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Abstract

A nonoverlapping domain decomposition technique applied to a finite
difference method is presented for the numerical solution of the forward-

backward heat equation in the case of one-dimension. While the previous at-

tempts in dealing with this problem have been based on an iterative domain
decomposition scheme, the current work avoids iterations. Also a physical

matching condition is suggested to avoid difficulties caused by the interface

boundary nodes. Furthermore, we obtain a square system of equations. In
addition, the convergence and stability of the proposed method are investi-

gated. Some numerical experiments are given to show the effectiveness of the

proposed method.
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1 Introduction

The analysis and numerical solution of the forward-backward heat equa-
tion (FBHE) has been under consideration for more than three decades; see
[1, 8, 12, 20]. This problem appears in many applications such as bound-
ary layer problems in fluid dynamics and steady state computation, plasma
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physics, and studies of the propagation of an electron beam through the
solar corona (see [7] and the references therein). It also arises in computa-
tional fluid dynamics and randomly accelerated particle problem, and some
more applications are mentioned in [1]. The forward-backward problem has
been solved by various methods such as finite difference method (FDM)
[7, 6, 13, 23], transformation to a system of first order differential equa-
tions [17], least square approach [3], Galerkin finite element [2, 10, 9, 16],
and radial basis function meshless method [4].

The application of the domain decomposition method (DDM) together
with FDM for this problem in the case of one-dimension is widely seen in
the literature (see, for example, [7, 22]). This method was also applied to
the two-dimensional FBHE, and convergence of the iterative method was
considered in [23].

In addition, the theoretical aspects of the underlying problem have been
studied by some authors [5, 14, 19]. Daoud [7] analyzed the convergence of
the overlapping Schwarz waveform relaxation method for solving the FBHE.

Kuznetsov [15] proved the uniqueness of the entropy solution for a nonlin-
ear forward-backward parabolic equation with Dirichlet boundary condition
and showed that initial and final conditions must be formulated in the form
of inequalities. Paronetto [20] considered the existence and uniqueness of the
solution for elliptic problems with a small parameter and proved that the so-
lution converges to the solution of a mixed type equation, elliptic-parabolic,
parabolic both forward and backward. In the above-mentioned methods,
the domain is usually divided into two subdomains, each of which is asso-
ciated with either a standard forward or backward problem. A numerical
method is then applied to each subproblem. A primary approximate solution
is assumed on the interior boundary followed by solving each subproblem
and updating the interface boundary solution iteratively. While the previous
DDM-FDM has been applied based on an iterative scheme, the current work
is based on applying a nonoverlapping DDM and employing an FDM without
using iterations. Some advantages of the proposed method read as follows.
Firstly, an initial approximate solution on the interface boundary, which may
affect the convergence, is not required. Secondly, the iteration, which may
considerably increase the computational costs, is avoided. In the suggested
method, the domain is divided into two nonoverlapping subdomains, and a
forward or a backward finite difference formulation is applied to each sub-
problem according to the sort of the initial conditions. The local algebraic
equations produced by the subproblems are then assembled in a global system
via employing a physical matching condition on the interface and obtaining
a square system of equations by removing the virtual boundary nodes. This
paper is organized as follows: The forward-backward equation is introduced
in Section 2. The DDM will be applied to the underlying problem in Section
3. The convergence and stability of the proposed method will be discussed
in Section 4. Finally some numerical results will be presented in Section 5.
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2 The forward-backward equation

A boundary value problem of a forward-backward parabolic equation in one-
dimension is introduced as

xut − uxx = f(x, t), (x, t) ∈ Ω = (−1, 1)× (0, 1),

u(−1, t) = g−1(t), for all t ∈ [0, 1],

u(1, t) = g1(t), for all t ∈ [0, 1],

u(x, 0) = u0(x), for all x ∈ [0, 1],

u(x, 1) = u1(x), for all x ∈ [−1, 0], (1)

where u0(x), u1(x), g−1(t), and g1(t) are known functions with u0(1) = g1(0)
and u1(−1) = g−1(1).

The existence, uniqueness, and stability of the above forward-backward
problem have been considered by some authors [1, 2, 3, 18]. Authors of [1]
used the energy method to prove the existence and uniqueness of a weak so-
lution to FBHE on some special spaces equipped with some suitable norms.
Lu and Wen [18] studied the existence and uniqueness of a weak solution
to (1) on a certain Hilbert space. Aziz and Liu [3] reduced (1) to a first-
order symmetric-positive system of differential equations and proved exis-
tence and uniqueness to the solution of the equivalent problem using the
theory of symmetric-positive systems previously presented by Friedrichs [11]
for a strong solution, under certain smoothness assumptions.

In order to apply the FDM, we produce a set of grids as follows: Let

h =
1

M
, let xi = ih for i = 0,±1, . . . ,±(M − 1), let τ =

1

N
, and let tj = jτ

for j = 0, . . . , N .

3 Domain decomposition method

In this section, the DDM is applied to the forward backward problem in two
steps. First, the domain is divided into two subdomains and the algebraic
equations are formed for each subregion. Then, the local formulations are
assembled to obtain the global system of equations.
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Figure 1: The domain partitioning and the pattern of the finite difference schemes.

3.1 Domain partitioning

Let the domain Ω be divided into two nonoverlapping subregions, Ω1 =
(−1, 0) × (0, 1) and Ω2 = (0, 1) × (0, 1) with the real boundaries Γ1 and Γ2

and an interface boundary ΓI in between (see Figure 1). In order to deal
with this problem, we apply a forward and a backward difference scheme
to the domains Ω1 and Ω2, respectively. Employing the first order forward
formulation for time derivative and the second order central difference scheme
for the spatial derivative at the mesh points in Ω1, we obtain

ih
ui,j+1 − ui,j

τ
=
ui+1,j − 2ui,j + ui−1,j

h2
+ fi,j ,

0 ≤ j ≤ N − 1, −M + 1 ≤ i ≤ −1,

ui,N = u1(ih), −M + 1 ≤ i ≤ 0,

u−M,j = g−1(jτ), 0 ≤ j ≤ N. (2)

where ui,j denotes the approximation of u(ih, jτ) and fi,j = f(ih, jτ).

Using the first order backward formulation and the second order central
difference scheme for the mesh points in Ω2, the following equations are
achieved:

ih
ui,j+1 − ui,j

τ
=
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
+ fi,j+1,

0 ≤ j ≤ N − 1, 1 ≤ i ≤M − 1,
ui,0 = u0(ih), 0 ≤ i ≤M − 1,
uM,j = g1(jτ), 0 ≤ j ≤ N,

(3)
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The pattern of the finite difference schemes used in (2) and (3) is shown in
Figure 1.

Note that the above equations produce two separate underdetermined
systems of equations, as the boundary conditions on the interface ΓI are not
prescribed. In the next subsection, we propose a method in which the local
equations are assembled in a global system with a square coefficient matrix.

3.2 Global formulation

We now globalize the problem by assembling the local equations constructed
by the subproblems. As mentioned above, the systems obtained by equations
(2) and (3) are underdetermined as the number of unknowns is equal to
2[N(M − 2) + N − 1], whereas there are only 2N(M − 2) equations, taking
into account the boundary conditions imposed on the interface boundary
have different values for two subproblems.

Let u
(k)
0,j , k = 1, 2, be the solutions of the subproblems associated with Ωk

at (0, jτ), j = 1, . . . , N . In order to achieve a system with a square coefficient
matrix, we use a sort of physical matching condition on the interface, that

is, u0,j = u
(1)
0,j = u

(2)
0,j , which guarantees a continuous solution on the virtual

boundary. We now make a square system by eliminating the nodal values
located on the interface. To do so, we utilize the central difference scheme
for spatial derivative at the mesh points on ΓI in order to make interaction
between two subproblems, that is,

−(
u1,j − 2u0,j + u−1,j

h2
) = f0,j , 1 ≤ j ≤ N − 1. (4)

Note that the first term of the governing equation in (1) vanishes since on
ΓI , x = 0 holds. By combining this equation with (2) and (3) in the case of
i = 1 and i = −1, we can eliminate the nodal values on the line x = 0 from
the eventual system of equations.

To this end, we consider the first equation of (3) in the case of i = 1, that
is,

h
u1,j+1 − u1,j

τ
=
u2,j+1 − 2u1,j+1 + u

(2)
0,j+1

h2
+ f1,j+1, 0 ≤ j ≤ N − 1, (5)

where the superscript indicates the subdomain considered.

Replacing j by j + 1 in (4) and solving it for u0,j+1 = u
(1)
0,j+1, we obtain

u
(1)
0,j+1 =

h2

2
f0,j+1 +

1

2
u1,j+1 +

1

2
u−1,j+1, 0 ≤ j ≤ N − 1. (6)

Substituting (6) into (5), we find that
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h
u1,j+1 − u1,j

τ
=
u2,j+1 −

3

2
u1,j+1 +

1

2
u−1,j+1

h2
+

3

2
f0,j+1,

j = 0, . . . , N − 1.

(7)

Repeating a similar process for the line i = −1 in the first equation of (2),
we achieve a similar equation without presence of the term u0,j+1 as follows:

−hu−1,j+1 − u−1,j

τ
=
u−2,j −

3

2
u−1,j +

1

2
u1,j

h2
+

3

2
f0,j , j = 1, . . . , N.

(8)

Assembling equations (2) and (3) with the revised equations (7) and (8),
a linear system of size 2N(M − 2) is obtained as PU = F, where P =[
PLL PLR
PRL PRR

]
, U =

[
UL
UR

]
, F =

[
FL
FR

]
,

PLL =


AL

BL
. . .

. . . AL
BL AL′

 , PRR =


AR

BR
. . .

. . . AR
BR AR′

 ,

PLR =


CL 0

. . .
. . .

CL 0
0

 , PRL =


CR 0

. . .
. . .

CR 0
0

 ,

AL =



2r − (−M + 1)h −r
−r 2r − (−M + 2)h −r

. . .
. . .

. . .

−r 2r − (−2)h −r
−r 3

2r − (−h)


,

AL′ =


2r − (−M + 1)h −r

−r 2r − (−M + 2)h −r
. . .

. . .
. . .

−r 2r − (−h)

 ,

CL =

 0
. . .

− r2

 ; BL =

 (−M + 1)h
. . .

−h

 ,
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AR =



3
2r + h −r
−r 2r + 2h −r

. . .
. . .

. . .

−r 2r + (M − 2)h −r
−r 2r + (M − 1)h


,

AR′ =



2r + h −r
−r 2r + 2h −r

. . .
. . .

. . .

−r 2r + (M − 2)h −r
−r 2r + (M − 1)h


,

CR =

 − r2
. . .

0

 ; BR =

−h . . .

(−M + 1)h,

 ,
where r =

τ

h2
.

The indices L and R denote the portions of the matrices associated with
the left and right subregions, respectively. For instance, PLR represents the
portions associated with coupling the nodal values of subproblem 1 (left side)
to the nodal values of subproblem 2 (right side).

Having solved the above linear system and obtained the interior solution
of the subproblems, the interface boundary solution can be found by using
(6).

4 Convergence

In order to show the convergence of the proposed method, we use Lax’s equiv-
alence theorem [21]. To do so, we need to seek the stability condition and
consistency of this method. We first check the stability.

Theorem 1. The finite difference equations (2)–(4) are unconditionally sta-
ble.

Proof. Substituting up,q = eβphξq into the difference equation (2), we find
that

ph(ξ − 1) = rξ(2 cos(βh)− 2) = rξ(−4r sin2(
βh

2
)).

Since ph < 1, we can write

ξ(4r sin2(
βh

2
) + 1) > 1.
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Using the stability condition, |ξ| ≤ 1, we have

1

4r sin2(
βh

2
) + 1

< |ξ| ≤ 1.

Clearly 0 ≤ ξ ≤ 1 for all r > 0 and all β. Therefore, the equations are
unconditionally stable. For equation (3), the same result can be obtained.

The consistency of the method is considered in the following theorem.

Theorem 2. The finite difference equations (2)–(4) are consistent and they
have the local truncation error of O(hk) +O(h2).

Proof. Let Fij(u) = 0 represent the difference equation approximating the
partial differential equation (1) at the (i, j)th mesh point, with exact solution
u, and let U be the exact solution of equation (1). Then we have the local
truncation error Tij at the mesh point (ih, jτ) as follows:

Tij = Fij(U)

= ih
Ui,j+1 − Ui,j

k
− Ui−1,j+1 − 2Ui,j+1 + Ui+1,j+1

h2
− f(i, j + 1).

By Taylor’s expansion, we have

Tij = ih(
∂U

∂t
)i,j+1 − (

∂2U

∂x2
)i,j+1 − f(i, j + 1)

+i
hk

2
(
∂2U

∂t2
+
k

3

∂3U

∂t3
+ · · · )− h2

12
(
∂4U

∂x4
− h2

20

∂6U

∂x6
+ · · · ).

Hence
Tij = O(hk) +O(h2).

4.1 Higher order finite difference schemes

The accuracy of the solution can be improved by employing higher order
finite difference approximations. To do so, we first apply the previous finite
difference formulation to the nodes located on the lines x = ih for i = M − 1
and i = −M + 1 as follows:

ih
ui,j+1 − ui,j

τ
=
ui+1,j − 2ui,j + ui−1,j

h2
+ fi,j .

Now there is sufficient number of nodal values to use the following scheme
for the other nodes:
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−ihui,j+2 − 4ui,j+1 + 3ui,j
2τ

=
−ui+2,j + 16ui−1,j − 30ui,j + 16ui,j−1 − ui,j−2

12h2
+ fi,j . (9)

Applying this formula improves the accuracy of the solution, taking into
account that the order of the scheme (9) is O(hk2) + O(h4). As will be
observed, the numerical errors are remarkably declined in the case of using
this formula.

5 Numerical results

We now present some numerical results in order to show the effectiveness of
the proposed method.

Consider equation (1) with u0(x) = 0, u1(x) = 0, g−1(t) = 0, g1(t) = 0,
and

f(x, t) =


2x(x2 − 1)t[(t− 1)2 − 4x2 + t(t− 1)]− 2t2[(t− 1)2 − 24x2 + 4],

x ≥ 0, t ∈ [0, 1],
2x(x2 − 1)(t− 1)(2t2 − t− 4x2)− 2(t− 1)2(t2 − 24x2 + 4),

x ≤ 0, t ∈ [0, 1],

The exact solution of the above problem is given by

u(x, t) =

 (x2 − 1)t2[(t− 1)2 − 4x2], x ≥ 0, t ∈ [0, 1],

(x2 − 1)(t2 − t− 4x2)(t− 1)2, x ≤ 0, t ∈ [0, 1].

To measure the accuracy of the results, the maximum error (Max error) and
the root-mean-square error (RMSE) are employed, that is,

Max error =
N

max
j=1
|ûj − uj |, RMSE =

√√√√ 1

N

N∑
j=1

(ûj − uj)2,

where N is the number of nodes and uj and ûj denote the exact and approxi-
mate solutions at the jth node. The numerical solution of the above equation
was obtained in two cases: Scheme (I), the FDM proposed in (2) and (3),
and scheme (II), the FDM suggested in (9). The numerical errors are listed
in Tables 1 and 2, respectively, for the cases (I) and (II). The agreement of
the approximate and the exact solutions together with the configuration of
the error functions is shown in Figures 2 and 3, respectively, for the cases
(I) and (II). The numerical errors demonstrate reasonable accuracy in both
cases, especially in the case of using the scheme (II).
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Table 1: Numerical errors produced by the new method using scheme (I).

M N Max error RMSE M N Max error RMSE
10 10 3.37E-2 8.40E-3 30 15 9.81E-3 4.80E-3
20 10 1.43E-2 6.89E-3 40 20 7.40E-3 3.70E-3
30 10 1.51E-2 7.68E-3 50 25 6.01E-3 2.95E-3
40 10 1.54E-2 8.02E-3 60 30 4.91E-3 2.50E-3
50 10 1.56E-2 8.20E-3 70 35 4.27E-3 2.22E-3

Figure 2: Comparing the exact solution and the numerical solution by scheme (I) with

M = 70 and N = 35 and configuration of the error function.

In order to show the efficiency of the new method, we compare the nu-
merical results with those presented in [13]. The errors obtained by scheme
(II) and those presented in [13] are listed in Table 3 using the same mesh
size and time steps. It is observed that although in some cases our method
produces more accurate solutions, overall, the difference between the errors
is not significant. However, the new method has some advantages over the
previous ones, that is, iterative methods. In the previous works, an initial so-
lution should be carefully selected, otherwise the convergence of the iterative
method is not guaranteed. In addition, as seen in Table 3, in the previous
work, the solution is obtained at the expense of performing some iterations,
which considerably increase the computational costs. Moreover, a parameter
is needed in the iterative method (see [13]). Choosing this parameter is also
important in order to achieve convergence.

It should be noted, in the suggested method, a global system of equations
is solved rather than the local ones. Although, apparently, this may increase
the computational costs, the resulting system has a sparse coefficient matrix,
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Table 2: Numerical errors produced by the new method using scheme (II).

M N Max error RMSE M N Max error RMSE
10 10 3.10E-2 8.53E-3 30 15 3.85E-3 9.12E-4
20 10 7.48E-3 2.01E-3 40 20 2.36E-3 5.18E-4
30 10 3.50E-3 1.18E-3 50 25 1.62E-3 3.33E-4
40 10 2.86E-3 1.10E-3 60 30 1.18E-3 2.32E-4
50 10 2.61E-3 1.00E-3 70 35 8.75E-4 1.71E-4

which can be treated by the efficient solvers. Moreover, the iterations required
in the case of using local matrices, are avoided.

Figure 3: Comparing the exact solution and numerical solution by scheme (II) with

M = 70, N = 35 and configuration of the error function.

6 Conclusions

A nonoverlapping DDM was applied to the FBHE in a one-dimensional case.
The work was based on partitioning the spatial domain and considering each
part as an independent forward or a backward subproblem. A forward and a
backward finite difference schemes were employed for local problems followed
by assembling the equations in a global one. The under determined system
of equations, arising from the lack of the interface boundary conditions, was
treated by a physical matching condition and a square system was obtained.
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Table 3: Comparing the error values (Max error) of scheme (II) with the previous results

produced by the iterative method with K denoting the number of iterations.

M N K Iterative method New method
4 4 24 1.36E-2 7.56E-2
8 16 38 3.68E-3 1.02E-2
16 64 63 9.22E-3 1.10E-3
32 256 100 2.42E-4 2.56E-4

Dealing with a single global system of equations, while avoiding iterations
used in the previous attempts, led to increasing the computational efficiency
and keeping a reasonable accuracy for the solution. The proposed method
performed well in the one-dimensional case. The application of the present
method to the case of two-dimensional is also under consideration.

References

1. Aziz, A.K., French, D.A., Jensen, S. and Kollegg, R.B. Origins, analysis,
numerical analysis, and numerical approximation of a forward-backward
parabolic problem, M2AN Math. Model. Numer. Anal. 33 (1999), 895–922.

2. Aziz, A.K. and Liu, J.L. A Galerkin method for the forward-backward heat
equation, Math. Comp. 56 (1991), 35–44.

3. Aziz, A.K. and Liu, J.L. A weighted least squares method for the backward-
forward heat equation, SIAM J. Numer. Anal. 28 (1991), 156–167.

4. Banei, S. and Shanazari, K. A meshfree method with a non-overlapping do-
main decomposition method based on TPS for solving the forward-backward
heat equation in two-dimension, Numer. Algorithms. (forthcoming).

5. Boulton, L., Marletta, M. and Rule, D. On the stability of a forward-
backward heat equation, Integral Equations Operator Theory 73(2) (2012),
195–216.

6. Cheng, X.L. and Sun, J. Iterative methods for the forward-backward heat
equation, J. Comput. Math. 23 (2005), 419–424.

7. Daoud, D. S. Overlapping Schwarz waveform relaxation method for the
solution of the forward-backward heat equation, J. Comput. Appl. Math.
208(2) (2007), 380–390.

8. Dawson, C.N., Du, Q. and Dupont, T.F. A Finite difference domain de-
composition algorithm for numerical solution of the heat equation, Math.
Comp. 57 (1991), 63–71.



G
al

le
y

P
ro

of

A noniterative domain decomposition method for the forward-backward ... 61

9. French, D.A. Discontinuous Galerkin finite element methods for a forward-
backward heat equation, Appl. Numer. Math. 28 (1998), 37–44.

10. French, D.A. Continuous Galerkin finite element methods for a forward-
backward heat equation, Numer. Methods Partial Differential Equations 15
(1999), 257–265.

11. Friedrichs, K.O. Symmetric positive differential equations, Comm. Pure
Appl. Math. 11 (1958), 333–418.

12. Goldstein, J.A. and Mazumdar, T. A heat equation in which the diffusion
coefficient changes sign, J. Math. Anal. Appl. 103 (1984), 533–564.

13. Han H.D. and Yin, D.S. A non-overlap domain decomposition method for
the forward-backward heat equation, J. Comput. Appl. Math. 159 (2003),
35–44.

14. Kuznetsov, I.V. Traces of entropy solutions to second order forward-
backward parabolic equations, J. Math. Sci. (N.Y.) 211(6) (2015), 767–788.

15. Kuznetsov, I.V. Kinetic formulation of forward-backward parabolic equa-
tions, Sib. lektron. Mat. Izv. 13 (2016), 930–949.

16. Lu, H. Galerkin and weighted Galerkin methods for a forward-backward
heat equation, Numer. Math. 75 (1997), 338–356.

17. Lu, H. and Maubach, J. A finite element method and variable transfor-
mations for a forward-backward heat equation, Numer. Math. 81 (1998),
249–272.

18. Lu, H. Wen, Z-Y. Solution of a forward-backward heat equation. Technical
report, 9439, Department of Mathematics, University of Nijmegen, The
Netherlands, 1994.

19. Paronetto, F. A remark on forward-backward parabolic equations, Appl.
Anal. 98(6) (2017), 1042–1051.

20. Paronetto, F. Elliptic approximation of forward-backward parabolic equa-
tions, Commun. Pur. Appl. Anal. 19(2) (2020), 1017–1036.

21. Smith, G.D. Numerical solution of partial differential equation, Oxford
University Press, 3rd ed. 1985.

22. Sun, J. Numerical schemes for the forward-backward heat equation, Int.
J. Comput. Math. 87(3) (2010), 552–564.

23. Sun, J. and Cheng, X.L. Iterative methods for a forward-backward heat
equation in two-dimension, Appl. Math. J. Chinese Univ. Ser. B 25(1)
(2010), 101–111.

24. Vanaja, V. and Kellogg, R.B. Iterative methods for a forward-backward
heat equation, SIAM J. Numer. Anal. 27 (1990), 622–635.


	A noniterative domain decomposition method for the forward-backward ...
	S. Banei and K. Shanazari

