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Abstract

In this paper, based on a discrete total variation model, a modified dis-

cretization of total variation (TV) is introduced for image processing prob-
lems. Two optimization problems corresponding to compressed sensing mag-

netic resonance imaging (MRI) data reconstruction problem and image de-

noising are proposed. In the proposed method, instead of applying isotropic
TV whose gradient field is a two directions vector, a four directions dis-

cretization with some modification is applied for the inverse problems. A
dual formulation for the proposed TV is explained and an efficient primal-

dual algorithm is employed to solve the problem. Some important image

test problems in MRI and image denoising problems are considered in the
numerical experiments. We compare our model with the state of the art

methods.
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1 Introduction

There are different methods to solve image processing problems such as spa-
cial filtering [11, 6], methods based on partial differential equations [21, 26],
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variational methods [8, 2, 10, 1, 5], and machine learning approach as well as
the methods based on deep learning [17, 25]. Variational methods propose
some different functionals as the tools for calculating accidental variations in
a signal or function. The pioneer work in this area was proposed by Rudin,
Osher, and Fatemi [24]. Recently, Condat [10] proposed an isotropic discrete
total variation with high accuracy. Moreover, the total generalized variation
as a generalization of total variation functional has been proposed in [5].
Consider the following optimization problem to solve a continuous version of
mathematical image problems:

min
s

1

2

∫
Ω

|G(s(t))− g(t)|2dt+ λJ(s),

where G is an appropriate function (for more details see [7]) and

J(s) = sup

{
−
∫

Ω

s.divφdt : φ ∈ C1
c (Ω,RN ), |φ(t)| ≤ 1,∀t ∈ Ω

}
. (1)

Also J is the dual definition of total variation (TV) of the L1
c(Ω) (locally

Lebesgue integrable) function s. If G = I, then problem (1) is named denois-
ing problem (for image g). A function s is said to have bounded variation
whenever J(s) <∞. The space BV (Ω) of functions with bounded variation
is the set of functions s ∈ L1(Ω) such that J(s) <∞, endowed with the norm
‖s‖BV (Ω) = ‖s‖L1(Ω) + J(s). Obviously, for the smooth function s ∈ C1(Ω)
(or s ∈W 1,1(Ω)),

J(s) =

∫
Ω

|∇s|dt

the minimization of J(s) is equivalent to minimization of the sum of abrupt
variations (the majority of the derivative) over its dimension. To solve real
digital imaging problems, discretization of (1) is inevitable. There are differ-
ent forms of discretization for TV functional in the papers. As the review of
such literatures is long some, we refer the readers to [10, 13] and references
therein.

Total generalized variation (TGV) is a cleverly defined functional for cal-
culating a combinational value of function variation by means of derivatives
up to a given order. TGV has some superiorities in comparison with the
first-order TV, such as its ability to distinguish staircase artifacts, and as
a result, more cleaner image can be reconstructed. Usually in applications,
the second-order TGV is sufficient, because the higher-order will face to the
complexity of calculation. The second-order TGV is defined by the following
optimization problem (see [5]):

TGV2
α(u) = sup

{∫
Ω

u.div2vdx : v ∈ C2
c (Ω,Sym2(Rd)), ‖divlv‖∞ ≤ αl, l = 0, 1

}
.

In [5], a discretization of the TGV was proposed. Based on discretization of
TV in [13], in this paper, a new discretization of TV (1) is given; operators
are changed and linear operator O+ is inserted to ensure the projection on the
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vertices. Then the magnetic resonance imaging (MRI) data reconstruction
and image denoising problems will be formulated based on the new proposed
discrete TV and will be compared with some state of the art models. In the
proposed model, instead of using two directions gradient field in isotropic TV,
a four directions discretization model is proposed. Actually, we can take more
information from structure of the images, and consequently a new function
for measuring the majority of the noise and oscillation is proposed. Moreover,
after some modification based on the Condat’s model [10], a discretization of
the total variation with better isotropy property will be defined. Numerical
results show that the proposed method has better performance in comparison
with isotropic TV, TGV, and some other famous models in terms of removing
noise and compressed sensing MRI problems.

The paper is arranged as the following; in Section 2, the Chambolle–Pock
algorithm is explained for solving optimization problems in image processing.
In Section 3, a new discrete TV model is proposed. In Section 4, the problem
of reconstruction of undersampled MRI data as well as the problem of image
denoising are formulated. Some important test problems in medical MRI and
denoising are solved numerically and compared with some state of the art, in
Section 4. Finally some conclusions are given in Section 5.

2 A numerical algorithm for solving convex image
problems

2.1 Algorithm description

Consider a finite-dimensional vector space X with an inner product 〈·, ·〉X
and Euclidean norm ||·||2 =

√
〈·, ·〉X . C ⊂ X we define the indicator function

of C as

δC(x) =

{
0, x ∈ C,
∞, x /∈ C.

For any function F : X → [−∞,+∞], the convex conjugate at z ∈ X is
defined by

F ∗(z) = max
x
〈x, z〉 − F (x). (2)

Moreover, for any θ > 0 and x̄ ∈ X, the proximal (or proximity) mapping of
F at x̄ is defined by

proxθF (x̄) = arg min
x

||x− x̄||2

2θ
+ F (x).

Now, suppose that Y is another real vector space with inner product 〈·, ·〉Y
and the corresponding induced norm || · ||2 =

√
〈·, ·〉Y . Let K : X → Y be a
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bounded linear operator with the operator norm

||K|| := max{||Kx||2 : x ∈ X and ||x||2 ≤ 1} <∞.

The adjoint of K is defined as an operator K∗ for which the equality
〈Kx, y〉Y = 〈x,K∗y〉X holds for all x and y. The general problem, we tackle,
is

min
x
F (Kx) +G(x), (3)

where F : X → [0,∞) and G : Y → [0,∞) are proper, closed, and convex.
By virtue of (2), the convex minimization problem (3) can be reformulated
as the saddle point convex-concave problem

min
x

max
y
〈Kx, y〉Y +G(x)− F ∗(y), (4)

which is also known as the primal-dual formulation of (3). Hereafter we
assume that a solution to this problem always exists. The method we employ
to solve (4), which lays the groundwork of what we shall propose in this paper,
is the celebrated Chambolle–Pock algorithm, recalled below: The algorithm

Data: K,K∗, F ∗, G
Result: xk

initialization: Choose parameters σ > 0, τ > 0, and initial estimates
(x0, y0) ∈ X × Y .
while convergence criterion not met, for k=0,1,. . . , do

1-yk+1 = proxσF∗(y
k + σKx̃k),

2- xk+1 = proxτG(xk − τK∗yk+1),
3-x̃k+1 = 2xk+1 − xk.

end
Algorithm 1: The Chambolle–Pock algorithm for solving problem (4)

is guaranteed to converge provided that στ < 1
||K||2 . In practical situations,

where computing the exact value of ||K|| is not easy, finding an upper bound
B ≥ ||K||2 and setting σ = τ = 1√

B
are sufficient for convergence. We chose

this algorithm over other well-known first-order methods such as ADMM
or FISTA because of its superior convergence rate [9], and the fact that it
requires fewer parameters to be tuned.

2.2 Convergence analysis

Here, we express the convergence theorem of the Chambolle–Pock algorithm
to solve problem (4). The convergence analysis was argued in [9]. The fol-
lowing theorem guarantees the convergence of Chambolle–Pock algorithm for
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solving problem (4).

Theorem 1. [9] Assume X and Y are two finite-dimensional Hilbert spaces
and that τ, σ > 0.Moreover assume στ‖K‖2 < 1. Then there exists a solution
(x̄, ȳ) ∈ X × Y of problem (4) such that the sequence (xn, yn) in Algorithm
1 converges to (x̄, ȳ).

Note that, in [9], it was shown that the rate of convergence is O( 1
n ). More-

over, under some uniformly convexity assumptions, the rate of convergence
can be improved to O( 1

eN
).

3 A Discretization for TV

Assume that x ∈ RN1×N2 is a gray scaled two-dimensional image and that
A = {(n1, n2), n1 = 1, . . . , N1, n2 = 1, . . . , N2} is a set of grids. Consider the
following new discrete TV model, which is based on four directional gradient
with imposed some operational constraints:

TVdis(x) = maxu∈(R4)N1×N2 {< Dx, u >: |Olu(n1, n2)| ≤ 1, |O↔u(n1, n2)| ≤ 1,

|O•u(n1, n2)| ≤ 1, |O+u(n1, n2)| ≤ 1,∀(n1, n2) ∈ X},

where
D = (D1, D2, D3, D4),
D1x(n1, n2) = x(n1 + 1, n2)− x(n1, n2),
D2x(n1, n2) = x(n1, n2 + 1)− x(n1, n2),
D3x(n1, n2) = x(n1 + 1, n2 + 1)− x(n1, n2),
D4x(n1, n2) = x(n1 − 1, n2 + 1)− x(n1, n2),

|O?u(n1, n2)| =

√√√√ 4∑
j=1

[(O?u)j(n1, n2)]2, (n1, n2) ∈ X, ? =l,↔, •,+,

and
(Olu)1(n1, n2) = u1(n1, n2),
(Olu)2(n1, n2) = 1

4 (u2(n1, n2) + u2(n1, n2 − 1)
+u2(n1 + 1, n2) + u2(n1 + 1, n2 − 1)),

(Olu)3(n1, n2) = 1
2 (u3(n1, n2) + u3(n1, n2 − 1)),

(Olu)4(n1, n2) = 1
4 (u4(n1, n2) + u4(n1, n2 − 1)
+u4(n1 + 1, n2) + u4(n1 + 1, n2 − 1),
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(O↔u)1(n1, n2) = 1
4 (u1(n1, n2) + u1(n1 − 1, n2)
+u1(n1, n2 + 1) + u1(n1 − 1, n2 + 1)),

(O↔u)2(n1, n2) = u2(n1, n2),
(O↔u)3(n1, n2) = 1

2 (u3(n1, n2) + u3(n1 − 1, n2)),
(O↔u)4(n1, n2) = 1

2 (u4(n1, n2) + u4(n1 + 1, n2)),

(O+u)1(n1, n2) = 1
2 (u1(n1, n2) + u1(n1, n2 + 1)),

(O+u)2(n1, n2) = 1
2 (u2(n1, n2) + u2(n1 + 1, n2)),

(O+u)3(n1, n2) = u3(n1, n2),
(O+u)4(n1, n2) = u4(n1, n2),

(O•u)1(n1, n2) = 1
2 (u1(n1, n2) + u1(n1 − 1, n2)),

(O•u)2(n1, n2) = 1
2 (u2(n1, n2) + u2(n1, n2 − 1)),

(O•u)3(n1, n2) = 1
4 (u3(n1, n2) + u3(n1, n2 − 1)
+u3(n1 − 1, n2) + u3(n1 − 1, n2 − 1)),

(O•u)4(n1, n2) = 1
4 (u4(n1, n2) + u4(n1 + 1, n2)
+u4(n1, n2 − 1) + u4(n1 + 1, n2 − 1)).

Theorem 2. Assume that F is convex and that λ ≥ 0. Then the problem

min
x
F (x) + λTVdis(x),

is equivalent to the following optimization problem:

minF (x) + λ{|vl|+ |v↔|+ |v•|+ |v+|},
subject to
O∗l(vl)(n1, n2) +O∗↔(v↔)(n1, n2) +O∗•(v•)(n1, n2)

+O∗+(v+)(n1, n2) = Dx(n1, n2), (n1, n2) ∈ X,

where

O∗l(vl)(n1, n2) =



v1
l(n1, n2)

1
4 (v2
l(n1, n2) + v2

l(n1, n2 + 1) + v2
l(n1 − 1, n2)

+v2
l(n1 − 1, n2 + 1))

1
2 (v3
l(n1, n2) + v3

l(n1, n2 + 1))

1
4 (v4
l(n1, n2) + v4

l(n1, n2 + 1) + v4
l(n1 − 1, n2)

+v4
l(n1 − 1, n2 + 1))


,
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O∗↔(v↔)(n1, n2) =



1
4 (v1
↔(n1, n2) + v1

↔(n1 + 1, n2) + v1
↔(n1, n2 − 1)

+v1
↔(n1 + 1, n2 − 1))

v2
↔(n1, n2)

1
2 (v3
↔(n1, n2) + v3

↔(n1 + 1, n2))

1
2 (v4
↔(n1, n2) + v4

↔(n1 − 1, n2))


,

O∗•(v↔)(n1, n2) =



1
2 (v1
•(n1, n2) + v1

•(n1 + 1, n2))

1
2 (v2
•(n1, n2) + v2

•(n1, n2 + 1))

1
4 (v3
•(n1, n2) + v3

•(n1, n2 + 1) + v3
•(n1 + 1, n2)

+v3
•(n1 + 1, n2 + 1))

1
4 (v4
•(n1, n2) + v4

•(n1 − 1, n2) + v4
•(n1, n2 + 1)

+v4
•(n1 − 1, n2 + 1))



O∗+(v+)(n1, n2) =



1
2 (v1

+(n1, n2) + v1
+(n1, n2 − 1))

1
2 (v2

+(n1, n2) + v1
+(n1 − 1, n2))

v3
+(n1, n2)

v4
+(n1, n2)


,

and

|v?| =
√∑
n1,n2

|vj?|2, ? =l,↔, •,+.

Proof. It is a direct conclusion of Fenchel–Rockefeller, primal-dual theorem
(see [10], for instance).

4 Formulation of some image processing problems

4.1 Compressing MRI data

Consider the following problem for reconstructing MR images from under-
sampled k-space data:

min
u∈U

1

2λ
||Fmu− b||22 + β||Ψu||1 + TVdis(u), (5)
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where u ∈ U = Rn×n is the MR image, which is defined in spatial domain and
Fm is the undersampled Fourier operator, which converts signals in spatial
domain to its corresponding frequency representation and undersample it. In
other words, it can be defined as Fmu := M � F(u), where F is the two-
dimensional fast Fourier transform, Mn×n is the k-space sampling mask with
ones at m sampled frequencies and zeros at undersampled locations, and �
is the component-wise multiplication. We further assume that the sampling
rate m

n2 is considerably small (highly undersampled k-space) and that b ∈
Cn×n is the partially scanned k-space with only m sampled frequencies and
n2 −m zeros. The so-called zero-filled solution is defined as uzf := F−1(b).
Furthermore, Ψ is a discrete wavelet transform, and the constants β, λ ∈ R
are regularization parameters.
Referring to Theorem 2, we can get the following equivalent formulation:

min
u∈U

1

2λ
||Fmu− b||22 + β||Ψu||1 + |v∗l |1 + |v∗↔|1 + |v∗• |1 + |v∗+|1,

s.t. O∗l(vl)(n1, n2) +O∗↔(v↔)(n1, n2) +O∗•(v•)(n1, n2)

+O∗+(v+)(n1, n2) = Du(n1, n2), (n1, n2) ∈ A.
A = {(n1, n2) : n1, n2 = 1, . . . , n}.

(6)

To solve this problem with Algorithm 1, we need to reformulate problem (6)
to the form of (3). Now we define the following linear operator K:

Kx =

 Ψ 0 0 0 0
Fm 0 0 0 0
−D O∗l O

∗
↔ O∗• O∗+



u ∈ RN1×N2

vl ∈ (R4)N1×N2

v↔ ∈ (R4)N1×N2

v• ∈ (R4)N1×N2

v+ ∈ (R4)N1×N2

 =

 k̄ ∈ (R)N1×N2

h̄ ∈ (R)N1×N2

v̄ ∈ (R4)N1×N2

 = Y.

Assume

F (Y ) =
1

2λ
‖Y2 − b‖22 + β‖Y1‖1 + δ{0}(Y3),

G(X) = |v∗l |1 + |v∗↔|1 + |v∗• |1 + |v∗+|1.

From arguments about calculating adjoint of a given operator, we get

F ∗(y) =
λ

2
‖y2‖22+ < y2, b > +δ‖.‖∞≤β(y1)+ < y3,Du > .

4.1.1 The y-subproblems

According to Algorithm 1, for {Y } = (k̄, h̄, w̄)>, we obtain
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Result: uk

Initialization: Set parameters as σ = τ = 1√
19

and initial estimates as u0 = uzf,

ũ0 = 0, v0
l = ṽ0

l = 0, v0
↔ = ṽ0

↔ = 0, v0
• = ṽ0

• = 0, v0
+ = ṽ0

+ = 0, h̄0 = 0, k̄0 = 0 and

w̄0 = 0.

while convergence criterion not met, for k=0,1,. . . do

1-h̄k+1 = prox
σ(λ

2
||·||22+.tb)

(
h̄k + σ(Fm(ũk))

)
,prox

σ(λ
2
||·||22+.tb)

(α) = α−σb
1+σλ

2-k̄k+1 = proj||·||∞≤β
(
k̄k + σ(Ψũk)

)
,

(
proj||·||≤β(s)

)
(i, j) =

min{max{s(i, j),−β}, β}, ∀i, j ∈ {1, 2, . . . , n},
3-w̄k+1 = w̄k + σ(O∗l ṽ

k
l +O∗↔ṽk↔ +O∗• ṽk• + ṽk+ − Dũk)

4-uk+1 = uk − τ(F∗mh̄k+1 + Ψ∗k̄k+1 − D∗w̄k+1),
Use formula Proxθα0|.|1 (α)(i, j) = (1− θα0

max{‖α(i,j)‖2,θα0}
)α(i, j) for steps 5-8

below:

5-vk+1
l = Proxτ |.|1 (vkl − τ(Olw̄k+1)),

6-vk+1
↔ = Proxτ |.|1 (vk↔ − τ(O↔w̄k+1)),

7-vk+1
• = Proxτ |.|1 (vk• − τ(O•w̄k+1)),

8-vk+1
+ = Proxτ |.|1 (vk+ − τ(O+w̄k+1)),

9-ũk+1 = 2uk+1 − uk, ṽk+1
l = 2vk+1

l − vkl , ṽ
k+1
↔ = 2vk+1

↔ − vk↔, ṽ
k+1
• =

2vk+1
• − vk• , ṽ

k+1
+ = 2vk+1

+ − vk+.
end

Algorithm 2: The algorithm for undersampled MRI reconstruction

 k̄k+1

h̄k+1

w̄k+1

 = proxσF∗


 k̄kh̄k
w̄k

+ σ

 Ψ 0 0 0 0
Fm 0 0 0 0

−D O∗l O
∗
↔ O∗• O∗+



u ∈ RN1×N2

vl ∈ (R4)N1×N2

v↔ ∈ (R4)N1×N2

v• ∈ (R4)N1×N2

v+ ∈ (R4)N1×N2




= proxσF∗

 k̄k + σ(Ψ(uk))

h̄k + σ(Fmũk)
w̄k + σ(O∗lv

k
l +O∗↔vk↔ +O∗•vk• +O∗+vk+)

 .



h̄k+1 = proxσ(λ2 ||·||
2
2+.tb)

(
h̄k + σ(Fm(uk))

)
,proxσ(λ2 ||·||

2
2+.tb)(α) = α−σb

1+σλ ,

k̄k+1 = proj||·||∞≤β
(
k̄k + σ(Ψũk)

)
,

(
proj||·||≤β(s)

)
(i, j)

= min{max{s(i, j),−β}, β}, ∀i, j ∈ {1, 2, . . . , n},
w̄k+1 =< w̄k + σ(O∗lv

k
l +O∗↔vk↔ +O∗•vk• +O∗+vk+ − Du).

4.1.2 The x-subproblems

For x = (u, vl, v↔, v•, v+)>, according to Algorithm 1, we get,
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uk+1

vk+1
l
vk+1
↔
vk+1
•
vk+1

+

 = proxτG



uk

vkl
vk↔
vk•
vk+

− τ


Ψ∗ F∗m −D∗
0 0 Ol
0 0 O↔
0 0 O•
0 0 O+


 k̄k+1

h̄k+1

w̄k+1




= proxτG


uk − τ(Ψ∗k̄k+1 + F∗mh̄k+1 − D∗w̄k+1)

vkl − τ(Olw̄k+1)

wk↔ − τ(O↔w̄k+1)
wk• − τ(O•w̄k+1)
wk+ − τ(O+w̄

k+1)

 ,

where

D∗u(n1, n2) = [u1(n1 − 1, n2)− u1(n1, n2)] + [u2(n1 − 1, n2 − 1)− u2(n1, n2)]
+[u3(n1 − 1, n2 − 1)− u3(n1, n2)]
+[u4(n1 + 1, n2 − 1)− u4(n1, n2)], (n1, n2) ∈ A.

Based on the above argument, we propose Algorithm 2, to solve undersampled
MRI reconstruction problem.

4.2 Image denoising formulation

Let z ∈ RN1×N2 be a gray scaled two-dimensional noisy image, and consider
the following optimization problem:

min
u

1

2
‖z − u‖22 + λTVdis(u).

This problem is named denoising problem and can be rewritten with the
following problem:

min
u∈U

1

2
||z − u||22 + |v∗l |1 + |v∗↔|1 + |v∗• |1 + |v∗+|1

s.t. O∗l(vl)(n1, n2) +O∗↔(v↔)(n1, n2) +O∗•(v•)(n1, n2) +O∗+(v+)(n1, n2)

= Du(n1, n2), (n1, n2) ∈ X.

To solve this problem numerically, we need to determine functions F and G
as well as the linear operator K in (3). Assume x = (u, v∗l , v

∗
↔, v

∗
• , v
∗
+)>. Set

K =

(
I 0 0 0 0
−D O∗l O

∗
↔ O∗• O∗+

)
, FY =

1

2
‖Y1 − z‖22 + δ{0}(Y2 − Dz),

Gx = |v∗l |1 + |v∗↔|1 + |v∗• |1 + |v∗+|1.

Consequently
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K∗ =


I −D∗
0 Ol
0 O↔
0 O•
0 O+

 , F ∗y = ‖y1‖22+ < z, y1 > .

Analogous to the arguments about Algorithm 2, we can obtain the similar
procedure (Algorithm 3), to solve the image denoising problem.

Result: uk

Initialization: Set parameters as σ = τ = 1√
19

and initial estimates as u0 = z,

ũ0 = 0, v0
l = ṽ0

l = 0, v0
↔ = ṽ0

↔ = 0, v0
• = ṽ0

• = 0, v0
+ = ṽ0

+ = 0, h̄0 = 0 and w̄0 = 0.

while convergence criterion not met, for k=0,1,. . . do

1-h̄k+1 = proxσ( 1
2
||·||22+.tz)

(
h̄k + σ(ũk)

)
,proxσ( 1

2
||·||22+.tz)(α) = α−σz

1+σ
,

2-w̄k+1 = w̄k + σ(O∗l ṽ
k
l +O∗↔ṽk↔ +O∗• ṽk• +O∗+ṽk+ − Dũk),

3-uk+1 = uk − τ(h̄k+1 − D∗w̄k+1),
Use formula Proxθα0|.|1 (α)(i, j) = (1− θα0

max{‖α(i,j)‖2,θα0}
)α(i, j) for steps 4-7

below:

4-vk+1
l = Proxτ |.|1 (vkl − τ(Olw̄k+1)),

5-vk+1
↔ = Proxτ |.|1 (vk↔ − τ(O↔w̄k+1)),

6-vk+1
• = Proxτ |.|1 (vk• − τ(O•w̄k+1)),

7-vk+1
+ = Proxτ |.|1 (vk+ − τ(O+w̄k+1)),

8-ũk+1 = 2uk+1 − uk,

9-ṽk+1
l = 2vk+1

l − vkl ,

10-ṽk+1
↔ = 2vk+1

↔ − vk↔,
11-ṽk+1

• = 2vk+1
• − vk• ,

12-ṽk+1
+ = 2vk+1

+ − vk+.

end

Algorithm 3: The algorithm for denoising

5 Numerical results

5.1 Compressed MRI data reconstruction problem

In this section, we run the proposed method on some test images and compare
them with other well-known models. We choose a 256×256 in-vivo MR image,
which is a T2-weighted axial brain scan. The image was chosen based on its
variety of displayed feature and the fraction of FOV they occupy (about 46
percent of the FOV). Based on these sizes, we chose to sample 10 percent
of the k-space of the images. The random sampling masks were chosen as
variable-density patterns, with more samples in the low-frequency area (in
a neighborhood of the origin) and fewer ones towards the periphery of the
k-space. We used the Sparse MRI MATLAB package [18] to generate the
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masks. We compared the performance of our method with the baseline zero-
filling solution, TV + wavelet model and the TGV model. The TV + wavelet
model solves the unconstrained minimization problem

min
u∈U

1

2
||Fmu− b||22 + β||Ψu||1 + α||∇u||1,2.

This model was first introduced in [19] and then was further investigated in
[20, 14, 16]. We followed the experiment setup proposed in these papers in
our tests. In particular, we set α = 0.001 and β = 0.035. The TGV method
has the form

min
u∈U

1

2λ
||Fmu− b||22 + α1||∇u− v||1,2 + α0||Ev||1,F

and was proposed in [15]. Again, in order to stay true to the original paper,
we chose the parameters as in [15]. In particular, we set λ = 8 × 10−5,
α1 = 1, and α0 = 2. and the Chambolle–Pock algorithm is applied to
them. In the proposed model (5), we also fix λ = 8 × 10−5 and β = 0.75
across the simulations. The 4-tap Daubechies wavelet transform was used
the experiment and was implemented through the Sparse MRI package. The
algorithm ran for 500 iterations.
We compare the quality of output images of each method based on SNR,
SSIM, and HFEN indices. Let u0 be the ground-truth image. The SNR is
defined as

SNR(u) := 20 log
||u0||2
||u− u0||2

and the high SNR is related to low MSE. The SSIM index is defined as

SSIM(u) :=
(2µuµu0

+ c1)(2σuu0
+ c2)

(µ2
u + µ2

u0
+ c1)(σ2

u + σu2
0

+ c2)
,

where µu is the average of u, σu is the standard deviation of u, σuu0
is the

cross-covariance for u and u0, and c1 = (0.01 × 255)2 and c2 = (0.03 ×
255)2 are regularizing constants. Another newly-proposed error metric is the
HFEN (high frequency error norm), which aims at quantifying the quality of
reconstructed edges and fine features [22]. This index is defined as

HFEN(u) :=
||LoG(u)− LoG(u0)||2

||LoG(u0)||2
,

where LoG is a rotationally symmetric Laplacian of Gaussian filter with a
kernel size of 15×15 pixels and standard deviation of 1.5 pixels. We note that
the perfect reconstruction has SNR = ∞, that SSIM = 1 and that HFEN
= 0. We should also remark that none of these metrics perfectly quantify the
visual perception of reconstructed images; although rarely the case, it might
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Figure 1: T2-weighted axial brain scan results. Top row: ground truth (left), sampling

mask at rate %10 (middle), zero-filling solution (right). Middle row: reconstruction by
TV+W (left), TGV (middle) and the proposed method (right). Bottom row: error maps

for TV+W (left), TGV (middle) and the proposed method (right).

just happen that between two reconstructions, one has a higher value in all
of these metrics, yet the other is visually more faithful to the ground-truth.

In Figure 1, the reconstruction results for the T2-weighted brain scan are
presented. As expected, the zero-filling solution yields the worst reconstruc-
tion with too many incoherent artifacts. The TV+W model removes many
of these artifacts but still has low structural similarity to the ground truth,
which is also easily observed in the reconstructed image. The TGV model
significantly improves upon TV + wavelet model as can be perceived visually
and quantitatively (Table 1). The proposed framework moderately improves
upon the TGV solution as attested by all three error measures and the error
maps (the third row in Figure 1), which shows fewer errors in [0, 0.1] interval.
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Table 1: Quantitative comparison between various reconstructions for the T2-weighted

brain scan.
Method SNR [dB] SSIM HFEN
Proposed 20.71 0.9046 0.1013
TGV 20.07 0.9037 0.0995
TV+W 17.58 0.5113 0.2259
ZF 8.83 0.2733 0.7574

Figure 2: SNR plots for the T2-weighted brain scan reconstructions.

5.2 Denoising problem

Consider denoising problem (4.2), assume that x is a clean grayscale image
and z is a noisy image that is created by adding Gaussian noise with variance
0.1 to the clean image x. In fact, we create an artificial noisy image by means
of adding noise to the original image. Here we solve the denoising problem for
the pirate test image and compare the results of the proposed model, with
Condat [10], TGV [5], and Hosseini’s model [13]. Table 2 shows the denoised
results. It can be seen that the proposed method has better performance
in decreasing noise and preserving the details in comparison with the other
methods. On the other hand, Figure 3 shows SSIM and PSNR values with
respect to the steps. As a result, it can be seen that the proposed model has
better values of SSIM and PSNR, at the solutions that are obtained in the
convergence.
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Table 2: Results of Pirate denoising problem.

Reference Noisy Condat

TGV Hosseini Proposed

Figure 3: PSNR (left) and SSIM (right) values versus number of iterations for denoising

problem.

6 Conclusions

In this paper, a new discretization of total variation functional was proposed.
A four directions discrete gradient was used in the structure of the method.
Moreover, some linear operators were inserted to the constraints. One of
differences of the proposed method with the method in [13], is the new in-
serted projecting operators to the corners of the pixels. The proposed method
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was employed to formulate some image processing problems; reconstructing
highly undersampled MR images, and image denoising. The Chambolle–Pock
algorithm was applied for the numerical simulations. The wavelet transform
was chosen in the formulation of compressed sensing MRI problem and it
was compared with zero-filling solution, TGV, and TV+W. In addition, for
the image denoising problem, the proposed model was compared with some
state of the art methods. In both numerical experiments, the new methods
illustrated better quantitative and qualitative results.
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