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Abstract

Functionally graded materials (FGMs) are materials that show different

properties in different areas due to the gradual change of chemical composi-
tion, distribution, and orientation, or the size of the reinforcing phase in one

or more dimensions. In this paper, the free vibrations of a thin cylindrical

shell made of FGM is investigated. In order to investigate this problem, the
first-order shear theory is used, by using relations related to the propagation

of waves and fluid-structure interaction. Also, due to the rotational iner-

tia of first-order shear deformation and the fluid velocity potential, dynamic
equation of functionally graded cylinder shell, containing current is obtained.

Convergence of the solutions obtained from this method in different modes

of boundary conditions as well as different geometric characteristics for the
submerged cylinder and results of other studies and articles is showed. Also

the effects of different parameters on the FGM cylindrical shell frequencies

for the classical boundary conditions (compositions of simple, clamped, and
free boundary conditions) are investigated against the ratio of length to the

radius and the ratio of thickness to radius for different values of exponential
power (exponential order) of FGM material. The results show that if the

more density of the fluid in which the cylinder is submerged is lower, then

the frequency values will be higher. Also, by examining the different fluid
velocities, it can be seen that the effect of thickness change so that increas-

ing thickness causes the increase of effect of speed on the natural frequency

reduction, especially in higher modes.
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1 Introduction

In recent years, with the development of high-powered engines for aerospace
industries, turbines, reactors, and other machines, there is a need for materi-
als with higher thermal resistance and more resistant dynamically. Function-
ally graded materials (FGMs) are in fact composite materials in which the
composition of materials or microscopic structure is changed in such a way
that the mechanical and thermal properties of the structure made of these
materials are ideal for applications that include high thermal gradients from
thermal structures in advanced aircraft and aerospace engines and computer
circuit boards. According to the many variables that affect the design of
FGMs, the full exploitation of the potential of FGMs requires the develop-
ment of appropriate modeling methods for their response to the combination
of mechanical and thermal loads. Emergence and entry of FGMs, by defining
the various modes of the existing compounds of human-made, the possibility
of the deliberate construction is provided according to these materials. This
possibility was proposed as a concept by Bohr and Dowz in 1972, and the
exploitation of these materials in individual efforts in the 1950s, 60s, and
70s, and the early 1980s was by many researchers and prominently in the
United States. Then Japanese require these materials to grow and progress
in space research to focus on the spaceship project that the result was that
many of the various hard and precise requirements were made for increasing
the temperature of the components of hybrid and gradually microstructural
structures; see [25, 19, 4, 11].

Robinson and Palmer [23] carried out a modal analysis of a rectangular
sheet suspended on fluid. They obtained the response for a time-harmonic
point load, but their analysis can be cited for a limited number of initial
frequencies. Kwak [18] examined the free vibration of a rectangular sheet
suspended on an infinite fluid. The basis of this analysis is based on the
Rayleigh–Ritz method and the Green’s function. Haddara and Cao [10] ob-
tained an approximate expansion for the modal analysis of a rectangular
sheet of a curved side, horizontally immersed in the fluid, empirically, and
analytically. Zhou and Cheung [36] studied the vibrations of a rectangular
sheet that is in contact with the fluid in one side, using the Rayleigh–Ritz
method. The fluid is in contact with the sheet inside a semi-infinite rigid
reservoir. Liang et al. [20] proposed a simple method for obtaining natural
frequencies and the shape of the immersed sheet of a clamped side based on
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empirical formulas. Yadykin et al. [32] analyzed an immersed rectangular
sheet in fluid with ratio of different aspects. The sheets analyzed in their work
are with a clamped edge and other edges free. Jeong et al. [15] presented an
analytical method for estimating the frequencies of two specific sheets with
finite fluid. They used polynomial functions for analysis and satisfied the
boundary conditions of the fluid with finite Fourier extension, by expanding
the fluid velocity potential. Tarjoman and Carlo [6] studied the sheets of a
curved side immersed in fluid and studied the effect of the length-to-width
ratio. Zhou and Liu [37] presented a three dimensional method method for
dynamically analyzing a flexible rectangular reservoir filled with fluid, using
a combination of Rayleigh–Ritz methods and Galerkin’s method. FGMs are
heterogeneous microstructure materials whose mechanical properties change
smoothly and continuously from one surface to another.

The common type is the combination of ceramic and metal. These ma-
terials are obtained by mixing ceramic and metal powder. The advantage
of using these materials is that they are able to withstand extreme tempera-
tures and temperature differences, and they are extremely corrosion-resistant
and have high resistance to fracture. Nowadays, these materials are used for
structures that are resistant to high temperatures. This type of materials
is used because of its specific features in thermal shields of rockets, chemi-
cal tanks, and abrasive environments. Considering the importance of FGMs
in the industries, many researchers investigate the dynamic behavior of this
type of material. Hosseini-Hashemi et al. [13] investigated and analyzed the
free vibration of a rectangular sheet of FGM with a relatively thick based
on the first-order shear deformation theory. In their study, for six modes of
combining different boundary conditions of a sheet with two simple parallel
edges and other edges, a combination of simple, free, and clamped boundary
conditions, the natural frequency of the sheet is obtained by using a precise
solution. One of the benefits of that research is the high accuracy of the
proposed method. Talha and Sinagh [31] studied the vibration and static
analysis of FGM sheets using the third-order shear deformation theory, but
with the difference that in this theory, little corrections in the transverse dis-
placement of these plates were done by the limited element method. Zhao et
al. [35] provided an analysis for the free vibration of the plates of functionally
material. They also used the first-order shear deformation theory to calculate
shear strain and inertial rotation. The special equations were converted to
energy functions using the Ritz method and then solved. Hosseini-Hashemi et
al. [12] presented a closed-loop solution based on the free vibration analysis
of thick sheets of FGMs based on the third-order shear deformation theory.
The boundary conditions used are two simple parallel supports. Khorshidi
[16] investigated the effect of the hydrostatic pressure of vibration of a rect-
angular coupler sheet with a fluid. Ho and Zheng studied the two-branch
phenomenon in symmetric nonlinear vibrations of functionally graded cir-
cular sheet, considering the effects of temperature and harmonic transverse
force. Khorshidi and Farhadi [17] studied the free vibration of rectangular
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composite sheet in contact with limited fluid. Abolghasemi et al. [1] ana-
lyzed the buckling of rectangular sheets under uneven plate load based on
the first-order shear deformation theory and used the Galerkin method for
solving equations of stability for a sheet with simple boundary conditions.
Ghasemi et al. [8] studied buckling behavior of conical reinforced compos-
ite shells under axial load and calculated them by using the Ritz method.
Ebrahimi et al. [5] examined the vibrations of FGM beams in thermal load-
ing. Guo and Zhang [9] studied on static bending, elastic buckling, and free
and forced vibrations, and composite-reinforced fiber structures have been
investigated. More recently, Song, Kitipornchai, and Yang [30] examined
polymer nanoparticle sheets on the free and compulsory vibrations that op-
erate in a categorized manner, in which GPLs are nonuniform and dispersed
in matrices. Mirzaei and Kiani [21] examined an iso-geometric formulation
for thermal analysis of shaking GRC layers with different compositions in
different boundary conditions. They used the assumptions of Shen and his
colleagues [26, 29, 27, 28, 33]. Benchouaf and Boutyour [2] studied on the
coupled nonlinear static, and dynamic problems were transformed into a se-
quence of linear ones solved by a finite-element method. Benferhat et al. [3]
studied on the effect of foundation stiffness parameters presented for thick
to thin plates and for various values of the gradient index, aspect, and the
side-to-thickness ratio.

In this paper, using the first-order shear deformation theory, the vibra-
tion of sheets made of FGMs in contact with fluid is studied. In order to
examine the displacements and the vibrational behavior of the sheet, the
boundary conditions are considered differently. The results are obtained by
using the Comsol software for FSI, and in numerical results, different geo-
metric conditions, applying fluid to the sheet at various heights, applying
different velocities, and obtaining the natural frequencies with checking the
different boundary conditions on the natural frequency of the sheet in contact
with the fluid with the parametric sweep tool, the effect of volumetric power
factor parameters has been investigated and analyzed for several important
modes, including the volume ratio and fluid height. To verify the accuracy
of the results, numerical results are compared with the results available in
references.

2 Statement of the problem

The first step in this research is the modeling of a cylindrical shell consisting
of FGM. For this modeling, in the first part, the properties of the materials
studied should be considered based on the theories related to FGMs. For
this purpose, we consider a cylinder from FGMs with uniform thickness with
length L and thickness H and width R that this sheet will consist of ceramic
and metal. In all equations, there is the assumption of linear behavior of
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materials, displacements, and strains, as well as the elastic properties of
materials are in line with the thickness of the variable plate and according to
the volume ratio rule. To solve it, using a finite element method, a cylindrical
shell model was first drawn in the Comsol software, which is shown in Figure
1 of the cylindrical shell model.

Figure 1: Functionally graded and German cylindrical geometry from cylindrical thick-

ness

The next step in this research is the modeling of the effects of the fluid-
structure interaction, which in this paper is modeled by using the coupling
motion equations of fluid motion of this interaction. Nonslip and incompress-
ible fluid and the incompressible fluid flow are isotropic and nonrotary. Lim-
ited software can be a solution to the condition of observing determinants
in the analysis. Thin cylindrical shell is uniformly considered. Equations
govern the dynamical behavior of cylinder from the FGM in the presence of
fluid.

3 Formulation

The resultant material properties D of an FGM are functions of material
properties and volume fractions of the constituent materials and can be mod-
eled as follows (see [14]):

D =

l∑
k=1

DkVfk,

where Dk and Vfk, respectively, represent the material properties and volume
fraction of the constituent material k. The sum of volume fractions of all the
constituent materials equals unity, that is,
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l∑
k=1

Vfk = 1.

For a cylindrical shell with uniform thickness h and with the middle surface
taken as reference surface, the volume fraction is expressed as follows (see
[14]):

Vf =
( z
h

+0.5
)g
,

where g is the power law index and is taken to be 0 ≤ g ≤ ∞. Since the
paper study two materials for the construction of a cylindrical shell, three
main mechanical quantities, Module Yang (E), Poisson ratio (υ), and density
(ρ), can be extracted as follows (see [14]):

Eo = (E2 − E1)
(
z
h + 0.5

)g
+ E1,

υo = (υ2 − υ1)
(
z
h + 0.5

)g
+ υ1,

ρo = (ρ2 − ρ1)
(
z
h + 0.5

)g
+ ρ1.

In this case, we know that for z = −h/2, the Young’s modulus and the
Poisson coefficient are, respectively, υ = υ1 and E = E1, and also the density
is equal to ρ = ρ1. When z = h/2, Yang modulus and Poisson coefficients
are, respectively, υ = υ2 ,and E = E2 and also the density is equal to ρ =
ρ2, which represents the fact that, at the inner surface of the cylinder, the
property of the constituent is corresponding with the first material, and at
the outer surface of the cylinder, the mechanical properties are the properties
of second material.

The thin sheet problem is a three-dimensional problem which becomes
a two-dimensional problem, by considering the plate stress condition. For
example, the stress and strain of components in the Z direction are negligi-
ble. This theory is used to calculate the effect of shear forces on thick shell
frequencies. Using Love’s thin shell theory, the equation of motion of this
cylindrical shell is shown as follows (see [24]):



∂Nx
∂x + 1

R
∂Nxθ
∂θ = ρT

∂2ux
∂t2

,

∂Nxθ
∂x + 1

R
∂Nθ
∂θ + 1

R
∂Mxθ

∂x + 1
R2

∂Mθ

∂θ = ρT
∂2v
∂t2

,

∂2Mx

∂x2 + 2
R
∂2Mxθ

∂x∂θ + 1
R2

∂2Mθ

∂θ2 −
Nθ
R = ρT

∂2w
∂t2 ,

where Nx, Nθ, and Nxθ are the force components in the three directions and
Mx , Mθ, and Mxθ are the components of the moment in the three main
directions. Using the Love’s theory for shells, the equations for strains and
curves of the reference page will be as follows (see [14]):
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(Nx, Nθ, Nxθ) =

∫ h/2

−h/2
(σx, σθ, σxθ)dz,

(Mx,Mθ,Mxθ) =

∫ h/2

−h/2
(σx, σθ, σxθ)zdz,

ρo =

∫ h/2

−h/2
ρ′dz.

There, the Qij ’s are reduced stiffnesses for a thin cylindrical isotropic shell
defined as follows (see [14]):

Q11 =
E

1− υ2
,

Q22 =
E

1− υ2
, (1)

Q12 =
υE

1− υ2
, (2)

Q11 =
E

2 (1− υ)
.

Here E and υ, respectively, represent the Young’s coefficient and Poisson’s
coefficient. By placing the above equations in the matrix of force and mo-
mentum, we obtain L11

L12

L31

L12

L22

L31

L13

L23

L31

 uv
w

 =

 0
0
0

 . (3)

In the above equations, Lij(i, j = 1, 2, 3) represents the differential op-
erator relative to x and θ. Since the velocity field for a fluid outside the
shell only contains the effect of pressure and no flow outside the tube is ob-
served, using the cylindrical coordinate system (x, ϕ, r), the acoustic pressure
equation satisfies the equation below [24]:

1

r

∂

∂r

(
r
∂Pa
∂r

)
+

1

r2
∂2Pa
∂ϕ2

+
∂2Pa
∂x2

=
1

c2
∂2Pa
∂t2

. (4)

In the upper equation, Pa stands for the acoustic pressure and c indicates
the speed of sound inside the water. The coordinates x and ϕ in the above
equations are in accordance with the cylinder coordinates.

In this method, the modal displacement in shell equations can be written
by using the wave propagations method and the longitudinal wave number
(ks), as well as by using the parameter of the wave number in the direction
of the environment (n) as follows (see [24]):
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v (x, θ, t) = B sin (nθ) exp (iωt− iksx) ,
w (x, θ, t) = C cos (nθ) exp (iωt− iksx) .

The coefficients A, B, and C denote the wave amplitudes in the x, θ, and z
directions, respectively. In these equations, n is the number of circumferential
waves, and ks is the axial wave number. It should be noted that by changing
the boundary conditions, the number of longitudinal waves varies. Also, ω
in the above equations shows the natural frequency for the cylindrical shell,
and to analyze the waveforms generated, the peripheral wave number is used.

It is assumed that the fluid and shell are in contact at any moment, and
the fluid has a flow with velocity U , which will also show the effects of the
emission of waves in both fluids.

The associated form of the acoustic pressure field in the contained fluid,
which satisfies the acoustic wave (2), can be expressed in the cylindrical
coordinate system, associated with an axial wave number ks, radial wave
number kr, and circumferential wave number n, and is given as follows (see
[24]):

P = Pacos (nθ) Jn (krr) exp (iωt− iksx) ,

where Jn is the Bessel function of first kind with order n. For the fluid outside
of the surface and the cylindrical shell, we have (see [24])

−
{

1

iωρf

}(
∂Pa
∂r

)∣∣∣∣
r=R

=

(
∂w

∂t

)∣∣∣∣
r=R

. (5)

Given equation (4) for acoustic pressure, Pa will be obtained by the fol-
lowing equation (see [24]):

Pa =

[
ρfω

2
/
krH

′

n

(2)
(Rkr)

]
, (6)

where ρf is the density of the contained fluid and the prime on the Hn denotes
differentiation with respect to the argument Rkr.

Equation (6) represents the amplitude of the acoustic pressure on the shell
surface from the fluid outside of the shell and, in other words, determines the
effect of the shell’s submergence in the fluid.

Using equation (3) and considering the effects of external fluid, (3) could
be rewritten as the equation of vibration of the shell as follows (see [22]):L11

L12

L31

L12

L22

L31

L13

L23

L31 + FL

 uv
w

 =

0
0
0

 .
The FL in the equation above shows the effects of the acoustic pressure

due to the submergence of the shell in the fluid. To calculate FL, we have
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FLo = −ρfω
2

Kr

Hn
(2) (RKr)

H ′
n
(2)

(RKr)
. (7)

In other words, if FL is equal to zero, the equations become vibration equa-
tions of a free shell, and in general, the special values of equation (7) represent
the natural frequencies of the system.

For the out-tube fluid, by applying the wave propagation method, the
equation of wave propagation in the fluid in the tube by using the wave
propagation equation for the distribution of pressure is obtained as follows:

FLi =
ρf
Kr

Jn (RKr)

J ′
n (RKr)

(
ω2 − U2ks

2
)
. (8)

Using (5), (6) can be written as

FL = FLo + FLi

=
ρf
kr

(
−Hn

(2) (RKr)

H ′
n
(2)

(RKr)
ω2 +

Jn (RKr)

J ′
n (RKr)

ω2 − UKs
Jn (RKr)

J ′
n (RKr)

)
.

By (1), we have T11T12
T31

T12
T22
T31

T13
T23

T33 + FL

 uv
w

 =

 oo
o

 ,
where Tij (i, j = 1, 2, 3) are coefficients of the stiffness matrix and the 3 × 3
matrix on the right hand side of (6) represents the mass matrix depending on
shell parameters and the type of boundary conditions specified at the ends
of a cylindrical shell and are given as (see [24])

T11 =

[(
Ks

2
)
A11 +

n2

R2
A66

]
− ρohω2

,

T12 =

[
−nks

(
A11 + A66

R
+
B11 + 2B66

R2

)]
,

T13 =

[
iks

(
A12

R
+ B11ks

2
+ n

2B12 + 2B66

R2

)]
,

T22 =

[
n
2

(
A22

R2
+

2B22

R3
+
C22

R4

)
+ ks

2

(
A66 +

3B66

R
+

4C66

R2

)]
− ρ0hω2

,

T23 =

[
−in

(
A22

R2
+
B22

R3
+ n

2

(
B22

R3
+
C22

R4

)
+ ks

2

(
B12 + 2B66

R2
+
C12 + 4C66

R2

))]
,

T33 =

[
−
(
A22

R2
+

2B12

R
ks

2
+ 2n

2B22

R3
+ C11ks

4
+ 2n

2
ks

2

(
C12 + 2C22

R2

)
+ n

4C22

R4

)]
−ρohω2

.

By solving the special value problem for equation (8), the natural fre-
quency of vibration of a thin cylindrical shell can be obtained, by changing
n and s, the various vibrational modes of the shell can be obtained.
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4 Result and discussion

In this paper, by using two aluminum and ceramic materials (Al2 O3), the
mechanical properties of each one are given in Table 1, it is assumed that
aluminum will be as an outer coating and ceramic as an inner coating of the
sheet that is involved with the fluid.

Table 1: Specification of FGM

Type of material Density Elasticity module Poisson coefficient
Al 2702 70 0.3

Al2 O3 3800 393 0.3

To solve it, using finite element solving method, a cylindrical shell model
was first drawn in the software, and then, the problem of structure and fluid
interaction was used to consider the effects of the fluid outside and inside
the shell. Since in solving a finite element, due to some factors, the response
depends on the size of the mesh, it must be ensured that the mesh size
is sufficiently small and the dimensions of the mesh have no effect on the
solutions. For this purpose, using different mesh sizes, the element solving
has been limited. In Figure 2, to show the effect of mesh size on the results
of the finite element method for the first frequency, are presented.

Figure 2: Mesh of cylindrical shell

Because in solving a finite element, due to some factors, the response
depends on the size of the mesh, it must be ensured that there is no inde-
pendence of the mesh network and the dimensions of the mesh do not affect
the frequencies. For this purpose, using different sizes of mesh several times,
the finite element solving has been performed and the results are presented
in Figure 3 for the first frequency.
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Figure 3: Mesh of cylindrical shell

According to Table 2, the optimal value for solving a finite element in a
way that does not depend on the number of meshes, the point of mesh with
average element quality is 0.997.

Table 2: Mesh Quality
Mesh shape Mesh vertices Number of element Average element quality

a 70372 387950 0.6643

b 558217 3221150 0.997

After finding the optimal mesh size that has no effect on the solution of the
problem, the results for the natural frequency for the form of various modes
are presented in Table 3. In Figures 4 and 5, the shape of the vibrational
modes associated with the first to third vibrational frequencies in contact with
air and in contact with the fluid with fully bounded boundary conditions of
the FGM (AL/Al2 O3 ) with α= 1 is shown.
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Table 3: The results of the analysis for various figures

Mode shapes (m,n) Natural frequency (Hz)
(1,2) 4.53
(1,3) 8.35
(2,3) 11.31
(2,2) 11.53
(1,3) 15.18
(3,3) 20.39
(2,4) 12.51
(3,4) 22.98

Figure 4: Vibrating base frequency variations of FGM in contact with air by clamped

boundary conditions

Figure 5: Vibrating base frequency variations of FGM in contact with fluid by clamped

boundary conditions
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In order to obtain the results of the analysis, with the problem solving,
we consider R = 1m, L/R = 15, and h/R = 0.005 and a speed of 1 m/s for
the fluid in equation (8). The results is presented in Table 4.

Table 4: Natural frequency in solving software and analytical solution

Mode Mode shapes Natural frequency in Natural frequency in
number (m,n) analytical solution solving software

1 (1,2) 5.001 4.92
2 (1,3) 8.71 8.97
3 (2,3) 10.13 11.26
4 (2,2) 10.89 11.42
5 (3,3) 13.85 15.29
6 (1,4) 18.98 20.48
7 (2,4) 20.08 20.57
8 (3,4) 23.01 23.79

As shown in Table 4, in low-frequencies, the results of the analysis of
finite element and the analytical results extracted from the above-mentioned
method with high accuracy are consistent. In order to better understand the
effect of fluid, which is associated with nonrotating flow at a speed of 1 m/s,
the comparison between the results of this paper and the results of [7, 14] is
presented in Table 5.

Table 5: Comparison of the results of the present study with other similar studies per-

formed in clamped boundary conditions and geometric conditions L/R = 15, h/R = 0.005,

R = 1m
Mode Natural frequency Natural frequency Natural frequency

Mode shapes for fluid contact for fluid flow for fluid flow with
number (m,n) (submerged inside the fluid stationary

cylinder)[14] tube [7] (in this study)
1 (1,2) 5.21 4.93 4.97
2 (1,3) 9.98 8.94 9.31
3 (2,3) 11.36 10.64 10.2
4 (2,2) 11.6 11.48 11.11
5 (3,3) 14.98 14.66 13.64
6 (1,4) 19.01 18.26 17.1
7 (2,4) 19.47 18.73 17.45
8 (3,4) 21.1 19.96 19.1

Given the fact that the fluid velocity can affect the natural vibrational
frequencies of the sheet, we consider four different speeds for the fluid. The
results for the form of various modes for the geometric conditions L/R = 15,
h/R = 0.005, and R = 1m are shown in table 6.
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Table 6: Comparison of natural frequencies for different speeds
Mode Mode Natural Natural Natural Natural

number shapes frequency frequency frequency frequency
(m,n) without speed for speed 2m/s for speed 4m/s for speed 6m/s

1 (1,2) 5.1 5.02 4.58 4.5
2 (1,3) 8.69 9.23 8.61 8.37
3 (2,3) 9.82 9.87 9.77 9.44
4 (2,2) 10.49 10.75 10.23 9.89

In order to better understand the effect of fluid velocity on the natural
frequency of the sheet, according to the results of the above table, for different
velocities of the fluid, the clamped boundary conditions and the geometric
conditions L/R = 20, h/R = 0.002, and R = 1m for the shape of the various
modes in Figure 6 are plotted.

Figure 6: Comparison of the effect of velocity of fluid inside the cylindrical shell on the

natural frequency of vibration of shell

As shown in Figure 6, the increase in velocity reduces the natural fre-
quency of the first modes of the shell. It is necessary to note that the effect
of the velocity of the fluid on reducing the natural frequencies of the first
modes at low velocities is more than high speeds. On the other hand, ac-
cording to Figure 6, reducing natural frequency in different modes has been
done with the change in fluid velocity by approximately one ratio, which can
generally be said that increasing the velocity of the fluid in the cylinder re-
duces the natural frequencies. In other words, it can be expected that by
increasing fluid velocity due to increasing fluid dynamic pressure, the con-
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nection between the fluid and the structure becomes stronger, which reduces
the natural frequencies. This means that the mechanism of the effect of
fluid velocity is similar to the mechanism of the effect of fluid and struc-
ture continuity, and, likewise [34]. This shows that, considering the effect of
the fluid and structure continuity, the natural frequencies of each vibrational
mode reduces. Different boundary conditions for free vibration of shell make
the numbers of different longitudinal wave. In other words, due to the fact
that free vibration of shell must satisfy the boundary conditions (geometric
conditions such as displacement, slope, etc.), it is necessary to consider the
longitudinal wave number that according to the longitudinal wave number
(m), the geometry conditions of the beginning and end of the shell are also
realized. According to this issue, it is expected that changing the boundary
conditions affects the free vibration of shell.

As shown in Table 7, a change in the boundary conditions makes vibration
of sheet undergoing fundamental changes; for this purpose, in the analytical
model provided with U = 2m/s, the results are as follows:

Table 7: Comparison of the effect of different boundary conditions on natural sheet
frequencies in conditions U = 2m/s , L/R = 15 , h/R = 0.005 , R = 1m

Mode number Mode shapes (m,n) natural frequencies (HZ)
C-C C-SS SS-SS

1 (1,2) 5.02 4.66 3.71
2 (1,3) 9.23 7.93 7.18
3 (2,3) 9.89 8.52 6.79
4 (2,2) 10.75 8.95 7.88

As shown in Table 7, different boundary conditions affect the natural
frequency of the free vibration of submerged sheet containing fluid flow. Ac-
cording to the results of Table 7,(Clamped-Clamped) C-C mode, which means
the clamped boundary conditions for a thin cylindrical shell, the free vibra-
tion frequencies have the highest value. In other words, it can be claimed
that, by limiting the structure, the first natural frequency will be higher,
and consequently, other modes will also have higher frequencies. It is also
observed that in (Clamped-Simply Supported) C-SS mode, which means the
beam of one side is clamped and one side is simple supported, the natural
frequency for each mode is greater than the corresponding mode for the (Sim-
ply Supported-Simply Supported) SS-SS mode (simple supported boundary
conditions). It should be noted that the SS-SS mode has the least number
of constraints among the three modes. It is expected that the flowing fluid
shell in this type of boundary condition will require less energy to vibrate,
which means that the natural frequencies of free vibrations of the sheet in this
case have the least amount than the other boundary conditions. In order to
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understand the effect of different boundary conditions on the free vibration
frequency, a comparison has been made between different states in Figure 7.

Figure 7: Different boundary conditions U = 2m/s, L/R = 15, h/R = 0.005, R = 1m

According to Figure 7, it is concluded that the effect of the SS-SS bound-
ary conditions on the reduction of the natural frequency of sheet vibrations
is higher in higher modes. Since the reduction of the natural frequencies of
the first vibrational modes has also been observed in other studies due to the
change of the boundary conditions of the system from a completely constrain
to free state (Iqbal 2009) and (Shah 2011) [14, 24]. According to the results
of Figure 7, it can be claimed that in the shell of fluid carrier and submerged
in water, the boundary conditions with the number of degrees of constrained
release increase the natural frequencies. The main difference observed in this
study is that in higher modes, the effect of reducing constraints in boundary
conditions on reducing the natural frequency of free shell vibrations is greater
than the first and second modes.

Given that the extracted values in the previous sections relate to particu-
lar geometric conditions for the shell, it is necessary to examine the effect of
geometric parameters on this problem. In the previous sections, parameters
L/R = 15, h/R = 0.005, R = 1m were used. In this section, by changing each
of the parameters, the effect of that parameter on the vibrational behavior of
the shell is studied. one of the most important geometric parameters is the
thickness of the shell, and since in this paper, by assuming the plate stress,
the free vibration problem is solved with the wave propagation method, con-
sidering the important point that the FGM is used in the structure of this
shell, and changes in material from the outer surface to the inner surface are
using a shell-thickness function, it can be expected that changing the h/R
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ratio affects the natural frequencies of the free vibration of the cylindrical
shell.

Table 8: Comparison of the effect of h/R under different velocity conditions of the fluid

on the natural frequencies of the structure under conditions of L/R = 15 and R = 1m

Mode Mode shapes h/R = 0.005 h/R = 0.015 h/R = 0.03
number (m,n) U=0m/s U=6m/s U=0m/s U=6m/s U=0m/s U=6m/s

1 (1,2) 5.1 4.5 9.78 8.23 25.02 19.88
2 (1,3) 8.69 8.37 24.58 23.11 38.98 34.58
3 (2,3) 9.8 9.44 25.01 24.13 40.5 38.8
4 (2,2) 10.49 9.89 35.32 33.58 57.69 47.57

According to Table 8, as expected, the effect of changing the h/R param-
eter on the natural frequencies of the system is very high, so that it can be
said that the fluid velocity change has less effect on the natural frequencies
of the cylindrical shell made of FGMs. To understand how affecting the h/R
ratio and examining its simultaneous effect with the fluid velocity, Figure 8
is plotted.

Figure 8: Comparison of the natural frequency of the first modes of sheet under different

boundary conditions

Figure 8 shows that by decreasing the h/R ratio, the frequencies also
decrease in such a way that at low ratios h/R, by increasing number of modes
and a small amount is added to frequency, but in larger values of h/R, by
increasing the number of mode and increasing the amount, frequency will
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be more. In other words, increasing the h/R ratio will increase the distance
between natural frequencies (sequential modes).

In addition, with the increase of h/R ratio, which means increasing the
thickness of shell, the natural frequencies of the shell vibration increase, which
can be said here, although this problem has been solved for a submerged
FGM containing fluid flow, but, as nonemerged isotropic cylinder, the natural
frequencies increase by increasing the shell thickness. On the other hand, it
can be found from Figure 8 that the increase in the velocity of fluid flow
inside the cylindrical shell always has a nearly identical effect on vibrational
behavior and by increasing fluid flow due to increasing interaction of the
structure and fluid, natural frequencies decrease a little. In addition, the
natural frequency variations of the cylinder in contact with the fluid and in
contact with air have been discussed in terms of the volumetric power factor.

Figure 9: Vibrating base frequency variations of FGM in contact with air in accordance

with h/R ratio and four different volumetric ratios with clamped boundary conditions

In Figure 9, the graph of the variations of the vibrating base frequency of
sheet from FGM in contact with air with a thickness ratio of L/R = 15 and
clamped boundary conditions for the power factor of different volume pro-
portions is shown. According to the results presented in the figure above, the
more the amount of thickness in the radius increases, the vibration frequency
of sheet will be low, and it is also observed that the more the power factor
of the volume ratio increases, the frequency of the system also increases. By
increasing the volume ratio, the shell rigidity is increased and the ceramic
percentage in the sheet increases. The reason is due to the direct relationship
between the frequency and the volume ratio in the above figure.



G
al

le
y

P
ro

of

Nonlinear vibrations of functionally graded cylindrical shell by using ... 259

Figure 10: Vibrating base frequency variations of FGM in contact with fluid in accor-

dance with h/R ratio and four different volumetric ratios with clamped boundary condi-

tions

Figure 10 shows the graph of the cylinder base frequency variation from
the FGM in contact with the fluid for the power factor of the various volu-
metric ratios with the clamped boundary conditions. A cylinder with a ratio
L/R = 15 is in contact with a fluid with a density of ρf = 997 kg/m3. First,
by comparing the values of the shell frequency in contact with air and fluid,
under the same conditions, the frequency in the shell contact with the air is
more than the shell’s contact state with turbulent fluid. Figure 10 shows that
the more the power factor of the volume ratio increases, the system frequency
also increases.

5 Conclusions

This paper investigated the free vibration of the cylindrical shell of FGM in
contact with turbulent fluid and used first-order shear theory to analyze it.
Solving equations related to wave propagation was used to solve the problem
of determining free frequencies in a cylindrical shell, which has a structure-
fluid interaction. In the fluid inside the shell, because the fluid has a velocity
along the longitudinal axis, the potential function was written based on the
pressure and velocity of fluid flow. In the case of fluid outside the shell,
since shell was considered submerged and fluid constant, solving equations
was made by using the hydrostatic pressure. To validate, the analytical
results were compared with the results of the analysis by using the Comsol
software and the results of other studies. In the boundary conditions, we
used three movable simple, non-movable simple, and completely clamped
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modes, which were discussed more because of the importance of a completely
clamped boundary condition.

Using simulation data provided, the effects of different parameters such as
the fluid inside and outside the shell, volume fraction exponent, geometrical
parameters, and boundary conditions on the natural frequencies were dis-
cussed in detail. The natural frequencies corresponding to the fundamental
axial mode number and the smaller values of circumferential wave numbers
were strongly affected by the fluid.

By examining the results, a summary of the general conclusion is as fol-
lows:

1) Increasing the thickness causes the increase of effect of speed on the
reduction of natural frequencies, especially in higher modes.

2) By examining the motion of the fluid at different velocities, it is possible
to determine the effect of the thickness change, so that the increase in
thickness will increase the effect of speed on the reduction of natural
frequencies, especially in higher modes.

3) By increasing the volumetric power factor due to the increase in rigidity
of the shell, also the natural frequency increases.

4) The effect of boundary conditions on the free natural frequency was
such that, as the constraints increased, the frequency of vibrations also
increased, so that the natural frequency in the clamped mode is more
than the other two.

5) The natural frequency values of the cylindrical shell in contact with the
air are more than contact with the turbulent fluid.

6 Nomenclature

c speed of sound(m/s) v modal displacement Direc-
tion θ

H Thickness(m) D
V

Material properties
Volume fraction

E young modulus(GPa) Greek letters

k wave number ρ
′

The mass density of the
shell material

M Moment resultant(N.m) ρ Fluid density(kg/m3)
P pressure(pa) α Poisson ratio
U Velocity fluid (m/s) υ volume ratio
N Force(N) ω natural frequency(Hz)
Q Reduced Stiffness(N/m) Subscripts
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L differential operator i, j components
A wave amplitude in the x di-

rection
t time

B wave amplitude in the θ di-
rection

f Contained fluid

C wave amplitude in the z di-
rection

a acoustic

r radius z Direction z
n The number of circumfer-

ential waves
w modal displacement Direc-

tion z
x Direction x

u modal displacement Direc-
tion x

xθ Direction xθ

J Bessel function of first kind θ Direction θ
T Coefficients of the stiffness o mass
FL Effect of acoustic pressure g Power law
L Differential operator s axial
ω Natural frequency of cylin-

drical shell
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