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Abstract

The most important purpose in location problems is usually to locate some

facilities and allocate the demands of nodes so that the total transportation
cost of the network is minimized. However, in real networks, there are some

other influencing factors, aside from the transportation costs, for determin-

ing the allocation mode. In this paper, a minimum information approach is
applied to the capacitated p-median problem to estimate the most likely allo-

cation solution based on some prior probabilities. Indeed, the most probable

solution is achieved through minimizing a log-based objective function, while
the total transportation cost should be less than or equal to a predetermined

budget. The problem is solved by using a decomposition method combined
with the Karush–Kuhn–Tucker optimality conditions, and some numerical

examples are provided to verify the added value of the proposed model and

solution approach
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1 Introduction

The p-median problem is one of the known subjects in the field of locating
facilities with a minisum objective function, where its purpose is to locate
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p facilities and allocate the demands of nodes so that the total demand-
weighted distance is minimized. ReVelle and Swain [26] introduced the first
integer linear programming formulation for the p-median, which has played an
important role in solving the problem by applying such exact methods as the
branch and bound [24] and Lagrangian dual relaxation [5]. Hakimi [18] proved
that the p-median problem on the general networks is NP -hard; however, it
has at least one nodal solution. Kariv and Hakimi [20] suggested an O(p2n2)
time algorithm to solve the p-median problem on the tree networks. Then,
Tamir [30] improved the time complexity on the tree networks to O(pn2).
For a complete bibliography on the p-median problem; see [25].

In the classical p-median model, which is sometimes referred to as the
uncapacitated p-median (UCpM) problem, there is no constraint on the ca-
pacities of facilities; see [17]. In the case of limited capacities, the problem is
usually called the capacitated p-median (CpM) problem. Both the UCpM
and CpM problems are NP -hard, although considering capacity limitations
makes the latter problem more difficult; see [14]. A column generation ap-
proach, along with a Lagrangian/surrogate relaxation technique has been
applied by Lorena and Senne [21] for solving the CpM problem. Ceselli and
Righini [8] presented a branch and price algorithm that utilizes a column
generation, heuristics, and branch-and-bound to determine the optimal so-
lutions. Such Meta-heuristic methods as a Hybrid scatter search and path
relinking algorithm [10], variable neighborhood search [12], neural network
[27], and genetic algorithm [23] have been recently applied to solve the CpM
problem.

When there is a lack of information in the network, the maximum entropy
(ME) principle or its extended concept, the minimum information theory,
is used to consider the solution with the most unbiased probability distribu-
tion; see [22]. In the ME models, there is no assumption about the missing
information, and all possible states consistent with the system conditions are
considered equally; then the most likely one is selected; see [9, 19]. The ap-
plication of ME to the location problems was employed by Teye, Bell, and
Bliemer [32, 33] to solve a multiuser inter-modal terminal (IMT ) location
problem wherein there is no priority to use an IMT . Based on the ME
principle, the most unbiased probability distribution was achieved through
considering all possible states of IMT usage and selecting the most likely
one consistent with the problem constraints. Teye, Bell, and Bliemer [31]
also proposed an ME approach for locating competitive multiuser freight
facilities in general, and inland multiuser IMT s, in particular, when the
multiple users have the choice whether to use a facility or not.

The ME approach to the origin-destination (O − D) matrix estimation
problems was studied by Van Zuylen and Willumsen [34] to determine the
most probable O − D demands consistent with the available traffic counts.
Abareshi, Zaferanieh, and Keramati [2] introduced an ME path flow estima-
tor for disaggregated flows between O−D pairs with a prespecified level for
each disaggregation.
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When, in the network, there is some prior information, but insufficient,
it is reasonable to choose a solution that adds the least extra information to
the available knowledge, which results in the most possible unbiased prob-
ability distribution. The minimum information (MI) approach provides an
extended measure of the likelihood of a certain macro-state on the existence
of some appropriate micro-state space; see [28]. Abareshi and Zaferanieh [1]
proposed a new bi-level p-median problem in which the total cost of locating
facilities and serving demands was minimized through the upper level while
the MI approach was applied in the lower level to determine the most unbi-
ased allocation solution based on some prior partial information. The prior
information was given in terms of the probabilities of serving the demands of
client nodes by different facilities, which might be determined by considering
some attributes such as distance, locality, and geographical features, taken
into account by multiple attributes decision making procedures; see [1, 29].

In this paper, considering some prior probabilities for serving the demands
of nodes, we attempt to locate p capacitated facilities and determine the most
probable allocation solution, while the total transportation cost should be
less than or equal to a predetermined budget. The model is formulated as a
mixed-integer nonlinear programming (MINLP ) problem, which is known
to be NP -hard. Applying such alternative methods as the Lagrangian dual
approach or Benders decomposition algorithm to separate the model into
some easier subproblems, the solution could be iteratively obtained.

The generalized Benders decomposition (GBD) algorithm has been sug-
gested by Geoffrion [16] as a solution procedure for certain nonlinear pro-
gramming (NLP ) and MINLP problems. The decomposition procedure
was first developed by Benders [6] for the solution of mixed-variable pro-
gramming problems. However, some restrictions regarding the convexity and
other properties of the involved functions were considered. Floudas, Ag-
garwal, and Ciric [13] studied this technique and revealed its potential for
applying in a chemical process design. They also proposed a computational
implementation to reach the global optimal solution for nonconvex NLP and
MINLP problems. This claim was sustained by solving different examples,
though it has not been proven mathematically.

Bagajewicz and Manousiouthakis [3] investigated the importance of two
properties defined by Geoffrion [16], called property (P) and L-dual-adequacy,
for the proper application of the GBD algorithm. They solved several ex-
amples satisfying or violating these properties and analyzed the obtained
solutions. Through examples and mathematical analysis, they showed that
dual gaps may prevent this procedure from converging to the global solution,
and therefore only bounds on the global optimum might be obtained. Here,
we apply the GBD algorithm studied in [3] to solve the proposed MINLP
model of the p-median problem in the MI approach.

The remainder of this paper is organized as follows: In Section 2, the
model of the CpM problem in the MI approach is introduced. Using the
scheme proposed by Bagajewicz and Manousiouthakis [3], the GBD algo-
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Table 1: The notation used in the model
Notation Definition
N {v1, . . . , vn}, the set of nodes
E The set of links
I The index set of client nodes
J The index set of candidate points for establishing facilities
yj The binary variable representing whether node vj , j ∈ J is used to locate a facility or not
cj The capacity of the facility at node vj , j ∈ J
wi The total demand of the client node vi, i ∈ I
pij The probability of serving the demand of node vi, i ∈ I by the facility at node vj , j ∈ J
xij The decision variable representing the amount of demand of node vi, i ∈ I

provided by the facility at node vj , j ∈ J
dij Per unit cost to serve the demand of node vi, i ∈ I by the facility at node vj , j ∈ J
B The total available budget

rithm and the Karush–Kuhn–Tucker (KKT ) optimality conditions are ap-
plied in Sections 3 and 4 whereby the problem is reduced to easier subprob-
lems. The feasibility and optimality constraints are added iteratively and the
upper and lower bounds are updated. The convergence of the GBD algorithm
on the proposed problem is also established in Section 4. To investigate the
added value of the proposed model, some numerical examples are provided
in Section 5, while the efficiency of the implemented algorithm is compared
with some existing MINLP solvers by applying the performance profile test
proposed by Dolan and More [11]. The summary and conclusions are given
in the last section.

2 CpM problem with the most likely allocation solution

In this section, the CpM model applying the MI approach, to determine
the most probable allocation solution, is proposed. Consider a network G =
(N,E), where the other frequently used notations are listed in Table 1.

To apply the concept of MI to the CpM problem, consider several de-
mand nodes vi, i ∈ I with wi clients that should be served by the facilities
at candidate nodes vj , j ∈ J . Also, let xij be the amount of clients of the
demand node vi that are served by the facility at node vj , where its corre-
sponding probability is given by pij . Then, using the multinomial distribu-
tion, the probability of observing an allocation solution with the components
xij is given as follows (see [1]):

E(x) =
∏
i

(
wi!∏
j xij !

∏
j

p
xij

ij ).

Following the scheme presented by Abareshi and Zaferanieh [1], by taking
the logarithm, using Stirling’s approximation, removing constant values, and
reducing the problem to the minimum case, the model of the minimum infor-
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mation capacitated p-median (MICpM) problem is introduced as follows:

MICpM : min
x,y

Z0(x, y) =
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij), (1)

∑
j∈J

yj = p, (2)

∑
j∈J

xij = wi for all i ∈ I, (3)

∑
i∈I

xij ≤ yjcj for all j ∈ J, (4)∑
j∈J

∑
i∈I

dijxij ≤ B, (5)

yj ∈ {0, 1}, xij ≥ 0 for all i ∈ I, j ∈ J. (6)

Constraint (2) assures that the number of established facilities is equal
to p and constraints (3) practically guarantee that the demands of all nodes
vi are supplied. Constraints (4) make all open facilities serve the demands
less than or equal to their capacities. In addition, constraint (5) states that
the total spent cost does not exceed the available budget B. Due to the ex-
isting of nonlinear terms and mixed-integer variables, the MICpM problem
(1)–(6) is NP -hard; see [14]. In the following, the GBD algorithm is intro-
duced whereby the problem is reduced to smaller subproblems to which the
constraints are added iteratively to update the upper and lower bounds.

3 Generalized Benders decomposition algorithm

Here, the GBD algorithm studied by Bagajewicz and Manousiouthakis [3],
for general MINLP is stated, while its application to the MICpM problem
(1)–(6) is examined through the next section. Consider the following problem

min
x,y

F (x, y), (7)

s.t. G(x, y) ≤ 0,

x ∈ X, y ∈ Y.

The projection of the above problem on Y was proposed by Geoffrion [16]
as

min
y
v(y), (8)

s.t. v(y) = min
x∈X
{F (x, y) : s.t. G(x, y) ≤ 0},
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y ∈ Y ∩ V,

where V = {y : G(x, y) ≤ 0 for some x ∈ X}. Introducing the following
two problems, Geoffrion [16] proposed a decomposition of (8) when X is a
convex set, and the functions F (x, y) and G(x, y) are convex with respect to
the variable x:

[1.] Primal problem:

min
x
F (x, ȳ), (9)

s.t. G(x, ȳ) ≤ 0,

x ∈ X,

where ȳ is an arbitrary but fixed point in Y .

[2.] Master problem:

min
y∈Y
{max
u≥0
{min
x∈X

F (x, y) + utG(x, y)}}, (10)

s.t. min
x∈X
{λtG(x, y)} ≤ 0 for all λ ∈ Λ,

where Λ = {λ ∈ Rm : λ ≥ 0,
∑m
i=1 λi = 1} (m is the size of vector G).

Bagajewicz and Manousiouthakis [3] pointed out that the master problem
is equivalent to the projection (8), in the case, where X is a convex set
and F (x, y) and G(x, y) are convex functions with respect to the variable x.
In addition, they showed that the master problem is also equivalent to the
following problem:

min
y,y0

y0, (11)

s.t. L∗(y, u) = min
x∈X
{F (x, y) + utG(x, y)} ≤ y0 for all u ≥ 0, (12)

L∗(y, λ) = min
x∈X
{λtG(x, y)} ≤ 0 for all λ ∈ Λ. (13)

Geoffrion [16] suggested to solve a relaxed version of problem (11)–(13)
in which all but a few constraints are ignored. Indeed, in each iteration,
the constraints corresponding to a subset of vectors u and λ, instead of all
of them, are considered. Due to ignoring some of constraints, the obtained
problem is called the relaxed master problem; see [3]. Since constraints are
continuously added, the optimal values of this problem form a monotone
nondecreasing sequence as the lower bounds to problem (7). Next, the steps
of the GBD algorithm in the general form are represented.
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3.1 General form of the GBD algorithm

Step 1. Let a point ȳ ∈ Y ∩ V be available. Solve the primal problem (9)
and obtain the optimal solution x∗ and the optimal multiplier vector
u∗. Put the counters Kf = 1, Ki = 0. Set UB = F (x∗, ȳ). Select
a tolerance ε ≥ 0 and set u(1) = u∗. Finally, determine the function
L∗(y, u(1)).

Step 2. Solve globally the current relaxed master problem:

min
y,y0

y0,

s.t. L∗(y, u(k1)) ≤ y0, k1 = 1, . . . ,Kf , (optimality constraint)

L∗(y, λ
(k2)) ≤ 0, k2 = 1, . . . ,Ki, (feasibility constraint).

Let (ŷ, ŷ0) be the globally optimal solution. Set LB = ŷ0. If UB ≤
LB + ε, then terminate.

Step 3. Solve globally the primal problem (9) using ȳ = ŷ.

Step 3.a. Feasible primal problem: Solve the primal problem (9) by using
ȳ. If v(ȳ) ≤ LB + ε, then terminate. Otherwise, determine the

optimal multiplier vector u∗, set Kf = Kf + 1 and u(K
f ) = u∗. If

v(ȳ) < UB, then set UB = v(ȳ). Finally, determine the function

L∗(y, u(K
f )) and return to Step 2.

Step 3.b. Infeasible primal problem: Determine a set of values of λ∗ ∈ Λ
satisfying minx∈X{(λ∗)tG(x, ȳ)} > 0. Set Ki = Ki + 1 and

λ(K
i) = λ∗. Determine the function L∗(y, λ

(Ki)). Return to Step
2.

Remark 1. To determine the value of λ∗ in Step 3.b, the following problem
should be solved (see [3]):

min
x,α

α,

s.t. G(x, ȳ)− α1 ≤ 0,

x ∈ X, α ∈ R,

where 1 = (1, 1, . . . , 1)t.

Remark 2. If the functions F (x, y) and G(x, y) are separable with respect
to x and y and convex with respect to x, the global optimal solutions for x
within constraints (12) and (13) are obtained independently of y; see [3]. In

this case, functions L∗(y, u(k
f )) and L∗(y, λ

(ki)) are defined in explicit forms.
Geoffrion stated some conditions ([16, Theorem 2.4] for the finite discrete

set Y and [16, Theorem 2.5] for the infinite cardinality set Y ) for problem (7),
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where the lowest solution of the primal and the global solution of the master
would approach one another, and consequently, the global optimum of the
overall problem would be provided within a prespecified tolerance. However,
when the convexity in x does not hold, dual gaps may exist. Nevertheless, the
global solution to the master problem will still provide a valid lower bound to
problem (7). Next, an application of the GBD algorithm on problem (1)–(6)
is investigated.

4 Implementing the GBD algorithm on the MICpM
problem

To apply the proposed GBD algorithm, we reformulate problem (1)–(6) as
follows:

min
x,y

Z0(x, y) =
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij),∑
i∈I

xij ≤ yjcj for all j ∈ J, (14)

x ∈ X = {xij ≥ 0 :
∑
j∈J

xij = wi for all i ∈ I,
∑
j∈J

∑
i∈I

dijxij ≤ B},

y ∈ Y = {y : yj is binary and
∑
j∈J

yj = p}.

Note that the set X as well as functions Z0(x, y) and Gj(x, y) =∑
i∈I xij − yjcj , for all j ∈ J , are convex with respect to x. Following

the steps of Algorithm 3.1, the implementation of the GBD algorithm to
solve the MICpM problem is summarized as below.

4.1 GBD algorithm on the MICpM problem

Step 1 Select a tolerance ε ≥ 0 and a feasible vector ȳ ∈ Y for which there
exists a feasible solution x ∈ X satisfying in (14).

Step 1.a. Solve the corresponding primal problem (15)–(16)

min
x∈X

Z0(x, ȳ) =
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij), (15)

∑
i∈I

xij ≤ ȳjcj for all j ∈ J, (16)
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and obtain the optimal solution x∗ and the optimal multipliers
u∗j , j ∈ J corresponding to constraints (16). Set Kf = 1,Ki = 0,

UB = Z0(x∗, ȳ) and vector u(1) = u∗.

Step 1.b. Determine the optimal solution x̂ corresponding to the following

subproblem and set x(K
f ) = x̂:

min
x∈X

∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij) +
∑
j∈J

u
(Kf )
j

∑
i∈I

xij . (17)

Step 2 Solve globally the current relaxed master problem:

min
y0,y∈Y

y0, (18)

s.t. L∗(y, u(k1)) =
∑
j∈J

∑
i∈I

x
(k1)
ij (lnx

(k1)
ij − 1− ln pij) (19)

+
∑
j∈J

u
(k1)
j (

∑
i∈I

x
(k1)
ij − cjyj) ≤ y0, k1 = 1, . . . ,Kf ,

L∗(y, λ
(k2)) =

∑
j∈J

λ
(k2)
j∈J (

∑
i∈I

x
′(k2)
ij − cjyj) ≤ 0, k2 = 1, . . . ,Ki, λ ∈ Λ.

Note that in each iteration, the variables u(k1), x(k1), and x′(k2) are
specified fixed values that have been obtained during the previous steps
of the algorithm; therefore, problem (18) is a linear mixed-binary model,
which could be globally solved by such existing methods as branch and
bound. Let (ŷ, ŷ0) be the global optimal solution. Set LB = ŷ0. If
UB ≤ LB + ε, then terminate.

Step 3. Solve globally the following problem to examine the feasibility of the
primal problem (15)–(16) corresponding to ȳ = ŷ.

min
x,α

α,∑
i

xij − cj ȳj − α ≤ 0 for all j ∈ J, (20)

x ∈ X, α ∈ R.

Step 3.a. If α ≤ 0, then the primal problem (15)–(16) is feasible. Solve the
primal problem for the given vector ȳ to find the optimal solution
x∗. If Z0(x∗, ȳ) ≤ LB + ε, then terminate. Otherwise, determine
the optimal multiplier vector u∗ corresponding to constraints (16),

and set Kf = Kf + 1 and u(K
f ) = u∗. If Z0(x∗, ȳ) < UB, then

put UB = Z0(x∗, ȳ). Finally, return to Step 1.b.

Step 3.b. If α > 0, then the primal problem (15)–(16) is infeasible. Deter-
mine the optimal multipliers λ∗j corresponding to constraints (20).
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Set Ki = Ki + 1 and λ(K
i) = λ∗. To find the optimal solution x̃,

solve the following model:

min
x∈X

∑
j∈J

λ
(Ki)
j

∑
i∈I

xij .

Put x′(K
i) = x̃ and go to Step 2.

The purpose of the algorithm is to minimize the gap between the upper and
lower bounds. Next, the convergence conditions stated by Geoffrion [16], are
verified for problem (1)–(6).

Theorem 1. The GBD Algorithm 4.1 for the MICpM problem (1)–(6)
terminates in a finite number of steps, for any given ε ≥ 0.

Proof. Since Y = {y : yj is binary and
∑
j∈J yj = p} is a finite discrete set,

the convergence of Algorithm 4.1 should be established via [16, Theorem 2.4].
Indeed, the following conditions must hold:

i. X is a nonempty convex set and functions Gj(x, y) =
∑
i∈I xij − yjcj

are convex on X for each fixed y ∈ Y . Further, the set Zy = {z =
(z1, . . . , z|J|) : Gj(x, y) ≤ zj for some x ∈ X} is closed for each fixed
y ∈ Y .

ii. Functions Z0(x, y) and Gj(x, y) are convex on X for each fixed y ∈ Y .
In addition, for each fixed ȳ ∈ Y ∩V , either the optimal value Z0(x, ȳ) is
infinite, or the primal problem (15)–(16) possesses an optimal multiplier
vector.

Part i. Obviously, the set X = {xij ≥ 0 :
∑
j∈J xij = wi, ∀i ∈

I,
∑
j∈J

∑
i∈I dijxij ≤ B} is nonempty (xii = wi, for all i ∈ I and xij =

0 for i 6= j is a feasible solution), closed and bounded. Noting the continuity
of functions Gj(x, y) on X, the closeness of Zy is implied; see [16].

Part ii. The convexity of functions Z0(x, y) =
∑
j∈J

∑
i∈I xij(lnxij − 1−

ln pij) and Gj(x, y) =
∑
i∈I xij − yjcj with respect to x for each fixed y

is straightforward by the definition. Following the saddle point optimality
conditions stated in [4], the existence of optimal multiplier vector is inferred;
see [15].

The overall scheme of the algorithm is represented in Figure 1.

4.2 Solving the primal problem

The primal problem (15)–(16) is a convex nonlinear problem, which can be
solved by applying the KKT optimality conditions. Let ȳ be given. Con-
sider the Lagrangian dual vectors uj , γi, and η corresponding to constraints
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Figure 1: The overall framework of the proposed algorithm

(22), (23), and (24). Then Lemma 1 expresses the relationship between the
primal and dual variables:

min
x
Z0(x, ȳ) =

∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij), (21)

∑
i∈I

xij ≤ cj ȳj for all j ∈ J, (22)∑
j∈J

xij = wi for all i ∈ I, (23)

∑
j∈J

∑
i∈I

dijxij ≤ B, (24)

xij ≥ 0 for all i ∈ I, j ∈ J. (25)

Lemma 1. The optimal solution of problem (21)–(25) is obtained by
xij = pije

−(uj+γi+ηdij), for all j ∈ J, i ∈ I, where uj , γi, and η are the
optimal multiplier vectors corresponding to constraints (22), (23), and (24),
respectively.

Proof. The KKT optimality conditions of model (21)–(25) with respect to
x obtain in the following expressions:

lnxij − ln pij + uj + γi + ηdij ≥ 0, (26)

xij(lnxij − ln pij + uj + γi + ηdij) = 0. (27)
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The above conditions state that one of the following cases holds in the opti-
mality:

xij = 0 and lnxij − ln pij + uj + γi + ηdij ≥ 0,

→ xij ≥ pije−(uj+γi+ηdij) ≥ 0,

or

xij ≥ 0 and lnxij − ln pij + uj + γi + ηdij = 0,

→ xij = pije
−(uj+γi+ηdij) ≥ 0.

The former case holds if pij = 0; therefore, the optimal solution would be
written as xij = pije

−(uj+γi+ηdij) ≥ 0 in both cases.

Note that to obtain the optimal solution of problem (21)–(25), the rela-
tion obtained for xij must be considered together with the other optimality
conditions of the problem, resulting in the following system to be solved:

xij = pije
−(uj+γi+ηdij) for all i ∈ I, j ∈ J, (28)∑

i∈I
xij ≤ cj ȳj for all j ∈ J, (29)

uj(
∑
i∈I

xij − cj ȳj) = 0 for all j ∈ J, (30)∑
j∈J

xij = wi for all i ∈ I, (31)

η(
∑
j∈J

∑
i∈I

dijxij −B) = 0, (32)

∑
j∈J

∑
i∈I

dijxij ≤ B, (33)

η, u ≥ 0. (34)

To transform the nonlinear terms in the system of equations (28)–(34) into
linear ones, a linearization method is applied. Setting vj = e−uj , si = e−γi ,
kij = e−ηdij and noting that u, η ≥ 0, the system of equations (28)–(34) is
rewritten as follows:

xij = pijvjsikij for all i ∈ I, j ∈ J,∑
i∈I

xij ≤ cj ȳj for all j ∈ J,

(vj − 1)(
∑
i∈I

xij − cj ȳj) = 0 for all j ∈ J, (35)∑
j∈J

xij = wi for all i ∈ I,
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(kij − 1)(B −
∑
j∈J

∑
i∈I

dijxij) = 0 for all i ∈ I, j ∈ J, (36)

∑
j∈J

∑
i∈I

dijxij ≤ B, (37)

vj ≤ 1, kij ≤ 1 for all i ∈ I, j ∈ J, (38)

vj , si, kij > 0 for all i ∈ I, j ∈ J.

Since uj = 0 results in vj = 1, for all j ∈ J , and visa versa. Therefore,
constraints (30) and (35) are equivalent. The same statement holds for con-
straints (32) and (36). Using the approach introduced in [7], the product
of variables fij = hijkij = vjsikij can be linearized by adding some con-
straints; see [1]. The final linear mixed-integer system that should be solved
is equivalent to the following:

xij = pijfij for all i ∈ I, j ∈ J, (39)∑
i∈I

xij ≤ cj ȳj for all j ∈ J,∑
j∈J

xij = wi for all i ∈ I,

si − hij ≤Mrj , cj ȳj −
∑
i

xij ≤M(1− rj) for all j ∈ J,

hij − fij ≤Mq, B −
∑
i

∑
j

dijxij ≤M(1− q) for all i ∈ I, j ∈ J,

∑
j∈J

∑
i∈I

dijxij ≤ B, (40)

fij ≤ hij , hij ≤ si for all i ∈ I, j ∈ J, (41)

si, hij , fij > 0, rj , q ∈ {0, 1} for all i ∈ I, j ∈ J,

in which M is a sufficiently large number. Problem (17) in Step 1.b can
be similarly solved while the other problems in Steps 2 and 3 are linear or
mixed-binary linear that would be solved by existing methods.

5 Numerical examples

In this section, the proposed GBD algorithm is implemented in GAMS 23.7
environment to determine the most probable allocation solution on some
small and medium-sized networks. During the steps of the algorithm, the
obtained mixed-binary linear problem (18) is solved by such mixed-integer
programming solvers as CPLEX.
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Although by Theorem 1, the algorithm would converge after a finite num-
ber of iterations, implementing numerical examples revealed that the optimal
solution would be obtained much sooner than the convergence. Indeed, after
a number of iterations, the upper bound values might marginally change or
even remain unchanged, which results in an optimal or near-optimal solu-
tion. Therefore, we have considered some other stopping criteria, by which
the algorithm continues until no progress is achieved in the upper or lower
bounds during a predetermined number of successive iterations, or the total
number of iterations reaches its maximum value. The used stopping criteria
are summarized below:

i. To reach a solution with UB ≤ LB + ε, where ε is a predetermined
tolerance.

ii. Proceeding the algorithm with no improvement in the values of UB
and LB for k successive iterations.

iii. To reach the maximum number of iterations Maxiter.

Example 1. Consider the small network shown in Figure 2 wherein
I = J = N and the costs of links have been given next to them. The value
of dij for each pair (i, j) is calculated by the shortest distance between i and
j. The capacities and demands of nodes, (c, w), are inserted in Table 2. To
estimate the probabilities, the approximate distances with 5 additional cri-
teria indicated by random integers, representing such geographical and local
features as proximity to transportation services, security, and surrounding
facilities, are considered. The compared weights of different nodes j for a
certain node i with respect to the first attribute, that is, the approximate
distance, are determined as follows:

0.45
n1
i

if j ∈ S1
i = {j : dij ≤ 25},

0.25
n2
i

if j ∈ S2
i = {j : 25 < dij ≤ 35},

0.15
n3
i

if j ∈ S3
i = {j : 35 < dij ≤ 45},

0.10
n4
i

if j ∈ S4
i = {j : 45 < dij ≤ 55},

0.05
n5
i

if j ∈ S5
i = {j : 55 < dij},

where nqi = |Sqi |, q = 1, . . . , 5. In addition, the compared weights of nodes
with respect to the other 5 attributes r = 2, . . . , 6 are given in Table 2.
We use the multiple attributes decision making procedures to calculate the
probabilities pij for different weight vectorsWeight, which defines the relative
importance of 6 criteria; see [1, 29].

To see the effect of the available budget as well as emphasizing on dif-
ferent attributes, the solution of the MICpM problem (1)–(6) for p = 3, 2
is estimated for B = 15000 and B = 12000, by applying weight vectors
Weight1 and Weight2; see Table 3. The solutions are estimated via both
the GBD algorithm with Maxiter = 15, ε = 100, and k = 5 as well as the



G
al

le
y

P
ro

of

The most probable allocation solution for the p-median problem 169

Figure 2: The grid network with 9 nodes

Table 2: The capacities and demands of nodes along with their weights with
respect to criteria r = 2, . . . , 6

Nodes 1 2 3 4 5 6 7 8 9

c 300 200 350 320 250 250 350 100 200
w 50 60 80 40 90 100 80 60 50

Criteria 1 2 3 4 5 6 7 8 9

2 0.0541 0.0270 0.1351 0.1622 0.0811 0.1081 0.0541 0.1351 0.2432
3 0.0244 0.0488 0.1220 0.0976 0.1707 0.1951 0.2195 0.0732 0.0488
4 0.0455 0.1136 0.1591 0.0227 0.0682 0.1591 0.2045 0.1818 0.0455
5 0.2162 0.0270 0.0811 0.1351 0.1081 0.0541 0.2432 0.0270 0.1081
6 0.2286 0.0571 0.1429 0.0286 0.1143 0.0857 0.2571 0.0571 0.0286

“Dicopt” solver of GAMS 23.7, where the allocation solutions along with
their objective function values (OBJF ) are inserted in Table 3.

As it is seen, the optimal values of the objective function provided by the
GBD algorithm are better than or at least equal to those provided by “Di-
copt” solver. Note that, the optimal solution might change by changing the
GAMS solver. However, examining different cases showed that the solutions
obtained by “Dicopt” are usually better than or at least near to the other
solvers of GAMS and hence have been reported in Table 3.

Referring to the estimated solutions, it can be realized if the capacities are
large enough, the shares of the selected facilities in the MICpM allocation
solution are proportional to their probabilities. For example, the probabilities
p(1, j), j = 1, . . . , 9 for Weight1 are estimated as

p(1, :) = [0.1617, 0.1072, 0.1090, 0.1423, 0.0983, 0.0895, 0.1471, 0.0642, 0.0808].

Among the selected medians 3, 6, 7, using the GBD algorithm, the median
7 has the most probability and consequently the most share to provide the
demand of node 1. Indeed, the higher is the probability pij , the more would
be the share of the median vj to provide the demand of node vi. The same
statement holds for medians 1, 3, 7 found by the GAMS solver. However,
decreasing the budget B to 12000 results in a different allocation solution
to assign as much demand as possible to the closer facilities; compare the
column of i = 6 in cases B = 12000 and B = 15000 for the weight vector
Weight1 in the GBD solution.

For the weight vector Weight2, wherein the criterion r = 6 is ranked as
the most important one, the locations of 2 medians are to be selected. As
it is seen, both the GBD and “Dicopt” solver determine the nodes 3, 7 for
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Table 3: The allocation solution for the MICpM problem
Facility \ Node 1 2 3 4 5 6 7 8 9 OBJF Time

B = 15000 p = 3, Weight1 = [0.3462 0.1923 0.1154 0.0385 0.1154 0.1923]

The GBD algorithm

3 16.739 27.739 36.479 8.315 26.951 37.234 12.206 13.266 13.765 2533.355 4
6 11.952 17.815 29.058 9.391 34.628 40.470 13.927 15.904 18.429
7 21.308 14.446 14.463 22.294 28.421 22.296 53.867 30.831 17.806

GAMS solver “Dicopt”

1 31.095 24.002 15.583 15.006 21.182 16.798 12.873 7.646 5.906 2583.869 8
3 8.491 27.644 54.607 5.016 36.048 60.544 6.251 12.448 19.226
7 10.414 8.354 9.810 19.978 32.770 22.659 60.876 39.906 24.869

B = 12000 p = 3, Weight1 = [0.3462 0.1923 0.1154 0.0385 0.1154 0.1923]

The GBD algorithm

3 18.245 35.331 46.724 5.194 25.673 37.088 4.160 9.138 12.350 2598.169 4
6 9.937 17.310 28.391 7.690 43.242 52.847 6.222 14.362 21.675
7 21.818 7.359 4.885 27.117 21.086 10.065 69.617 36.499 15.975

GAMS solver “Dicopt”

1 39.397 34.999 18.405 14.815 14.836 9.744 8.310 4.658 2.983 2655.921 10
6 2.925 17.626 53.375 4.664 50.319 77.113 4.155 13.557 26.266
7 7.678 7.375 8.219 20.521 24.845 13.144 67.535 41.785 20.751

B = 15000 p = 2, Weight2 = [0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.6429]

The GBD algorithm

3 20.035 41.620 63.996 7.688 41.899 65.449 6.953 13.305 19.109 2654.990 4
7 29.965 18.380 16.004 32.312 48.101 34.551 73.047 46.695 30.891

GAMS solver “Dicopt”

1 49.154 32.910 5.434 38.559 27.072 6.799 75.123 21.472 3.478 2867.986 5
3 0.846 27.090 74.566 1.441 62.928 93.201 4.877 38.528 46.522

B = 12000 p = 2, Weight2 = [0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.6429]

The GBD algorithm

3 21.181 54.045 77.430 3.191 50.387 86.269 0.998 6.688 19.109 2778.247 4
7 28.819 5.955 2.570 36.809 39.613 13.731 79.002 53.312 30.891

GAMS solver “Dicopt”

3 21.181 54.045 77.430 3.191 50.387 86.269 0.998 6.688 19.109 2778.247 4
7 28.819 5.955 2.570 36.809 39.613 13.731 79.002 53.312 30.891

B = 12000 as the optimal locations, while for B = 15000, the GBD provides
a better solution. Referring to Table 2, it is realized that the model finds
the optimal location of facilities in nodes having more weights with respect
to the attribute r = 6, while simultaneously the total transportation cost is
limited to the given budget. In the case of enough capacities, the shares of
the selected facilities to provide the demands of nodes are again based on
their corresponding probabilities. In addition, reducing the budget changes
the allocation solution so that the closer is the median, the larger will be the
assigned share.

To analyze the convergence of the GBD algorithm, the variations of
the upper and lower bounds through successive iterations for weight vec-
tor Weight1 with B = 15000, p = 3 and Weight2 with B = 15000, p = 2,
are illustrated in Figures 3 and 4, respectively. Here, no limit has been con-
sidered on iterations, that is, the only stopping criterion is satisfying the
case i and the other two ones are neglected. In Figure 3, the algorithm has
stopped after 76 iterations, where the lower bound becomes greater than the
upper bound. However, the upper bound values remain almost unchanged
after 20 iterations. Indeed, the optimal value of the objective function (1)
has been obtained in the 20th iteration. For the weight vector Weight2 with
B = 15000, p = 2 in Figure 4, the algorithm converges in the 7the iteration
while the optimal value of the objective function (1) has been achieved in the
first iteration.

Example 2. In the second example, the efficiency of the proposed algorithm
on larger problems is investigated. First we consider a 100-node network,
where the network topology, the lengths of links, and the demands and capac-
ities of nodes are taken from the URL address http : //people.brunel.ac.uk/
mastjjb /jeb/orlib/pmedinfo.html. To calculate the probabilities pij , ap-
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Figure 3: The variations of the upper and lower bounds for Weight1, B =
15000, p = 3

Table 4: Comparison between GBD and GAMS solvers
B = 800000, p = 10 B = 900000, p = 10 B = 500000, p = 20

Solver Objective function Running time Objective function Running time Objective function Running time
Knitro − − − − − −
Baron − − − − − −

Bonmin 40639.753 2077 41851.221 1004 40396.948 1006
Dicopt 41263.215 90 40557.247 16 40340.818 32

Sbb − − 40247.635 1005 − −
Lindo global − − − − − −

Oqnlp − − − − − −
GBD 41929.25 26 41474.553 29 39942.716 26

proximate distances plus 5 additional criteria, indicated by random integers
assigned to network nodes, are considered. The problem is solved for p = 10
and B = 800000, 900000 and p = 20, B = 500000, by applying different
MINLP solvers of GAMS as well as the GBD algorithm. The stopping
criteria for the GBD algorithm are the same as those used in Example ??
1. The optimal value of the objective function and the elapsed running time
in each case have been reported in Table 4. The sign (−) indicates that the
solver has not been able to find any solution for the problem. As it is seen,
the GBD algorithm generally provides an adequate solution in reasonable
running time in comparison with the used solvers.

Next, we use the method proposed by Dolan and More [11] to ana-
lyze the performance profile of the GBD algorithm as well as three solvers
Bonmin, Dicopt, and Sbb. To this purpose, we have considered 30 problems
p ∈ P taken from the URL address http : //people.brunel.ac.uk/ mastjjb
/jeb/orlib/pmedinfo.html on networks with 100, 250, 300 and 400 nodes,
and solved them by the three mentioned solvers s = 1, 2, 3 and the GBD
algorithm, as well. Let
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Figure 4: The variations of the upper and lower bounds for Weight2, B =
15000, p = 2

ts,p = the running time required to solve problem p by solver s.

Referring to [11], the performance on problem p ∈ P by solver s is compared
with the best performance realized among all the used solvers on this problem.
Therefore, we use the performance ratio

rs,p =
ts,p

min{ts,p : s = 1, 2, 3}
.

A parameter rM ≥ rs,p for all p, s is chosen, where rs,p = rM if and only
if the solver s does not solve problem p. Then, the probability for the solver
s that the performance ratio rs,p is less than or equal to a factor τ ∈ R, is
demonstrated by

ρs(τ) =
1

|P |
size{p, rs,p ≤ τ}.

The function ρs(·) is the (cumulative) distribution function for the perfor-
mance ratio and is termed as the performance profile; see [11]. Figure 5 illus-
trates the comparison between the performance profiles of the three solvers
and the GBD algorithm for τ = 1, . . . , 200. As it is realized, the GBD algo-
rithm has much better performance in comparison with the applied GAMS
solvers. In addition, even for those problems p ∈ P , where the solvers could
not provide any solution, the GBD algorithm reached a reasonable upper
bound in less than 200 seconds.
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Figure 5: Comparison between the performance profiles of the GAMS solvers
and the GBD algorithm

6 Summary and conclusions

In this paper, we proposed a log-based model using the minimum information
approach, for the capacitated p-median problem to estimate the most likely
allocation solution, while the total transportation cost should be less than
or equal to a predetermined budget. Using the generalized benders decom-
position method, the proposed problem was reduced to easier subproblems
to which some constraints were added iteratively, and the upper and lower
bounds have been updated. The convergence of the algorithm was estab-
lished analytically, while its efficiency in comparison to MINLP solvers was
investigated practically by applying the performance profile test on some
numerical examples.
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