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Abstract. Software-Defined Networking (SDN) is a viable 

approach for management of large and extensive networks 

with flexible quality of service requirements and huge data 

traffic. Due to the central role of SDN controllers in traffic 

engineering and performance of software-defined networks 

on one hand, and diversity of available SDN controllers on 

the other hand, an evaluation framework is required to study 

and compare the architectural choices and performance of 

distributed and centralized SDN controllers in action. In this 

paper, we propose a comprehensive framework for 

performance evaluation of OpenFlow SDN controllers. In 

this simulation platform, we analyze both centralized and 

decentralized architectures for controller deployment. 

Performance of controllers is evaluated based on Quality of 

Service (QoS) measures including delay and throughput in 

different network topologies under different workloads. 

The impact of routing protocols on controller performance 

in data center networks is also analyzed. Our results can 

provide valuable insights for scalable design and proper 

deployment of SDN controllers in the real world scenarios. 
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I.  Introduction 
The improvements of the Internet and mobile technology 

and the increasing scale of networks has led to a more 
flexible approach in network management called Software-
Defined Networking (SDN) [1][2]. Management of the 
conventional network models were challenging, especially 
in large scale networks and were not efficient for satisfying 
today’s requirements of large communication systems such 
as datacenter networks. As traditional networks expand, they 
become more complex and managing them becomes more 
costly. They become less flexible and less controllable over 
time and their performance might decline as well. 

SDN technology and its standards has been recently 
established towards more flexible, programmable, cost-
effective, scalable, and vendor-agnostic networks by 
decoupling control logic from forwarding devices like 
switches and routers [3]. This enables central network 
programming and policy enforcement, which facilitates 
network management remarkably. SDN is a multi-layered 
architecture consisting of three main layers such as the 
application layer, control plane, and data plane. Forwarding 
devices like switches, routers and firewalls belong to the 
data plane layer, while the control plane layer is where the 
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controller or the brain of the network resides. The 
application layer consists of applications that define 
different policies like traffic engineering and network 
security. Communication between layers is done by two 
types of interfaces called the South Bound API (SBAPI) and 
the North Bound API (NBAPI). 

There are various types of SDN controllers that offer 
different services with different Quality of Service (QoS) 
requirements and scalabilities. Thus, a comprehensive 
evaluation framework is needed to choose the best controller 
in each scenario based on the QoS requirements, type of 
topology, workload and routing protocols, all of which affect 
the controller performance tremendously. In this paper, we 
will provide such a framework and describe our 
benchmarking metrics and tools in order to facilitate 
controller choice and subsequently network management. 
We will analyze both centralized and distributed controllers 
including POX [4], RYU [5], Floodlight [6], ONOS [7] and 
OpenDayLight [8]. We choose different metrics for each 
group of controllers accordingly as they seemed to be the 
most effective in each type. We analyze different routing 
protocols and traffic loads in both Google fat-tree and 
Facebook fat-tree [9] topologies as performance metrics for 
distributed controllers while delay, throughput and traffic 
loads in different types of topologies are considered for 
centralized controllers as metrics in simulations. 

In the second section, we introduce the terms and 
definitions related to SDN. In section three, we review some 
of the related work done in controller evaluation. We 
perform two types of evaluation in our study, qualitative 
comparison which is based on specific features of controllers 
and mostly theoretic and qualitative study carried out by 
benchmarking tools and analyzing the results and 
conclusions toward presenting our evaluation frame work in 
sections four and six consequently. In section five, we 
introduce the tools utilized for our evaluation process and 
final findings, conclusions, and future work are presented in 
the seventh section.  

 

II. SDN controllers 
SDN has made centralized network management possible by 
decoupling the control logic from network infrastructure 
devices or data plane. SDN utilizes open source standards 
instead of proprietary systems and protocols, which 
increases network flexibility remarkably Error! Reference 
source not found.. SDN has a multi-layered architecture 
including the application, control plane, and data plane from 
top to bottom as shown in Fig.1. 
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Control plane: In a software-defined network, the controller 
is the central management point which has an overall view 
of the whole network. With SDN controllers there is no need 
to configure each of the network devices through their 
terminals, but instead, the softwarized controller programs 
the whole network [11]. Controller works as a platform for 
applications to communicate with network devices and 
manage them by enforcing policies through the controller. 
SDN controller is able to communicate with different 
network components using its different interfaces. 
Communication with low level network components and 
data forwarding devices is done through the SBAPI, while it 
communicates with high level applications through the 
NBAPI. 

OpenFlow is a standard SBAPI which is used to control 
and manage network devices, for instance to send and install 
flows on the switches. On the other hand, the NBAPI is used 
by the applications in the top layer to control and manage the 
network. REST API is the most well-known NBAPI, which 
is similar to an HTTP server and is used to enforce policies 
specified by the applications in the top layer to manage the 
whole network [12].  

 
OpenFlow controllers: OpenFlow was first introduced at 

Stanford University in 2008 and it made research on real 

campus and large scale networks like GENI possible [13]. 

OpenFlow [14][15] encouraged manufacturers towards 

supporting this protocol in their future switching products. 

An OpenFlow controller manages flow tables in network 

devices, while the controller and hardware connect by SSL 

or TLS encryptions through a secure channel [17][18]. An 

OpenFlow switch consists of one or more flow tables, a 

secure channel, and a controller. Also, each flow table 

consists of multiple flow entries each of which include three 

parts including a header field, an action, and flow counters. 

Every incoming flow is reviewed to match against existing 

flows in a flow table by their header fields. According to the 

matched flow, the action dictates what happens with the 

packet, while the counter counts the number of packets 

received for each flow and the byte counts and flow 

duration [16]. Fig. 2 shows the structure of a flow entry in 

an OpenFlow switch. The search initiates as soon as a new 

flow entry arrives at a switch. If no match is made then the 

switch sends a message to the controller requesting and 

action for the unmatched flow. There are several possible 

actions concerning the flow including sending out the packet 

to an outgoing port, sending the packet back to the 

controller, dropping the packet, and sending the packet to the 

next flow table or specific tables. 

There has been six different version of OpenFlow so far. 

The first was the OpenFlow v.1.0 which was presented at 

Stanford in 2008. This version has been recently accepted by 

most OpenFlow vendors but is limited to only one flow table 

and focuses on layer 2 and ipv4 addressing. OpenFlow v.1.1 

added support for MPLS and v.1.2 made matchings more 

flexible and added ipv6 support. OpenFlow v.1.3 added 

parallel communication channels between controller and 

switches. In 2014 v.1.4 was published in which matching 

processes were mainly improved and optional ports support 

was also an addition. The last and most recent version, 

OpenFlow v.1.5 was also released in 2014, in which the 

outgoing table was introduced and the matches were made 

by outgoing ports [17]. 

OpenFlow utilizes three types of messages to 

communicate with the infrastructure layer including 

controller-to-switch, asynchronous, and symmetric 

messages. The first type as apparent by its name is messages 

from controller to switches, the second from switches to 

controller, and the third is bidirectional messages between 

controller and switches. 
Controllers are categorized into two groups of 

centralized and distributed controllers based on their 
structure and behaviors. Fig. 3 demonstrates this 
classification. 

 

 

 
Fig. 1. Three-layered SDN architecture 
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Fig. 2. Flow entry structure 

 

 

 
 

Fig. 3. controllers classification 

 

III. Related work 
Due to the separation of data planes from control planes in 
SDN and with programmability features and centralized 
controlling nature, flexibility and scalability increases and 
makes it capable for industrial use. In previous years, several 
studies have been focused on the OpenFlow controller 
evaluation most of which analyzed controllers including 
Bacon, Floodlight, Maestro, NOX, POX, and RYU based on 
linear performance evaluations and their throughput rates. In 
several other studies, new or improved versions of 
controllers were proposed with some previous issues 
resolved. 

Tootoonchian, Gorbunov, Ganjali, Casado, and 
Sherwood [19] evaluated the performance of four open 
source controllers including NOX, Beacon, Maestro, NOx, 
and NOX-MT which was presented by the authors as an 
optimized version of NOX controller. They discussed that 
the real performance of these controllers could be 
considerably better in an optimized network environment 
than previously assumed. They also designed Cbench that 
works as a benchmarking tool specifically designed for 
OpenFlow switch emulations to measure some specific 
performance metrics. NOX-MT is a multithreading version 
of NOX which uses optimization methods (e.g., I/O 
batching) for baseline performance improvements and was 
proven to outperform NOX by a factor of 33 in the overall 
performance. Note that this study is outdated because newer 
versions of these controllers were introduced and also the 
evaluation of other important controllers such as ONOS, 
Floodlight, and OpenDaylight had been left out. 

Stancu, Halunga, Vulpe, Suciu, Fratu and Popovici [20] 
analyzed performances of RYU, POX, ONOS, and 
OpenDaylight controllers based on end-to-end delay and 
bandwidth parameters. A fixed four level tree topology 
containing 16 hosts had been utilized as a test environment 
for the controllers’ performance. The study was concluded 
in RYU having the least end-to-end delay and ONOS with 
the highest bandwidth among these four controllers. Also, 
the best suited controllers based on the objectives or 
outcome expectations were introduced. POX was introduced 
as the most suitable in an environment with configuration 
simplicity as the highest priority, although in case of 
performance POX is not comparable to RYU, 
OpenDaylight, and ONOS controllers. This study is limited 
to a static network topology and limited performance 
parameters in all levels of test, thus leading to a non-general 
conclusion about controllers in all other types of networks 
with various parameters in priority. 

A performance benchmarking of OpanDaylight and 
Floodlight was performed in [21] concerning latency and 
throughput in Cbench. The authors concluded that 
OpenDaylight is not efficient for use in the industry and 
Floodlight would be a more mature choice in comparison. 
They also argued that Cbench lacks traffic models similar to 
data center network models for testing, and proposed 
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changes to this tool in order to support datacenter traffic 
models. Similar to the previously stated works, this study 
shows some limitations as well like the few number of 
analyzed controllers (in this case two), irrelevance of the 
chosen set of controllers to each other in case of function, 
and the incomplete parameters and network variables in 
order to find the best suited controllers. 

Shiva, Vajihe and Manije [22] discussed the 

performance of Floodlight and OpenDaylight controllers in 

different scenarios with different networks topologies under 

various traffic loads in terms of network latency and packet 

loss. They state that OpenDaylight acts better in case of 

latency in networks with tree topologies under half-

bandwidth traffics, while Floodlight performs better under 

heavy loads in terms of packet loss in a tree type network. It 

is also stated that the comparison between the two could be 

different in more complex network scenarios (one of the 

limitations that can be stated about this study is again the few 

number of controllers studied, limited comparison 

parameters, and using few network parameters in 

evaluations). 

Darianian, Williamson and Haque [23] evaluated 

OpenDaylight and ONOS, two novel and adequate 

distributed OpenFlow controllers. They used Cbench as a 

benchmarking tool for throughput and latency of the 

controllers’ performances (in both physical and virtual 

environment). They concluded that ONOS has better 

throughput and less delay than OpenDaylight. One of the 

limitations of this study is the fact that these two controllers 

are not evaluated in test scenarios similar to data centers and 

cloud networks, which are where they are mostly used. 

Fancy and Pushpaltha [23] analyzed POX -a python-

based controller- and Floodlight -a java-based controller- as 

representatives of all controllers developed by these two 

programming languages. They executed a performance 

comparison between them on throughput and delay. The 

tests were done in Mininet with various network topologies. 

This study was also limited to two controllers that do not 

necessarily cover all other controllers developed by python 

or java; also limited network variables were measured. 
 

IV. Qualititative comparison of ten OpenFlow 

controllers 
Table I and Table II present separate qualitative comparisons 

for both centralized and distributed groups of controllers, 
each by different evaluation features and from various 
perspectives. This part is mostly based on theories and 
features each controller possesses which might be used as a 
way of categorizing controllers and predicting their 
properties, but does not necessarily categorize behaviors in 
each group as numerous factors take part in the controller 
performance. 

 

V. Configurations and benchmarking tools 

A. Configurations and evaluation scenarios  

ONOS: To launch and execute the ONOS controller, we 

need at least a 2-core processor with 2 GBs of RAM. One of 

the advantages of this controller is its active support team 

and complete documentation which facilitates 

troubleshooting. ONOS is java-based and requires JRE 1.8 

or higher in order to be executed on our system. We used the 

latest version of ONOS at the time in our tests and 

evaluations. 

OpenDayLight: ODL is executed in a Java Virtual 

Machine (JVM) and can run on any system that supports 

java. However, on a system with a Linux distribution and a 

1.7 JVM, ODL performs its best. We used the latest version 

of ODL at the time in our tests. 

Floodlight: Floodlight is a java-based controller and one 

of the most popular and applied controllers which is mostly 

used in small networks and academic environments. 

RYU: RYU is a python based controller, also popular in 

academia and small networks. This controller supports 1.1, 

1.2, 1.3, 1.4, and 1.5 versions of the OpenFlow protocol as 

well as Netconf [26] and OF-config protcols. 

POX: POX is a python-based controller and is known as 

one of the most popular controllers for academic purposes. 

 

B. Test environment and benchmarking tools 

We use Mininet [24] and Cbench [26] to establish a test 

environment. Also using python, we created datacenter 

topologies to establish tests based on them as well. The 

datacenters are crucial to our study because of the role they 

play in today’s world and most possibly in the future [28]. 

 
 

 

Table. 1. Qualitative comparison of general-purpose controllers 

 

controller platform Port number GUI Multithreading 
Programming 

language 
Open 
source 

NOX [29] Linux 6633 Yes Yes C++/python Yes 

POX 
Linux, Mac, 

Windows 
6633 Yes - Python Yes 

Maestro [30] Linux 6653 No Yes Java Yes 

Beacon [31][32] Linux 6653 Yes Yes Java Yes 

Floodlight Linux 6653 Yes - Java Yes 

RYU Linux 6633 - - Python Yes 
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Table. 2. qualitative comparison of distributed controllers 
 

Controller 
Network 

type 

Data 
structure 
instances 

Mapping Controller-switch arrangement Related 
projects Dynamic Static Master/Slave IPalias 

Elasticon [33][33] Data centers Hazelcast     - 

DISCO 
Data 

centers-
WAN 

Extended DB   - - Floodlight 

HYPERFLOW WAN Wheelfs   - - NOX 

ONOS Data centers Raftlog      

 
 

Establishing the test environment: A test environment is 
built on a system with a 7-core processor and 16 GB RAM. 
Two virtual machines with 4GB RAM and a 3-core 
processor are built on this server that runs Ubuntu 16.0.4 
LTS. One of the virtual machines is used for the controller 
installations and the other for establishing the test network 
with Cbench and Mininet installed on it. Cbench, Mininet, 
and wireshark are the tools chosen based on functionality 
and the metrics that can be measured by them, for our study 
towards benchmarking the controllers. 
 
Cbench: Cbench is a popular tool, especially designed for 
OpenFlow controllers’ evaluations. It produces packet-ins in 
order to simulate asynchronous flows. Also, it emulates 
some switches that are connected to the controller. These 
switches send packet-ins to the controller. Reception of a 
packet-in by the controller results in a new flow entry for the 
switch. In reply, the controller runs its algorithm and adds 
new rows in the flow table for the requesting switch and 
sends the flow table back to the switch. The switch will wait 
until it receives a flow-mod message from the controller. 
Cbench uses fake switches instead of physical switches to 
send packets to the controller in order to be able to specify 
the exact number of packets sent and other parameters from 
the process initiation to obtain precise output statistics and 
analyze them. Fake switches determine the following 
parameters including OFP_Hello exchange messages that 
ban response and request messages, FS parameter which is 
a fake switch pointer, SOCK parameter which identifies a 
socket connection, BUFSIZ parameter which shows the size 
of the in/out buffer, MODE parameter which distinguishes 
the latency or throughput mode from each other, and 
total_mac_adresses that is the number of all the hosts 
connected to the switch. 
 
Mininet: Mininet is a network emulator that we use as a 
bench marking tool in our study. It allows the creation of 
networks with various topologies consisting of a number of 
virtual hosts, links and switches. With the use of this tool 
you can easily access any of the network components by the 
Mininet CLI and design the network specifically according 
to your needs, share it with others, and eventually develop it 
using real hardware. Mininet enables us to test a network and 
improve it in an emulated environment before the actual 
implementation of our network. The default topology in 
Mininet consists of a switch and hosts that are connected to 
the switch and each other while the switch itself is connected 
to an OpenFlow controller. In Mininet hosts are capable of 
running on separate linux CLIs [15] e.g. the iperf command 
which returns the bandwidth between user and the server is 

easily obtainable in this manner. A desired topology in 
Mininet can be created by python script writing while there 
are only a few topologies available in this tool such as tree, 
linear, and single topologies as default. 
 
Wireshark: Wireshark [36] is a powerful open source tool 
for capturing and analyzing various traffics and network 
protocols. It is easy to use and is popular among network and 
security specialists. 
 

VI. Quantitative comparison of five OpenFlow 

controllers 
In section five, we introduced some of the basic concepts of 
SDN networks and summarized some of the previous work 
done in performance evaluation of OpenFlow controllers. 
Since the related studies have analyzed limited parameters 
in their evaluations and less focus had been put on 
decentralized controllers, in this paper, we propose a new, 
more thorough and comprehensive framework for 
performance evaluation of OpenFlow controllers with more 
emphasis on the distributed type. Out of the ten controllers 
presented in our qualitative review, five of them were chosen 
that represent unique controller features best suited for our 
study as shown in Table III. Different approaches, 
parameters, and criterion has been presented based on the 
category which controller belongs to. 

We present a quantitative comparison of OpenFlow 
controllers that can be utilized as a comprehensive 
evaluation framework by network managers. In our 
framework we separately evaluate centralized and 
distributed controllers. We first measure performance 
metrics that we have specifically chosen for each category 
of controllers. Delay, throughput and the overall QoS are the 
performance parameters chosen for centralized controllers 
while for distributed controllers it is the network delay. Then 
we identify and analyze other effective factors on 
controllers’ performance including topology type and scale 
of a network for both centralized and distributed controllers. 
However, for distributed controllers, traffic load and routing 
protocols are also analyzed. At last, we will be able to 
determine any controller’s performance behavior with 
specifically-defined policies and features based on our 
results. 
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Table. 3. controllers used in our qualitative evaluation 

 

controller Support partners NBAPI SBAPI 
Supported 
platforms 

Centralized 
/distributed 

Programming  
language 

ONOS 

ON.LAB, AT&T, 
Ciena, Cisco, 

Ericsson, Fujitsu, 
Huawei, Intel, Nec, 

Nsf.Ntt 
Communication, 

SK Telecom 

REST API 
OF 1.0, 1.3, 
NETCNF 

Linux, MAC 
OS, and 

Windows 
Distributed Java 

OpenDayLight 

Linux Foundation 
with memberships 
covering over 40 

companies, such as 
Cisco, IBM, NEC 

REST API 

OF 1.0, 1.3, 1.4, 
NETCONF/Yang, 
OVSDB, PCEP, 
BGP/LS, LISP, 

SNMP 

Linux, MAC 
OS, and 

Windows 
Distributed Java 

POX Nicira REST API OF 1.0 
Linux, MAC 

OS, and 
Windows 

Centralized Python 

RYU 
Nippo Telegraph 
And Telephone 

Corporation 

REST For 
Southbound 

OF 1.0, 1.2, 1.3, 
1.4, NETCONF, 

OFCONFIG 

Most supported 
on Linux 

Centralized Pyrhon 

Floodlight 
Big Switch 
Networks 

REST API OF 1.0, 1.3 
Linux, MAC 

OS, and 
Windows 

Centralized Java 

 

 

Centralized controllers: These controllers were the first 

introduced SDN structures in which a single controller 

manages all the devices in a network. Each flow is received 

at the controller as a packet-in and after the controller 

processes the packet based on the defined policies by the 

application layer and defines an action for that flow, it sends 

the requesting switch packet-out and flow-add packets. 

There are various controllers developed by java and python 

programming languages namely, RYU [29], Beacon [9], 

floodlight [16], POX [28] and NOX [23]. The main concept 

of these networks refer to the physical centrality which 

means each controller is aware of the overall state of the 

network and is connected to all the switches in topology. 

These types of controllers mostly have academic and 

research use in small scale networks. Among POX, NOX, 

and RYU, three python-based controllers, we only evaluate 

POX and RYU as POX is the improved version of NOX. 

Between Floodlight and Beacon that are java-based and 

require large memory allocations, we chose Floodlight as 

according to [2] it requires less memory than Beacon. 

Decentralized controllers:  One of the main challenges of 

networks with centralized controllers is scalability and their 

inefficiency for data centers and cloud networks that are 

nowadays crucial. Distributed contollers such as 

HYPERFLOW, Elasticon, ONOS, DISCO, and Open 

DayLight have some unique features like the physical 

distribution of the particiapting controllers in a network 

topology and the fact that there is no need for all switches in 

the network to be connected to the controller. These types of 

controllers are used in large scale networks like WANs and 

data centers. For our study, we only evaluate ONOS and 

OpenDayLight, two inherently distributed controllers as 

they are the most commonly used controllers in industry 

utilized in data centers and cloud infrastructures. Another 

advantage of these two controllers is being supported by 

well-known brands such as Cisco, Intel, Ericsson, Fujitsu, 

and Huawei. ONOS and OpenDayLight are both java-based 

and are executable on platforms containing OSGi. 

 

1) Determining the appropriate evaluation criterion 

QoS performance in centralized controllers: End-to-end 

delay and network bandwidth are two very effective factors 

on QoS and performance of centralized controllers. Network 

delay refers to the transmission time from source to 

destination, and bandwidth between two hosts refers to the 

available bandwidth for data transmission. The lowest end-

to-end delay and highest bandwidth results in the highest 

QoS. For centralized controllers in our study namely POX, 

RYU, and Floodlight, we analyze QoS in different scales 

and topologies and introduce the controller with the highest 

QoS in each of the scenarios. In each stage we perform tests 

10 times and take the average of these 10 outcomes as the 

final result. Also, we gradually increase the size of the 

network from 1 to 63 OpenFlow switches. According to Fig. 

4, RYU performs better than POX and Floodlight in terms 

of latency as the scale increases, while POX has the highest 

delay in networks with more than seven switches. According 

to Fig. 5, all three controllers have similar decreasing 

patterns of bandwidth but again RYU closely out performs 

the other two and thus is the best choice in an increasing-

scale network. 
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Fig. 4. End-to-end delay vs. network scale 

 

 

Fig. 5. Bandwidth vs. network scale 

Delay and throughput performance in centralized 
controllers: When a new flow arrives at a switch, firstly 
the switch looks up its flow table for matches and if any 
matches are made, the corresponding action is executed 
on the flow otherwise the switch sends the flow towards 
the controller in the form of a packet-in and requests an 
action for the flow. Then the controller responds with a 
defined action in form of a packet-out. The amount of time 
needed for this process or in other words the amount of 
time required by the controller to process packet-ins and 
send out packet-outs is referred to as the controller delay. 
On the other hand, throughput is the amount of 
configuration requests a controller can handle over a time 
unit. Throughput in a control layer is the main parameter 
towards determining the number of required controllers in 
a specific network scenario in order to sufficiently handle 
traffic loads. Fig. 6 illustrates POX, RYU, and Floodlight 
delay results against different number of switches. RYU 
has somewhat static delay in every scale while delay 
increases as the network scale does in POX and Floodlight 
has relatively the highest delay in every scale than all of 
them. Thus, in a delay-sensitive network RYU is the best 
choice. Also from the perspective of the development 
language of a controller python-based controllers showed 
less delay than the ones that are java-based. In terms of 
throughput, Fig. 7 shows that RYU has the least but static 
throughput throughout all scales while Floodlight has the 
highest throughput than others and is the best suited. 

 
Fig. 6. dealy against network scale 

 
Fig. 7. Throughput against network scale 

 

RTT in distributed controllers: Comparison between 
OpenFlow controllers is done through the evaluations on 
communication efficiency between hosts. Round-Trip Time 
(RTT) between hosts is calculated by a ping command using 
ICMP request-response. In a test environment, ping is run on 
two hosts farthest away from each other. We specifically 
introduce controller with the lowest RTT in each scenario. 

 

2) Effective network variables on performance  

One of the effective factors on the controllers’ performance 
is the structural variables of a network which directly impact 
performance such as network size and topology type. 

Network scale in centralized controllers: Increases in 
network scale mean more switches and more hosts which 
leads to more requests towards the controller directly 
affecting controllers’ performance. 

 
Fig. 8. Single topology structure 

 
Fig. 9. Linear topology structure 
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Fig. 10. Tree topology structure 

 

 
Fig. 11. En-to-end delay against topology type 

 

 
Fig. 12. Bandwidth against topology type 

 

Topology in centralized controllers: An effective factor 
on QoS of OpenFlow controllers is the network topology 
type including single, linear, and tree topologies as shown 
in Fig. 8, Fig. 9, and 0 that are mostly seen in small scale 
networks and academic environments. We evaluate QoS of 
POX, RYU, and Floodlight controllers by delay and 
throughput amounts as stated before. 

 Single topology: Networks with this type of topology 
contain only one OpenFlow switch with several hosts 
connected to it and the switch is connected to the 
controller. Results as illustrated in Fig. 11 and Fig. 12 
show that if we arrange the three controllers in this 
manner all of them obtain similar QoS considering their 
delay and throughput. 

 Linear topology: In this type of topology, there are 
several switches that have linear connections. Each host 
is connected to a switch linearly connected to other 
switches all of which are connected to the controller. 
According to Fig. 11 and Fig. 12 Floodlight has the least 
delay than others after RYU, while all three of them 
show similar bandwidths. Thus, in a network with a 
linear structure Floodlight provides the best QoS. 

 Tree topology: In a tree topology all OpenFlow switches 
and hosts are hierarchically connected. Fig. 11 and Fig. 
12 illustrate that RYU and Floodlight have roughly the 
same delay whereas RYU has higher bandwidth than 
Floodlight and POX. Thus,, RYU is the proper choice in 
a network with tree topology. 
Transmission packet size in distributed controllers: 

Maximum Transmission Unit (MTU) refers to the size of the 
largest packet allowed to pass through network links. By 
standard the largest transmission packet is 1500 bytes and 
larger packets are discarded. Data center networks require 
low delay and large MTUs. In this section, we gradually 
increase MTU from 1400 to 1500 and observe the impact of 
packet size on end-to-end delay. Fat-tree is the network 
topology with 16 hosts. Fig. 13 shows that OpenDayLight’s 
performance is negligible to packet size while ONOS shows 
increasing delay with increases in MTU. Thus 
OpenDayLight is the suitable choice in this scenario. 

 

 
Fig. 13. End-to-end delay against MTU in facebook fat-tree 

topology 

 

Network scale in distributed controllers: By increasing 
the number of switches and hosts, the number of requests 
toward controller increases as well which directly impacts 
performance. 

Datacenter topology in distributed controllers: Data 

centers are rapidly increasing and act as an essential part of 

cloud computation and online web services. Data centers 

consist of thousands of nodes that demand high bandwidths. 

For instance corporates like amazon, google and microsoft 

profit from high scale data centers carying out their cloud 

computations. Even corporates such as Dropbox and Apple 

are leaning toward private cloud  centers. Statistics show 

data centers’ increasing traffic loads which is a confirmation 

of every day increasing bandwidth requirements in these 

types of networks. Data centers play an important role in 

cloud-based applications’ performance efficiency. Many 

topologies have been developed over the years to overcome 

these challenges and fullfill data center demands. One of 

these solutions is the fat tree topology which have showed 

better outcomes than others. Google fat-tree and Facebook 

fat-tree [13] are among the most used and most adequate 

topologies in case of performance in datacenter networks. 

Thus, we analyzed these topologies in our tests and 

evaluation environments. 

 Google fat tree: This topology is currently the most 
popular in data centers and consists of different levels as 
shown in 0 .This topology has three switch layers 
including edge, aggregation, and core switches. Edge 
switches are directly connected to hosts in a way that n 
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ports of the switch are connected to n/2 hosts and the rest 
are connected to higher level switches called the 
aggregation switches. In the same manner the aggregation 
switches are connected to core switches. In this topology 
there are several paths between every two hosts which 
eventually increases fault tolerability. We evaluate 
performance ONOS and OpenDayLight in a google fat-
tree topology based on delay and with 8, 16, 32, and 64 
switches. Fig. 15 shows their performance based on delay 
against the number of switches. OpenDayLight has less 
delay and shows little increase with more switches while 
ONOS shows ascending increase over more number of 
switches. Thus OpenDayLight is the best suited for a 
google fat-tree topology. 

 
 

Fig. 14. Google fat-tree topology 

 

 
Fig. 15. End-to-end delay against network scale in google fat-

tree topology 

 

 Facebook fat-tree: This topology is illustrated in Fig. 16. 
In this setting, the whole illustrated structure is called a 
pod. Each pod in this topology consists of a number of 
fabric switches and Top-Of-Rack (TOR) switches that can 
be used up to 48 in maximum. For test purposes we can 
initiate the network by 4 fabric switches and 16 TORs and 
enlarge the network gradually. We evaluate performance 
ONOS and OpenDayLight in a Facebook fat-tree topology 
based on delay and with 16, 24, and 32 hosts. Based on Fig. 
17 ONOS outperforms OpenDayLight in delay and is 
better suited in this scenario. According to Facebook fat-
tree structure, it can be said that in a network with the least 
number of switch layers and the least number of steps from 
a host to controller, ONOS is best suited for managing the 
network. 

 

 
 

Fig. 16. Facebook fat-tree topology 

 

 
Fig. 17. End-to-end delay against network scale in facebook fat-

tree topology 

 
Fig. 18. OpenDaylight and ONOS performance without a routing 

protocol against different network scales 
 

Routing protocols of distributed controllers: Protocols 
are also one of the effective factors on performance of 
OpenFlow controllers. In SDN, controller possesses an 
overall vision of the network and is aware of all the existing 
paths in the network. Controller chooses the best path based 
on its knowledge. With the use of OpenFlow routing 
protocols controllers transmit paths’ information to network 
devices and this protocol is basically utilized for 
communication between the controller and network 
hardware. By default, controllers do not use a specific 
algorithm or routing protocol. They simply forward packets 
by their overall vision of the network and shortest-path 
policies. By the use of appropriate protocols, we can 
positively affect controller performance. Firstly, we evaluate 
the performance of ONOS and OpenDayLight without a 
routing protocol based on end-to-end delay against network 
scale of 16, 32, and 64 hosts. Then we install BGP protocol 
on both of the controllers and repeat the test. In this test, we 
use fat-tree to implement the network topology. As 
illustrated in Fig. 18 and Fig. 19 controllers utilizing a 
routing protocol perform better and ONOS outperforms 
OpenDayLight and the effect of BGP was greater on ONOS. 
In Fig. 20 the effect of BGP on ONOS performance 
improvement is illustrated [34]. Based on the policies 
defined for BGP the virtual topology is divided into areas in 
each of which routing takes place separately from other 
areas. Due to this policy the number of requests sent towards 
the controller decreases and leads to better overall 
performance. As shown in Fig. 18 and Fig. 19 the effect of 
BGP is only visible in large networks while under small size 
networks, the effect in negligible and it is better to use the 
default routing without any specific routing protocols. 
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Fig. 19. OpenDaylight and ONOS performance with bgp  

against different network scales 

 

 
Fig. 20. Routing in ONOS with BGP 

 

VII. Conclusions 
In this paper, we introduced SDN and its different layers 
including the controller layer and its fundamental role on the 
overall network performance. We performed a comprehensive 
study of the OpenFlow controllers and proposed an evaluation 
platform of centralized and distributed controllers based on 
multiple criteria.  

We first categorized the controllers into two groups of 
centralized and distributed. Centralized controllers are used 
in small networks while distributed controllers can manage 
large scale networks like datacenters or cloud networks. 
Then we presented the methods and scenarios used in our 
study with specific parameters to aid us choose the best 
suited controller for each situation. In our evaluations for the 
centralized controllers parameters consisting of QoS, 
latency, and throughput were measured in various topologies 
and different scales, while end-to-end delay was measured 
for distributed controllers in Google fat-tree and Facebook 
fat-tree, two of the most well-known datacenter topologies 
with different scales under various workloads. 

At last the following evaluation results were achieved: 

 Among our chosen centralized controllers, RYU 
performed best in network management for large scale 
networks in term of QoS while in small networks 
Floodlight outperformed others in QoS. 

 Among our chosen set of centralized controllers, RYU 
outperformed others in a network with a tree topology 
and Floodlight performed best in a network with a 
linear topology than others although for a single 

topology the performance differences between 
controllers were negligible. 

 Among our chosen centralized controllers, RYU 
performed best in terms of least delay in a large scale 
network while Floodlight showed the highest 
throughput than others. 

 Among our chosen distributed controllers, 
OpenDayLight outperformed ONOS in a Google fat-
tree topology while in a Facebook fat-tree topology 
ONOS performs better. 

 Among our chosen distributed controllers, 
OpenDayLight was the more stable in a network with 
increases in workload overtime than ONOS which 
showed increased delay. 

In distributed controllers, changing the default routing protocols 
to BGP caused performance improvements in both 
OpenDayLight and ONOS while this effect was greater on 
ONOS. 
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