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Abstract

We introduce a new family of multivalue and multistage methods based
on Hermite–Birkhoff interpolation for solving nonlinear Volterra integro-

differential equations. The proposed methods that have high order and ex-

tensive stability region, use the approximated values of the first derivative of
the solution in the m collocation points and the approximated values of the

solution as well as its first derivative in the r previous steps. Convergence
order of the new methods is determined and their linear stability is analyzed.

Efficiency of the methods is shown by some numerical experiments.
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1 Introduction

Consider Volterra integro-differential equations (VlDEs) of the form

y′(t) = g(t, y(t)) +

∫ t

0

K(t, τ, y(τ))dτ, t ∈ I := [0, T ], y(0) = y0, (1)

where g ∈ C(S) and the kernel K ∈ C(Ω) and satisfies the Lipschitz condi-
tion with respect to y, with S = {(t, y) : t ∈ I, y ∈ R}, Ω = {(t, τ, y) : 0 ≤
τ ≤ t ≤ T, y ∈ R}. It is well known that, under the suitable conditions, (1)
possesses a unique solution y(t) ∈ C1[0, T ] (see [3]).
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VIDEs arise in a variety of applications, for example, in viscoelasticity,
control theory, epidemiology, and population dynamics [10, 18, 26].

On the class of discretization methods for the numerical solution of
VIDEs, Linz [19] proposed algorithms for the numerical solution of (1), which
consist of linear multistep methods, of the type commonly used for the numer-
ical solution of the initial value problem for an ordinary differential equation

y′(t) = f(t, y(t)), y(t0) = y0, (2)

combined with a class of quadrature formulas. In [27], the construction of
the quadrature rules generated by the backward differentiation formulas was
discussed in detail and their linear stability properties were analyzed. Also,
Brunner [2] introduced Runge–Kutta–Nyström methods, which are based
on collocation techniques in certain polynomial spline spaces . One of the
most popular numerical methods for solving this kind of equations is the
class of collocation methods. In these methods, after discretization of the
domain, the approximated solution in every subinterval depends on the fixed
number m of the collocation points. These methods are of convergence order
m for any choice of collocation parameters; see [5, 3]. Recently, a family
of multistep collocation methods for (1) has also been introduced, which
considers interpolation conditions in the previous r step points [7, 8]. Indeed,
in [12] superimplicit multistep collocation methods (SIMCMs) are used for
numerical solving VIDEs. In these methods, approximated values of the
solution in the r previous steps and its first derivative in the m collocation
points in the current and next subinterval are used, where the r step SIMCMs
withm collocation points are of convergence order 2m+r. Recently, a method
based on general linear methods [6] for the numerical solution of (1) has
been introduced and studied in [20, 21]. Using more of the derivative of the
approximated solution has been successfully applied to construct methods
with higher order and extensive region of stability for numerical solution of
ODEs [17] and nonlinear VIEs [13], specially for stiff problems.

The purpose of this paper is to construct higher order methods with
extensive region of stability for solving (1). To do this, we introduce a new
class of multistep collocation methods, which approximate the solution in
each subinterval depending on the values of approximated solution and its
first derivative in the fixed number r of previous time steps, and also the
values of the first derivative of the approximated solution in the m collocation
points. These methods will enable us, in deal with stiff equations, to make a
sensible choice for the steplength of the algorithm.

This paper is organized as follows: In Section 2, the construction of mul-
tistep Hermite collocation methods (MHCMs) is described, and in Section 3,
the convergence orders of these methods are determined. The linear stabil-
ity is analyzed in Section 4. The paper is closed in Section 5, by showing
efficiency of the methods by some numerical examples.
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2 Construction of the methods

In this section, we describe the construction of the MHCMs for solving (1).
Let Ih = {tn : 0 = t0 < t1 < · · · < tN = T} be a partition of the interval [0, T ]
with constant stepsize h := tn+1 − tn, n = 0, 1, . . . , N − 1. In these methods,
to compute the approximated solution of (1) in the subinterval [tn, tn+1], we
use the approximated values of the solution and approximate values of the
first derivative of the solution in the r previous steps and its first derivative
in the m collocation points in the subinterval [tn, tn+1]. Denoting the fixed
collocation parameters by 0 < c1 < · · · < cm ≤ 1 and the collocation points
by tn,j = tn + cjh, j = 1, . . . ,m, the collocation polynomials restricted to
subinterval [tn, tn+1] are defined by

un(tn + sh) =

r−1∑
k=0

ϕk(s)yn−k + h

m∑
j=1

ψj(s)Un,j + h

r−1∑
k=0

χk(s)y′n−k, (3)

where s ∈ [0, 1], n = r − 1, . . . , N − 1 and Un,j = u′n(tn,j). By differentiating
from (3) with respect to s, an approximation for y′(t) is in the form

hu′n(tn + sh) =

r−1∑
k=0

ϕ′k(s)yn−k + h

m∑
j=1

ψ′j(s)Un,j + h

r−1∑
k=0

χ′k(s)y′n−k. (4)

The functions ϕk(s), ψj(s), and χk(s), k = 0, 1, . . . , r− 1 and j = 1, 2, . . . ,m
are polynomials of degree 2r+m−1. By imposing the interpolation conditions
at points −k, k = 0, . . . , r − 1, in the polynomial (3) and (4) and at points
cj , j = 1, 2, . . . ,m, in the polynomial (4), we obtain

ϕi(−k) = δik, ψj(−k) = 0, χi(−k) = 0,
ϕ′k(cj) = 0, ψ′l(cj) = δlj , χ′i(cj) = 0,
ϕ′k(−i) = 0, ψ′j(−i) = 0, χ′k(−i) = δik,

(5)

where i, k = 0, 1, . . . , r − 1 and l, j = 1, 2, . . . ,m. The construction of these
polynomials is obtained by Hermite–Birkhoff interpolation [24]. Let us as-
sume the polynomials ϕk(s), ψj(s) and χj(s) in the form

ϕk(s) =

2r+m−1∑
i=0

Φ
[k]
i

si

i!
, ψj(s) =

2r+m−1∑
i=0

Ψ
[j]
i

si

i!
, χj(s) =

2r+m−1∑
i=0

χ
[j]
i

si

i!
.

(6)
Now by setting s = ci in (6) and differentiating from these polynomials
and setting s = ci, i = 1, 2, . . . ,m and s = −k, k = 0, 1, . . . , r − 1, a linear
system for coefficient of these polynomials is obtained. The coefficient matrix
A ∈ R(2r+m)×(2r+m) is in the form
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A =



1 0 0 0 . . . 0

1 (−1)1
1!

(−1)2
2!

(−1)3
3! . . . (−1)2r+m−1

(2r+m−1)!
...

...
...

...
. . .

...

1 (−r+1)1

1!
(−r+1)2

2!
(−r+1)3

3! . . . (−r+1)2r+m−1

(2r+m−1)!

0 1 0 0 . . . 0

0 1 −11
1!

−12
2! . . . −12r+m−2

(2r+m−2)!
...

...
...

...
. . .

...

0 1 (−r+1)1

1!
(−r+1)2

2! . . . (−r+1)2r+m−2

(2r+m−2)!

0 1
c11
1!

c21
2! . . .

c2r+m−2
1

(2r+m−2)!
...

...
...

...
. . .

...

0 1
c1m
1!

c2m
2! . . .

c2r+m−2
m

(2r+m−2)!



,

and the right-hand vectors are defined by u
[k]
r ∈ Rr, k = 1, 2, . . . , r, v

[j]
m ∈

Rm, j = 1, 2, . . . ,m as

(u[k]
r )i =

{
0, i 6= k,
1, i = k,

(v[j]
m )i =

{
0, i 6= j,
1, i = j,

Their coefficients are obtained by solving the systems

AΦ[k] = [u
[k+1]
r ,0r,0m]T , k = 0, 1, . . . , r − 1,

AΨ[j] = [0r,0r,v
[j]
m ]T , j = 1, 2, . . . ,m,

Aχ[k] = [0r,u
[k+1]
r ,0m]T , k = 0, 1, . . . , r − 1.

(7)

Now, we discuss on the uniqueness of the solution of (7). For this purpose, we
briefly review some definitions and known theorems about Hermite–Birkhoff
interpolation (see [15])

Let k and n be natural numbers and let

E = ‖εij‖, i = 1, . . . , k, j = 0, 1, . . . , n− 1,

be a matrix with k rows and n columns having elements

εij = 0 or 1,

which are such that ∑
i,j

εij = n.

We shall also assume that E has no row entirely composed of zeros. Let also
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x1 < x2 < · · · < xk.

We shall also assume that E has no row entirely composed of zeros. Let also

x1 < x2 < · · · < xk,

be increasing reals. We also need the set of ordered pairs

e = {(i, j) | εij = 1}.

The reals xi and the “incidence matrix” E describe the interpolation problem

f (j)(xi) = y
(j)
i for (i, j) ∈ E. (8)

It is appropriate to refer to (8) as a Hermite–Birkhoff interpolation problem,
which we shall abbreviate to HB-problem.

Definition 1. We shall say that the HB-problem (8) is poised, provided
that if

P (x) ∈ πn−1, P (j)(xi) = 0, for all (i, j) ∈ E,

then P (x) ≡ 0, in the other words, the matrix E is called poised if the
associated interpolation problem is uniquely solvable for any set of constants

y
(j)
i , regardless of the choice of the ordered points xl, x2, . . . , xk.

Define

m̃j =

k∑
i=1

εi,j , M̃l =

l∑
j=0

m̃l, j, l = 0, 1, . . . , n− 1.

Schoenberg [24] showed that a necessary condition for E, to be poised is that

M̃l ≥ l + 1, l = 0, 1, . . . , n− 1,

in which these inequalities are called the Polya condition.

Definition 2. Let the incidence matrix E have k rows. Let fi be the column
index of the first one that appears in the row i. Then E is called a pyramid
matrix if, for each i, εij = 1 implies εij′ = 1 for fi ≤ j′ ≤ j, and there is some
value of 1 ≤ i ≤ k such that f1 ≥ f2 ≥ · · · ≥ fi and fi ≤ fi+1 ≤ · · · ≤ fk.

Then Ferguson [15] declared the following theorem for poising the matrix
E with respect to the ordering x1 < x2 < · · · < xk.

Theorem 1. If E is a pyramid matrix with k rows, satisfying the Polya
conditions, then E is poised with respect to the ordering x1 < x2 < · · · < xk.
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Now, we show that our interpolation problems (5) have unique solution.
For these problems, the interpolation points can be considered by

−r + 1 < −r + 2 < · · · < −1 < 0 < c1 < c2 < · · · < cm.

Hence the matrix E with m+ r rows and 2r+m columns can be defined by

E =



1 1 0 · · · 0
1 1 0 · · · 0
...

...
...

...
1 1 0 · · · 0
0 1 0 · · · 0
...

...
...

...
0 1 0 · · · 0


.

Thus, we have

m̃0 = r, m̃1 = m+ r, m̃3 = 0, . . . , m̃n−1 = 0,

M̃0 = r, M̃1 = 2r +m, M̃3 = 2r +m, . . . , M̃n−1 = 2r +m = n.

It can be easily seen that the the matrix E satisfies in the polya condition.
Also by considering

f1 = 0, f2 = 0, . . . , fr = 0, fr+1 = 1, . . . , fr+m = 1,

one can see that the matrix E is a pyramid matrix. Thus by Theorem 1, we
conclude that E is poised with respect to the ordering −r + 1 < −r + 2 <
· · · < −1 < 0 < c1 < c2 < · · · < cm and the interpolation problems (5) have
the unique solution. In the other word, the matrix A is nonsingular.

The exact MHCM is then obtained by imposing the collocation conditions
for equation (1), that is, the collocation polynomials (3) exactly satisfy (1)
at the collocation points tn,i, which leads to the system of m equations in
the unknowns Un,i in the form

Un,i = Fn,i + Φn,i, (9)

where

Fn,i = g(tn,i, un(tn,i)) + h

n−1∑
ν=0

∫ 1

0

K(tn,i, tν + sh, uν(tν + sh))ds,

Φn,i = h

∫ ci

0

K(tn,i, tn + sh, un(tn + sh))ds, i = 1, . . . ,m.

(10)

Then yn+1 = un(tn+1) and hy′n+1 = hu′n(tn+1) are computed by
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yn+1 =

r−1∑
k=0

ϕk(1)yn−k + h

m∑
j=1

ψj(1)Un,j + h

r−1∑
k=0

χk(1)y′n−k,

hy′n+1 =

r−1∑
k=0

ϕ′k(1)yn−k + h

m∑
j=1

ψ′j(1)Un,j + h

r−1∑
k=0

χ′k(1)y′n−k.

(11)

Also, the discretized MHCM is obtained by using suitable quadrature for-
mulas for approximating Fn,i and Φn,i. The discretized multistep Hermite
collocation polynomials for approximating y(tn + sh) and y′(tn + sh) take
the forms

Pn(tn + sh) =

r−1∑
k=0

ϕk(s)yn−k + h

m∑
j=1

ψj(s)Yn,j + h

r−1∑
k=0

χk(s)y′n−k, (12)

hP ′n(tn + sh) =

r−1∑
k=0

ϕ′k(s)yn−k + h

m∑
j=1

ψ′j(s)Yn,j + h

r−1∑
k=0

χ′k(s)y′n−k, (13)

where n = r−1, . . . , N −1 and the unknowns Yn,j = P ′n(tn,j) are determined
by solving the nonlinear system

Yn,i = Fn,i + Φn,i. (14)

By using quadrature formulas with the weights bl and nodes ξl, l = 1, . . . , µ1,
for integrating on [0, 1], and the weights wi,l and nodes di,l, l = 1, . . . , µ0, for
integrating on [0, ci], with positive integers µ0 and µ1, one can write

Fn,i =g(tn,i, Pn(tn,i)) + h

n−1∑
ν=0

µ1∑
l=1

blK(tn,i, tν + ξlh, Pν(tν + ξlh)),

Φn,i =h

µ0∑
l=1

wi,lK(tn,i, tn + di,lh, Pn(tn + di,lh)). (15)

Substituting from (12) in (15) yields

Fn,i =g(tn,i,

r−1∑
k=0

αikyn−k + h

m∑
j=1

βijYn,j + h

r−1∑
k=0

ρiky
′
n−k)

+ h

r−2∑
ν=0

µ1∑
l=1

blK(tn,i, tν + ξlh, yν(tν + ξlh))

+ h

n−1∑
ν=r−1

µ1∑
l=1

blK(tn,i, tν + ξlh,

r−1∑
k=0

δlkyν−k + h

m∑
j=1

ηljYν,j + h

r−1∑
k=0

ζlky
′
ν−k),

Φn,i =h

µ0∑
l=1

wi,lK(tn,i, tn + di,lh,

r−1∑
k=0

γilkyn−k + h

m∑
j=1

βiljYn,j + h

r−1∑
k=0

ρilky
′
n−k),
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where yν(tν+sh), ν = 0, 1, . . . , r−2 are the starting approximated solutions,
which are obtained by classical collocation method such that

αik = ϕk(ci), βij = ψj(ci), ρik = χk(ci),
δlk = ϕk(ξl), ηlj = ψj(ξl), ζlk = χk(ξl),

γilk = ϕk(di,l), βilj = ψj(di,l), ρilk = χk(di,l).

3 Convergence analysis

In this section, we study the zero-stability of the method. When the method
is applied on the equation y′ = 0, the equations in (11) reduce to

yn+1 =
r−1∑
k=0

ϕk(1)yn−k,

hy′n+1 =
r−1∑
k=0

ϕ′k(1)yn−k.

Therefore, in analogy to [8, 22], zero-stability is defined as follows.

Definition 3. The MHCMs is said to be zero-stable if and only if all roots
of the polynomials

p(λ) = λr −
r∑

k=0

ϕk(1)λr−k−1, q(λ) = λr −
r∑

k=0

ϕ′k(1)λr−k−1,

have module less than or equal to unity and those of modules unity are simple.

Example 1. In the case, r = 3, m = 2, and c = [c1, 1], the method is
zero-stable for all c1 ∈ [0.345, 1].

In what follows, we determine the convergence order of the exact and
discretized MHCMs. We start by deriving local error estimate for the exact

MHCMs solution P (t) ∈ S(1)
2r+m−1(Ih) for the linear VIDE

y′(t) = a(t)y(t) + g(t) +

∫ t

0

K(t, τ)y(τ)dτ, t ∈ [0, T ]. (16)

Using the Peanos theorem [3, 15] for y and differentiating from it, the repre-
sentation of the local error is obtained as follows.

Lemma 1. Suppose that p = 2r+m−1 and that the given functions in (16)
satisfy a ∈ Cp(I), g ∈ Cp(I), and K ∈ Cp(D) with D := {(t, τ) : 0 ≤ τ ≤
t ≤ T}. Then for any choice of collocation parameters 0 < c1 < · · · < cm ≤ 1,
the exact solution y(t) satisfies
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y(tn + sh) =

r−1∑
k=0

ϕk(s)y(tn−k) + h

m∑
j=1

ψj(s)y
′(tn,j) + h

r−1∑
k=0

χk(s)y′(tn−k)

+ h2r+mRm,r,n(s), (17)

and

hy′(tn + sh) =

r−1∑
k=0

ϕ′k(s)y(tn−k) + h

m∑
j=1

ψ′j(s)y
′(tn,j)

+ h

r−1∑
k=0

χ′k(s)y′(tn−k) + h2r+mR′m,r,n(s), (18)

with

Rm,r,n(s) =

∫ 1

−r+1

Km,r(s, ν)y(2r+m)(tn + νh)dν,

Km,r(s, ν) =
1

(p− 1)!

{
(s− ν)p−1+ −

r−1∑
k=0

ϕk(s)(−k − ν)p−1+

− h(p− 1)

m∑
j=1

ψj(s)(−cj − ν)p−2+

−h(p− 1)

r−1∑
k=0

χk(s)(−k − ν)p−2+

}
,

and

(x− t)+ =

{
(x− t), x ≥ t,

0, x < t.

Theorem 2. Let e(t) = y(t)− u(t) be the error of the exact MHCM and let
p = 2r +m− 1. Suppose that

(i) K ∈ Cp(D × R), g ∈ Cp(I),

(ii) the starting error is ‖e‖∞,[0,tr] = O(hp),

(iii)ρ(H) < 1, where ρ denotes the spectral radius and

H =

[
A Ã

Â Ā

]
(19)

with

A =

[
0r−1,1 Ir−1
ϕr−1(1) ϕr−2(1), . . . , ϕ0(1)

]
, Ã =

[
0r−1,1 Ir−1
χr−1(1) χr−2(1), . . . , χ0(1)

]
,

Â =

[
0r−1,1 Ir−1
ϕ′r−1(1) ϕ′r−2(1), . . . , ϕ′0(1)

]
, Ā =

[
0r−1,1 Ir−1
χ′r−1(1) χ′r−2(1), . . . , χ′0(1)

]
.

(20)
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Then
‖e‖∞ = O(h2r+m−1).

Proof. We point out to the important parts of the proof for MHCMs in the
case of linear VIDE. The proof can be straightforwardly extended to the case
of a nonlinear VIDE (1) by using the mean value theorem [3]. Suppose that
Zn,j = y′(tn,j). By subtracting (3) from (17), representation of the local error
may be written as

e(tn + sh) =

r−1∑
k=0

ϕk(s)En−k + h

m∑
j=1

ψj(s)E ′n,j + h

r−1∑
k=0

χk(s)E ′n−k

+ h2r+mRm,r,n(s), (21)

with En−k = y(tn−k)−yn−k and E ′n,j = Zn,j−Un,j . Differentiating from (21)
yields

he′(tn + sh) =

r−1∑
k=0

ϕ′k(s)En−k + h

m∑
j=1

ψ′j(s)E ′n,j + h

r−1∑
k=0

χ′k(s)E ′n−k

+ h2r+mR′m,r,n(s). (22)

Replacing n by l − 1 in (21) and (22), and s = 1, lead to

E(1)l = AE(1)l−1 + hÃE ′(1)l−1 + hS̃E ′(2)l−1 + hpρ̃m,r,l−1 (23)

and
hE ′(1)l = ÂE(1)l−1 + hĀE ′(1)l−1 + hS̄E ′(2)l−1 + hpρ̄m,r,l−1, (24)

where A, Â, Ā, and Ã are given in (20) and

S̃ =

(
0r−1,m
ψ(1)T

)
, ρ̃m,r,j =

(
0r−1,1

Rm,r,j(1)

)
,

S̄ =

(
0r−1,m
ψ′(1)T

)
, ρ̄m,r,j =

(
0r−1,1

R′m,r,j(1)T

)
,

ε
(1)
l = [εl−r+1, . . . , εl]

T ∈ Rr,

ε′
(1)
l = [ε′l−r+1, . . . , ε

′
l]
T ∈ Rr, ε′

(2)
l = [ε′l,1, . . . , ε

′
l,m]T ∈ Rm,

ψ(1) = [ψ1(1), . . . , ψm(1)]T , ψ′(1) = [ψ′1(1), . . . , ψ′m(1)]T .

Combining (23) and (24) gives the following matrix equation:
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E(1)l

hE ′(1)l

)
= H

(
E(1)l−1
hE ′(1)l−1

)
+ GE(2)l−1 + Qm,r,l−1h

p, (25)

where H is given by (19) and

G =

(
hS̃
hS̄

)
, Qm,r,j =

(
ρ̃m,r,j
ρ̄m,r,j

)
.

The solution of difference equation (25) is (see [16])

E(1)l = Hl−r+1E(1)r−1 +

l−1∑
j=r−1

Hl−j−1(GE(2)j + hpQm,r,j). (26)

On the other hand, setting s = ci, i = 1, 2, . . . ,m in (22), by using (4),
leads to

e′(tn,i) = E ′n,i + h2r+m−1R′m,r,n(ci). (27)

On the other hand, equation (9) for the linear form of VIDE is equivalent to

Un,i =a(tn,i)un(tn,i) + g(tn,i) + h

n−1∑
l=0

∫ 1

0

K(tn,i, tl + sh)ul(tl + sh)ds (28)

+ h

∫ ci

0

K(tn,i, tn + sh)un(tn + sh)ds

and (16) at points tn,i can be written as

y′(tn,i) =a(tn,i)y(tn,i) + g(tn,i) + h

n−1∑
l=0

∫ 1

0

K(tn,i, tl + sh)y(tl + sh)ds (29)

+ h

∫ ci

0

K(tn,i, tn + sh)y(tn + sh)ds.

Now by subtracting (28) from (29), we get

e′(tn,i) =a(tn,i)e(tn,i) + h

n−1∑
l=0

∫ 1

0

K(tn,i, tl + sh)e(tl + sh)ds (30)

+ h

∫ ci

0

K(tn,i, tn + sh)e(tn + sh)ds.

Also, by substituting (30) in the (27), we obtain

E ′n,i =a(tn,i)e(tn,i) + h

n−1∑
l=0

∫ 1

0

K(tn,i, tl + sh)e(tl + sh)ds
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+ h

∫ ci

0

K(tn,i, tn + sh)e(tn + sh)ds

− h2r+m−1R′m,r,n(ci). (31)

By the hypothesis on the starting error and by substituting (21) in (31), we
have

E ′n,i =a(tn,i)

r−1∑
k=0

αi,kEn−k + h

m∑
j=1

βi,jE ′n,j

+h

r−1∑
k=0

ρi,kE ′n−k + h2r+mRm,r,n(ci)

)

+ h

n−1∑
l=0

∫ 1

0

K(tn,i, tl + sh)

(
r−1∑
k=0

ϕk(s)En−k

+h

m∑
j=1

ψj(s)E ′n,j + h

r−1∑
k=0

χk(s)E ′n−k + h2r+mRm,r,n(s)

 ds

+ h

∫ ci

0

K(tn,i, tn + sh)

(
r−1∑
k=0

ϕk(s)En−k

+h

m∑
j=1

ψj(s)E ′n,j + h

r−1∑
k=0

χk(s)E ′n−k + h2r+mRm,r,n(s)

 ds

− h2r+m−1R′m,r,n(ci).

By the hypothesis on the starting error, it follows that

e(tl + sh) = hpql(s), l = 0, 1, . . . , r − 1, (32)

with ‖ql‖∞ ≤ C1 independent of h. Hence, we obtain

(Im − hC(n)
n )E ′(2)n =hp+1

n∑
l=0

R̄(l)
n + h

n−1∑
l=r

C(l)
n E ′

(2)
n (33)

+ h

n∑
l=r

B(l)
n E

(1)
l + h2

n∑
l=r

D(l)
n E ′

(1)
l ,

where R̄
(l)
n ∈ Rm, C(l)

n , and B
(l)
n , D

(l)
n ∈ Rm×r are defined as

(R̄
(l)
n )i :=


∫ 1
0
K(tn,i, tl + sh)ql(s)ds, l = 0, 1, . . . , r − 1,∫ 1

0
K(tn,i, tl + sh)Rm,r,l(s)ds, l = r, . . . , n− 1,∫ 1

0
K(tn,i, tn + sh)Rm,r,n(s)ds+ a(tn,i)Rm,r,n(ci), l = n,
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(B
(l)
n )ik :=

{∫ 1
0
K(tn,i, tl + sh)ϕk(s)ds, l = r, . . . , n− 1,∫ ci

0
K(tn,i, tn + sh)ϕk(s)ds+ a(tn,i)ϕk(ci), l = n,

(C
(l)
n )ij :=

{∫ 1
0
K(tn,i, tl + sh)ψj(s)ds, l = r, . . . , n− 1,∫ ci

0
K(tn,i, tn + sh)ψj(s)ds+ a(tn,i)ψj(ci), l = n,

(D
(l)
n )ik :=

{∫ 1
0
K(tn,i, tl + sh)χk(s)ds, l = r, . . . , n− 1,∫ ci

0
K(tn,i, tn + sh)χk(s)ds+ a(tn,i)χk(ci), l = n.

Substituting (26) in (33), a recurrence formula for E ′(2)n is obtained. Then
by the same way as described in [9, Theorem 4.2] and by considering the
starting errors and the fact that ρ(H) < 1 lead to the estimate

‖E(2)n ‖ ≤M2h
p,

and then from (26), a bound for ‖E(1)n ‖ is obtained in the form

‖E(1)n ‖ ≤M1h
p.

Using the local error representation and two above inequalities together, com-
pletes the proof.

Theorem 3. Suppose that the hypotheses of Theorem 2 hold. If the quadra-
ture formulas defined in (15) have order 2r+m and 2r+m− 1, respectively,
then the uniform order of the discretized MHCMs is equal to 2r +m− 1.

Now, in the table 1, we give a comparison between the methods MCMs
[8], SIMCMs [12], and the new proposed method (MHCMs) in view of com-
putational costs with respect to convergence order.

Table 1: Comparison with multistep and superimplicit multistep collocation
methods.

MCMs SIMCMs SIMCMs MHCM
(type 1) (type 2)

collocation points m m m m
dimensional of system m m 2m m
order m+ r − 1 2m+ r − 1 2m+ r − 1 2r +m− 1

4 Linear stability analysis

In this section, we analyze the stability properties of the introduced methods
with respect to the basic test equation (see [5, 3, 4, 23])

y′(t) = g(t) + ξy(t) + η

∫ t

0

y(τ)dτ, t > 0, y(0) = y0, (34)
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where ξ, η ∈ C. The solution of (34) is stable if Re(λ1) < 0 and Re(λ2) < 0,

where λ1,2 = (ξ ±
√
ξ2 + 4η)/2 (see [1]). We observe that, particularly for

real ξ and η, these conditions reduce to ξ < 0 and η < 0. As usual, we look
for sufficient conditions for the stability of the numerical solution of (34).

Definition 4. Absolute stability region of the method, R, is the set of
all (z := ξh, w := ηh2) ∈ C × C, such that the numerical solution yn of
test equation (34) with a constant stepsize h, tends to zero as n → ∞. The
method is A0-stable if R ⊇ R− × R− and is A-stable if it is stable for any
value of (z, w) such that Re(λ1) < 0 and Re(λ2) < 0. An A-stable method is
A0-stable too.

To state the main results of stability properties of MHCM, let us define

αk =

∫ 1

0

ϕk(s)ds, βj =

∫ 1

0

ψj(s)ds, γk =

∫ 1

0

χk(s)ds,

Ωik =

∫ ci

0

ϕk(s)ds, Γij =

∫ ci

0

ψj(s)ds, ∆ik =

∫ ci

0

χk(s)ds,

(φ(c))ik = ϕk(ci), (ψ(c))ij = ψj(ci), (χ(c))ik = χk(ci),

and consider the vectors and matrices

ϕ(1) =[ϕ0(1), . . . , ϕr−1(1)]T , ψ(1) =[ψ1(1), . . . , ψm(1)]T ,

χ(1) =[χ0(1), . . . , χr−1(1)]T , χ′(1) =[χ′0(1), . . . , χ′r−1(1)]T ,

ϕ′(1) =[ϕ′0(1), . . . , ϕ′r−1(1)]T , ψ′(1) =[ψ′1(1), . . . , ψ′m(1)]T ,

y(r)
n =[yn, . . . , yn−r+1]T , y′

(r)
n =[y′n, . . . , y

′
n−r+1]T ,

Un =[Un,1, . . . , Un,m]T , u =[1, 1, . . . , 1]T ∈ Rm,

E1 =

[
ϕ(1)T

Ir−1 0r−1,1

]
, F1 =

[
ψ(1)T

0r−1,m

]
, G1 =

[
χ(1)T

0r−1,r

]
, (35)

E2 =

[
ϕ′(1)T

Ir−1 0r−1,1

]
, F2 =

[
ψ′(1)T

0r−1,m

]
, G2 =

[
χ′(1)T

0r−1,r

]
. (36)

Theorem 4. Applying the exact MHCM on the test equation (34), leads to
the following recurrence relation:y

(r)
n

hUn

y′
(r)
n

 = R(z, w)

y
(r)
n−1
hUn−1

y′
(r)
n−1

+ hGn,

where z := ξh, w = ηh2,
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R(z, w) = [Q(z, w)]−1M(z, w),

and

Gn =

 0r,m
0r,m

Gn − Gn−1

 ,
Q(z, w) =

 Ir 0r,m 0r,r
0r,r 0r,m Ir
−zϕ(c)− wΩ Im − zψ(c)− wΓ −zχ(c)− w∆

 ,
M(z, w) =

E1 F1 G1

E2 F2 G2

M1 M2 M3


with

M1 =− zϕ(c)− wΩ + wα,

M2 =Im − zψ(c)− wΓ + wβ,

M3 =− zχ(c)− w∆ + wγ.

Proof. By the notations of this section, we rewrite the first relation in (11)
in the form

yn+1 = ϕ(1)T y(r)n +ψ(1)ThUn + χ(1)Thy′
(r)
n , (37)

or equivalently

y(r)
n = E1y

(r)
n−1 + F1hUn−1 + G1hy′

(r)
n−1. (38)

Also, the second relation in (11) can be written in the form

hy′
(r)
n = E2y

(r)
n−1 + F2hUn−1 + G2hy′

(r)
n−1. (39)

Now we apply (10) on the test equation to get

Un,i = g(tn,i) + ξun(tn,i) + Fn(tn,i) + Φn(tn,i), (40)

where it can be written in the matrix form

Un = Gn + ξ
(
φ(c)y(r)n +ψ(c)hUn + χ(c)hy′

(r)
n

)
+ Fn−1 + Φn, (41)

with (Gn)i = g(tn,i) and

(Fn−1)i := Fn(tn,i) = ηh

n−1∑
l=0

∫ 1

0

ul(tl + sh)
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= ηh

n−1∑
l=0

∫ 1

0

r−1∑
k=0

ϕk(s)yl−k + h

m∑
j=1

ψj(s)Ul,j + h

r−1∑
k=0

χj(s) y
′
l−k

 ds,

(Φn)i := Φn(tn,i) = ηh

∫ ci

0

un(tn + sh)ds

= ηh

∫ ci

0

r−1∑
k=0

ϕk(s)yn−k + h

m∑
j=1

ψj(s)Un,j + h

m∑
j=1

χj(s)y
′
n−k

 ds.

Thus

Fn−1 = ηh

n−1∑
l=0

αy
(r)
l + βhUl + γhy′

(r)
l ,

Φn = ηh
(
Ωy(r)n + ΓhUn + ∆hy′

(r)
n

)
.

Therefore, we can write

Fn−1 − Fn−2 = αy
(r)
n−1 + βhUn−1 + γhy′

(r)
n−1. (42)

Now for obtaining a recurrence relation, substituting (42) in (41) and multi-
plying it by h yield

(Im − zψ(c)− wΓ)hUn + (−zϕ(c)− wΩ)y(r)n + (−zχ(c)− w∆)hy′
(r)
n

= (Im − zψ(c)− wΓ + wβ)hUn−1 + (−zϕ(c)− wΩ + wα)y
(r)
n−1

+ (−zχ(c)− w∆ + wγ)hy′
(r)
n−1 + h(Gn − Gn−1).

(43)

Hence the relations (38), (39), and (43) complete the proof.

Let us define

α̃k =

µ1∑
l=1

blϕk(ξl), β̃j =

µ1∑
l=1

blψj(ξl), γ̃k =

µ1∑
l=1

blχk(ξl),

Ω̃ik =

µ0∑
l=1

wi,lϕk(di,l), Γ̃ij =

µ0∑
l=1

wi,lψj(di,l), ∆̃ik =

µ0∑
l=1

wi,lχk(di,l).

Theorem 5. The discretized MHCM, applied to the test equation (34), leads
to the following recurrence relation:
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(r)
n

hYn

y′
(r)
n

 = R̃(z, w)

y
(r)
n−1
hYn−1

y′
(r)
n−1

+ hGn,

where z := ξh, w = ηh2,

R̃(z, w) = [Q̃(z, w)]−1M̃(z, w),

and

Q̃(z, w) =

 Ir 0r,m 0r,r
0r,r 0r,m Ir
−zϕ(c)− wΩ̃ Im − zψ(c)− wΓ̃ −zχ(c)− w∆̃

 ,

M̃(z, w) =

E1 F1 G1

E2 F2 G2

M̃1 M̃2 M̃3


with

M̃1 =− zϕ(c)− wΩ̃ + wα̃,

M̃2 =Im − zψ(c)− wΓ̃ + wβ̃,

M̃3 =− zχ(c)− w∆̃ + wγ̃.

Proof. It is similar to the proof of Theorem 4.

The R(z, w) is called the stability matrix of the method. Now, the method
is stable if ρ(R(z, w) < 1 and the stability region of the method is R =
{(z, w) ∈ C × C : ρ(R(z, w) < 1}. Here, the term Gn does not influence
stability. The stability function of the method with respect to (34) is defined
as

p(z, w;λ) = det(λI2r+m −R(z, w)). (44)

To investigate the stability properties of the exact MHCM, it is more con-
venient to work with the polynomial obtained by multiplying the stability
function (44) by its denominator. The resulting polynomial will be denoted
by the same symbol p(z, w;λ). This polynomial takes the form

p(z, w;λ) =

2r+m∑
i=0

pi(z, w)λi, (45)

where pi(z, w), i = 0, 1, . . . , 2r + m are polynomials of degree less than or
equal to m. Denoting the roots of the polynomial p(z, w;λ) by λ1, λ2, . . . ,
λ2r+m, the absolute stability region of the method is then defined by
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Figure 1: Stability region with r = 2, m = 2, c = [ 8
10
, 1].
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Figure 2: Stability region with r = 3, m = 2, c = [ 19
20
, 1].

R = {(z, w) ∈ C− × C− : |λi(z, w)| < 1, i = 1, 2, . . . , 2r +m}.

We did not find A0-stable methods within this class, but wide stability
regions exist. For example, in the cases r = 2, m = 2 with collocation
parameters c = [ 8

10 1], and r = 3, m = 2 with collocation parameters c =
[ 1920 1], the regions of stability are unbounded. These regions are given in
Figures 1 and 2, respectively.

5 Numerical results

In this section, to check the numerical performance of the method, we have
considered a variety of problems. Here, the starting values y1, . . . , yr−1 are
obtained by a one step MHCMs of the same order of the present method.

In practice, we need quadrature rules to obtain the numerical solutions.
For this propose, we have to apply the rules that preserve order of the main
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Figure 3: Stability region with r = 3, m = 2, c = [ 2
3

, 1].

method. A suitable choice is the 3-times Romberg quadrature formula with
the Simpson rule [25]. In this rule that is of order 8, the nodes and weights
for integration in the interval [0, h] are

ζi =
ih

8
, i = 0, 1, . . . , 8

and

b =
1

5760
[217 1024 352 1024 436 1024 352 1024 217].

In what follows, we describe details of the implemented methods:

• Method 1: MHCM of convergence order 5 with r = 2, m = 2, and
collocation parameters c1 = 2

3 and c2 = 1.

• Method 2: MHCM of convergence order 7 with r = 3, m = 2, and
collocation parameters c1 = 2

3 and c2 = 1, with bounded stability
region. (see Figure 3)

• Method 3: MHCM of convergence order 7 with r = 3, m = 2, and
collocation parameters c1 = 19

20 , and c2 = 1, with unbounded stability
region.

• Method 4: Multistep collocation method [8] of convergence order 4
with r = 3, m = 2, and collocation parameters c1 = 7

10 and c2 = 1.

Computational experiments are done by applying the Methods 1–4 on the
following problems:

I. The linear VIDE

y′(t) =1 + 2t− y(t) +

∫ t

0

τ(1 + 2τ)eτ(t−τ)y(τ)dτ, t ∈ [0, 2],



G
al

le
y

P
ro

of

150 S. Fazeli

Table 2: The results for problem I.

k 4 5 6 7 8 9
Method 1 cd 2.74 4.20 5.69 7.18 8.68 10.19

p(h) 4.86 4.93 4.97 4.98 4.99
Method 3 cd 4.02 6.06 8.14 10.23 12.33 14.44

p(h) 6.77 6.90 6.96 6.98 6.99
Method 4 cd 2.94 4.07 5.22 6.41 7.60 8.81

p(h) 3.71 4.84 3.92 3.96 3.98

y(0) =1,

with the exact solution y(t) = et
2

.

II. The nonlinear VIDE

y′(t) =− t− 1

(1 + t)2
+

1

y(t)
ln(

2 + 2t

2 + t
) +

∫ t

0

dτ

1 + (1 + t)y(τ)
, t ∈ [0, 4],

y(0) =1,

with the exact solution y(t) = 1
1+t .

III. The stiff nonlinear VIDE

y′(t) =− λ

2
y(t) + 1 +

λ

2
t+

λ

2
te−t

2

− λ
∫ t

0

tτe−y
2(τ)dτ, t ∈ [0, 4],

y(0) =0,

with the exact solution y(t) = t.

We have implemented the methods with a fixed stepsize h = T
2k
, with

several integer values of k. In the following tables, the maximal end point
error is written as 10−cd, where cd is the number of correct significant digits.
Also, a numerical estimation of the order of convergence of the methods

is computed by the formula p(h) = log2( e(2h)e(h) ), where e(h) is the maximal

absolute end point error.

The results in Tables 2 and 3 confirm the proved convergence order. In
Table 4, we show the effect of linear stability properties of the methods in
solving stiff problems. For Method 2, the interval of absolute stability on real
line is bounded. When z = λh or w = λh2 lies out of this interval, increas-
ing of absolute error is evidently seen while for Method 3, with unbounded
stability region, better results are obtained.
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Table 3: The results for problem II.

k 5 6 7 8 9
Method 1 cd 6.45 7.85 9.31 10.79 12.28

p(h) 4.67 4.84 4.92 4.96
Method 3 cd 7.47 9.33 11.31 13.36 15.43

p(h) 6.17 6.57 6.78 6.89
Method 4 cd 4.61 5.67 6.77 7.92 9.06

p(h) 3.47 3.65 3.82 3.91

Table 4: Comparison of the methods (absolute errors of the methods for problem III

with λ = 500).

Method 2 Method 3
t k = 7 k = 8 k = 7 k = 8
0.25 1.44E-20 1.28E-22 3.25E-20 1.38E-22
0.5 5.69E-19 8.35E-22 2.14E-19 8.58E-22
0.75 2.20E-17 1.89E-21 4.79E-19 1.90E-21
1 6.21E-16 2.93E-21 7.34E-19 2.90E-21
1.5 4.86E-13 7.34E-21 1.82E-18 7.34E-21
2 4.24E-10 1.71E-20 4.28E-18 1.72E-20
3 3.47E-04 3.09E-20 7.72E-18 3.09E-20
3.5 3.13E-01 3.57E-20 9.03E-18 3.61E-20
4 2.73E+02 4.13E-20 1.03E-17 4.13E-20

6 Conclusion

The introduced methods for VIDEs, based on Hermite–Birkhoff interpolation,
use of the approximated values of the solution in the m collocation points
and the approximated values of the solution as well as its first derivative in
the r previous steps. Using of this technique caused to get methods of higher
orders and also with extensive stability regions. As we showed in Table 4,
the extensive stability region of the method let us to make a sensible choice
for the steplength of the algorithm for solving stiff equations.
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