j) /∈ A=
q , the dual feasibility depends on the parameter θ(λ). The

new arc (i, j) ∈ A\A=
q , which will be added to the current set A=

q , must
reduce the value of objective function RP(A=

q ). To this end, any arc (i, j) ∈
A\A=

q satisfying either (i, j) ∈ Lq (i.e., πi − πj < cij(λ)) and π̂i − π̂j > 0 or
(i, j) ∈ Uq (i.e., πi − πj > cij(λ)) and π̂i − π̂j < 0 can be included to A=

q

provided that the dual feasibility for problem (5) is valid. Thus for keeping
this condition, θ(λ) is chosen as

θ(λ) = min
{cij(λ)− πi + πj + µij

π̂i − π̂j − µ̂ij
:
(

(i, j) ∈ Lq, π̂i − π̂j > 0
)
,(

(i, j) ∈ Uq, π̂i − π̂j < 0
)}
.

(10)

This process continues until ẑ = 0. At this time, we will have an optimal
solution for the primal problem (4). If the condition ẑ = 0 is not satisfied,
then an arc such as (i, j) ∈ Lq such that π̂i − π̂j > 0 or (i, j) ∈ Uq so that
π̂i−π̂j < 0 cannot be found. Therefore, the starting problem (4) is infeasible.

The primal-dual algorithm for solving the BOMCTNFP is summarized
in Algorithm 1.

5 A biobjective network flow example

Consider the following cities network. where 9 cities of Iran with 17 arcs
are shown in Figure 1 (each city is a node). For each arc (i, j), there is a
triple (cij , tij , uij) specifying the cost (million rials), time (hours) and ca-
pacity (million tons), respectively. Also, for each city i, there is a scalar bi
that indicates the value of supply or demand (million tons). As can be seen
from Figure 1, three cities produce a special commodity, that is, Mashhad,
Isfahan, and Ahwaz, and the rest cities are consumers. We trade 13.5 million
tons of all network goods, and supply all demands with minimum cost at the
minimum time. For simplicity, each city of the network is labeled with the
numbers 1 to 9, as Table 1.



G
al

le
y

P
ro

of

Solving biobjective network flow problem associated ... 43

Algorithm 1 Primal-dual biobjective minimum cost-time network flow algorithm

1: Set Λ0 := (0, 1), and let (π0, µ0, δ0)(λ) = (0, 0, 0), λ ∈ Λ0 be an initial
feasible solution of (5);

2: Set C := {l0}, where l0 :=
(

Λ0,A=
0 := ∅, L0 := A, U0 :=

∅, (π0, µ0, δ0)(λ)
)

;

3: While C 6= ∅ do
4: Select lq ∈ C and solve RP(A=

q ) with lq;
5: (a) If the optimal value is 0, then any optimal solution is an

efficient solution to (3). Set C := C\{lq}.
6: (b) Else solve DRP(A=

q ). Let (π̂, µ̂, δ̂)(λ), λ ∈ Λq be an optimal
solution for DRP(A=

q );
7: i. If there is no arc (i, j) such that πi − πj < cij(λ) and
π̂i − π̂j > 0 or

πi − πj > cij(λ) and π̂i − π̂j < 0, then (3) is infeasible
and STOP.

8: ii. Else set Λq,q′ , q
′ = 1 . . . , r′ of Λq employing (10) and

compute the new feasible solution (πqq′ , µqq′ , δqq
′
)(λ),

q′ = 1, . . . , r′ according to (10).
Put C := C\{lq}

⋃
{lqq′}.

9: End while

Figure 1: Graph of 9 cities of Iran with 17 arcs

Keshavarz and Toloo [16] computed the supported efficient solutions and
supported nondominated points for only two values of the scalarization pa-
rameter λ = 0.05, 0.5, which is reported in Table 2. Utilizing the primal-dual
technique proposed in this paper, we have obtained all the supported efficient
solutions and nondominated points of the problem that are introduced in Ta-



G
al

le
y

P
ro

of

44 O. Baghani and S. Ghafoori

Table 1: Labelling the cities of the network

City Tabriz Tehran Esfahan Ahvaz Yazd Shiraz Mashhad Zahedan Bandar abbas
label 1 2 3 4 5 6 7 8 9

Table 2: Efficient solutions and nondominated points proposed in [16]

λ Supported efficient solution Supported nondominated point

x∗32 = 3.2, x∗36 = 2.1, x∗35 = 1.8

0.05 x∗72 = 1.4, x∗78 = 0.8, x∗21 = 0.4 (cx, ty) = (1270.9, 66)

x∗46 = 2.2, x∗41 = 2.0, x∗69 = 2.1

x∗32 = 2.8, x∗36 = 0.1, x∗31 = 1.2

0.50 x∗35 = 3.0, x∗72 = 1.4, x∗78 = 0.8 (cx, ty) = (1242.5, 77)
x∗46 = 3.0, x∗41 = 1.2, x∗69 = 0.9

x∗59 = 1.2

ble 3. As can be seen, some new supported efficient solutions are computed
that such solutions were not investigated earlier in [16]. These new efficient
solutions supply a decision maker with more alternatives, who prefers less to
more in each objective.
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Table 3: Efficient solutions and nondominated points computed by our method for the

network of Figure 1

Supported efficient solutions

xi,j yi,j Supported nondominated points

x∗32 = 3.2, x∗36 = 2.1, x∗35 = 1.8 y∗32 = 1, y∗36 = 1, y∗35 = 1

x∗72 = 1.4, x∗78 = 0.8, x∗21 = 0.4 y∗72 = 1, y∗78 = 1, y∗21 = 1
x∗46 = 2.2, x∗41 = 2.0, x∗69 = 2.1 y∗46 = 1, y∗41 = 1, y∗69 = 1 (cx, ty) = (1270.9, 66)

x∗25 = x∗31 = x∗43 = x∗56 = 0 y∗25 = y∗31 = y∗43 = y∗56 = 0

x∗58 = x∗59 = x∗75 = x∗89 = 0 y∗58 = y∗59 = y∗75 = y∗89 = 0

x∗32 = 2.8, x∗36 = 0.1, x∗31 = 1.2 y∗32 = 1, y∗36 = 1, y∗31 = 1
x∗35 = 3.0, x∗72 = 1.4, x∗78 = 0.8 y∗35 = 1, y∗72 = 1, y∗78 = 1

x∗46 = 3.0, x∗41 = 1.2, x∗69 = 0.9 y∗46 = 1, y∗41 = 1, y∗69 = 1

x∗59 = 1.2 y∗59 = 1 (cx, ty) = (1242.5, 77)

x∗21 = x∗25 = x∗43 = x∗56 = 0 y∗21 = y∗25 = y∗43 = y∗56 = 0

x∗58 = x∗75 = x∗89 = 0 y∗58 = y∗75 = y∗89 = 0

x∗31 = 0.4, x∗32 = 2.8, x∗35 = 2.9 y∗31 = 1, y∗32 = 1, y∗35 = 1
x∗36 = 3.0, x∗41 = 2.0, x∗43 = 2.0 y∗36 = 1, y∗41 = 1, y∗43 = 1

x∗46 = 0.2, x∗59 = 1.1, x∗69 = 1.0 y∗46 = 1, y∗59 = 1, y∗69 = 1

x∗72 = 1.4, x∗78 = 0.8 y∗72 = 1, y∗78 = 1 (cx, ty) = (1381.4, 85)

x∗21 = x∗25 = x∗56 = 0 y∗21 = y∗25 = y∗56 = 0

x∗58 = x∗75 = x∗89 = 0 y∗58 = y∗75 = y∗89 = 0

x∗31 = 0.4, x∗32 = 2.8, x∗35 = 1.8 y∗31 = 1, y∗32 = 1, y∗35 = 1
x∗36 = 2.1, x∗41 = 2.0, x∗46 = 2.2 y∗36 = 1, y∗41 = 1, y∗46 = 1

x∗69 = 2.1, x∗72 = 1.4, x∗78 = 0.8 y∗69 = 1, y∗72 = 1, y∗78 = 1 (cx, ty) = (1250.9, 70)

x∗21 = x∗25 = x∗43 = x∗56 = 0 y∗21 = y∗25 = y∗43 = y∗56 = 0

x∗58 = x∗59 = x∗75 = x∗89 = 0 y∗58 = y∗59 = y∗75 = y∗89 = 0

x∗31 = 0.4, x∗32 = 2.8, x∗35 = 3.0 y∗31 = 1, y∗32 = 1, y∗35 = 1

x∗36 = 0.9, x∗41 = 2.0, x∗46 = 2.2 y∗36 = 1, y∗41 = 1, y∗46 = 1
x∗59 = 1.2, x∗69 = 0.9, x∗72 = 1.4 y∗59 = 1, y∗69 = 1, y∗72 = 1 (cx, ty) = (1156.9, 67)

x∗21 = x∗25 = x∗43 = x∗56 = 0 y∗21 = y∗25 = y∗43 = y∗56 = 0

x∗58 = x∗75 = x∗78 = x∗89 = 0 y∗58 = y∗75 = y∗78 = y∗89 = 0

x∗31 = 1.2, x∗32 = 2.8, x∗35 = 1.8 y∗31 = 1, y∗32 = 1, y∗35 = 1
x∗36 = 1.3, x∗41 = 1.2, x∗46 = 3.0 y∗36 = 1, y∗41 = 1, y∗46 = 1

x∗69 = 2.1, x∗72 = 1.4, x∗78 = 0.8 y∗69 = 1, y∗72 = 1, y∗78 = 1 (cx, ty) = (1248.5, 70)

x∗21 = x∗25 = x∗43 = x∗56 = 0 y∗21 = y∗25 = y∗43 = y∗56 = 0

x∗58 = x∗59 = x∗75 = x∗89 = 0 y∗58 = y∗59 = y∗75 = y∗89 = 0

6 Computational experiments

The primal-dual approach for solving five instances of the BOMCTNFP has
been implemented using MATLAB R2017a software, on a laptop equipped
with Intel Core i5-8250U 1.80GHz processor and 8 GB of RAM, to find all
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their efficient extreme points. Table 4 shows that when the number of nodes
and arcs grows as compared to the number of supported efficient solutions,
the iterations and computational cost of the algorithm extremely increase.

Table 4: Numerical results by Algorithm 1 for several instances of BOMCTNFP (nses

stands for the number of supported efficient solutions)

The parameters of each instance

Instances Nodes Arcs Sources Sinks max ci,j max ti,j ui,j nses Iterations CPU time (sec.)
1 4 6 2 2 4 2 1− 2 1 2 0.02
2 5 8 3 2 7 3 1− 3 2 5 0.98
3 8 14 3 5 26 3 1− 3 3 43 1.24
4 9 16 5 4 34 4 1− 4 3 137 2.78
5 14 29 10 4 62 14 1− 5 6 198 4.53

7 Conclusion

The purpose of this paper was to solve the mixed biobjective problem of
minimum cost-time network flow. To this end, we first formulated the mixed
biobjective problem and proposed the primal-dual algorithm for solving it. In
this article, an example with 9 city nodes and 17 arcs was solved. We found
6 supported efficient solutions in the decision space. In comparison with
the method presented in [16], we could find some new supported efficient
solutions to provide a decision maker with more alternatives.
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