
Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019.

DOI: 10.22067/cke.v2i2.84917

Performance Evaluation of Software-Defined Networking

Controllers: A Comparative Study
Research Article

Seyed Akbar Mostafavi1* Vesal Hakami2 Fahimeh Paydar3

Abstract. Software-Defined Networking (SDN) is a viable

approach for management of large and extensive networks

with flexible quality of service requirements and huge data

traffic. Due to the central role of SDN controllers in traffic

engineering and performance of software-defined networks

on one hand, and diversity of available SDN controllers on

the other hand, an evaluation framework is required to study

and compare the architectural choices and performance of

distributed and centralized SDN controllers in action. In this

paper, we propose a comprehensive framework for

performance evaluation of OpenFlow SDN controllers. In

this simulation platform, we analyze both centralized and

decentralized architectures for controller deployment.

Performance of controllers is evaluated based on Quality of

Service (QoS) measures including delay and throughput in

different network topologies under different workloads.

The impact of routing protocols on controller performance

in data center networks is also analyzed. Our results can

provide valuable insights for scalable design and proper

deployment of SDN controllers in the real world scenarios.

Keywords. Software-Defined Networking (SDN);

OpenFlow Controllers; Performance Evaluation; Quality of

Service

I. Introduction
The improvements of the Internet and mobile technology

and the increasing scale of networks has led to a more
flexible approach in network management called Software-
Defined Networking (SDN) [1][2]. Management of the
conventional network models were challenging, especially
in large scale networks and were not efficient for satisfying
today’s requirements of large communication systems such
as datacenter networks. As traditional networks expand, they
become more complex and managing them becomes more
costly. They become less flexible and less controllable over
time and their performance might decline as well.

SDN technology and its standards has been recently
established towards more flexible, programmable, cost-
effective, scalable, and vendor-agnostic networks by
decoupling control logic from forwarding devices like
switches and routers [3]. This enables central network
programming and policy enforcement, which facilitates
network management remarkably. SDN is a multi-layered
architecture consisting of three main layers such as the
application layer, control plane, and data plane. Forwarding
devices like switches, routers and firewalls belong to the
data plane layer, while the control plane layer is where the

Manuscript received November, 2, 2019; accepted February, 21,2020.
1* Assistant Professor, Computer Engineering Department, Yazd University, Yazd, Iran, a.mostafavi@yazd.ac.ir
2 Assistant Professor, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran, vhakami@iust.ac.ir
3 Computer Engineering Department, Yazd University, Yazd, Iran, Paydarfahimeh@gmail.com

controller or the brain of the network resides. The
application layer consists of applications that define
different policies like traffic engineering and network
security. Communication between layers is done by two
types of interfaces called the South Bound API (SBAPI) and
the North Bound API (NBAPI).

There are various types of SDN controllers that offer
different services with different Quality of Service (QoS)
requirements and scalabilities. Thus, a comprehensive
evaluation framework is needed to choose the best controller
in each scenario based on the QoS requirements, type of
topology, workload and routing protocols, all of which affect
the controller performance tremendously. In this paper, we
will provide such a framework and describe our
benchmarking metrics and tools in order to facilitate
controller choice and subsequently network management.
We will analyze both centralized and distributed controllers
including POX [4], RYU [5], Floodlight [6], ONOS [7] and
OpenDayLight [8]. We choose different metrics for each
group of controllers accordingly as they seemed to be the
most effective in each type. We analyze different routing
protocols and traffic loads in both Google fat-tree and
Facebook fat-tree [9] topologies as performance metrics for
distributed controllers while delay, throughput and traffic
loads in different types of topologies are considered for
centralized controllers as metrics in simulations.

In the second section, we introduce the terms and
definitions related to SDN. In section three, we review some
of the related work done in controller evaluation. We
perform two types of evaluation in our study, qualitative
comparison which is based on specific features of controllers
and mostly theoretic and qualitative study carried out by
benchmarking tools and analyzing the results and
conclusions toward presenting our evaluation frame work in
sections four and six consequently. In section five, we
introduce the tools utilized for our evaluation process and
final findings, conclusions, and future work are presented in
the seventh section.

II. SDN controllers
SDN has made centralized network management possible by
decoupling the control logic from network infrastructure
devices or data plane. SDN utilizes open source standards
instead of proprietary systems and protocols, which
increases network flexibility remarkably Error! Reference
source not found.. SDN has a multi-layered architecture
including the application, control plane, and data plane from
top to bottom as shown in Fig.1.

64 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

Control plane: In a software-defined network, the controller
is the central management point which has an overall view
of the whole network. With SDN controllers there is no need
to configure each of the network devices through their
terminals, but instead, the softwarized controller programs
the whole network [11]. Controller works as a platform for
applications to communicate with network devices and
manage them by enforcing policies through the controller.
SDN controller is able to communicate with different
network components using its different interfaces.
Communication with low level network components and
data forwarding devices is done through the SBAPI, while it
communicates with high level applications through the
NBAPI.

OpenFlow is a standard SBAPI which is used to control
and manage network devices, for instance to send and install
flows on the switches. On the other hand, the NBAPI is used
by the applications in the top layer to control and manage the
network. REST API is the most well-known NBAPI, which
is similar to an HTTP server and is used to enforce policies
specified by the applications in the top layer to manage the
whole network [12].

OpenFlow controllers: OpenFlow was first introduced at

Stanford University in 2008 and it made research on real

campus and large scale networks like GENI possible [13].

OpenFlow [14][15] encouraged manufacturers towards

supporting this protocol in their future switching products.

An OpenFlow controller manages flow tables in network

devices, while the controller and hardware connect by SSL

or TLS encryptions through a secure channel [17][18]. An

OpenFlow switch consists of one or more flow tables, a

secure channel, and a controller. Also, each flow table

consists of multiple flow entries each of which include three

parts including a header field, an action, and flow counters.

Every incoming flow is reviewed to match against existing

flows in a flow table by their header fields. According to the

matched flow, the action dictates what happens with the

packet, while the counter counts the number of packets

received for each flow and the byte counts and flow

duration [16]. Fig. 2 shows the structure of a flow entry in

an OpenFlow switch. The search initiates as soon as a new

flow entry arrives at a switch. If no match is made then the

switch sends a message to the controller requesting and

action for the unmatched flow. There are several possible

actions concerning the flow including sending out the packet

to an outgoing port, sending the packet back to the

controller, dropping the packet, and sending the packet to the

next flow table or specific tables.

There has been six different version of OpenFlow so far.

The first was the OpenFlow v.1.0 which was presented at

Stanford in 2008. This version has been recently accepted by

most OpenFlow vendors but is limited to only one flow table

and focuses on layer 2 and ipv4 addressing. OpenFlow v.1.1

added support for MPLS and v.1.2 made matchings more

flexible and added ipv6 support. OpenFlow v.1.3 added

parallel communication channels between controller and

switches. In 2014 v.1.4 was published in which matching

processes were mainly improved and optional ports support

was also an addition. The last and most recent version,

OpenFlow v.1.5 was also released in 2014, in which the

outgoing table was introduced and the matches were made

by outgoing ports [17].

OpenFlow utilizes three types of messages to

communicate with the infrastructure layer including

controller-to-switch, asynchronous, and symmetric

messages. The first type as apparent by its name is messages

from controller to switches, the second from switches to

controller, and the third is bidirectional messages between

controller and switches.
Controllers are categorized into two groups of

centralized and distributed controllers based on their
structure and behaviors. Fig. 3 demonstrates this
classification.

Fig. 1. Three-layered SDN architecture

Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019 65

Fig. 2. Flow entry structure

Fig. 3. controllers classification

III. Related work
Due to the separation of data planes from control planes in
SDN and with programmability features and centralized
controlling nature, flexibility and scalability increases and
makes it capable for industrial use. In previous years, several
studies have been focused on the OpenFlow controller
evaluation most of which analyzed controllers including
Bacon, Floodlight, Maestro, NOX, POX, and RYU based on
linear performance evaluations and their throughput rates. In
several other studies, new or improved versions of
controllers were proposed with some previous issues
resolved.

Tootoonchian, Gorbunov, Ganjali, Casado, and
Sherwood [19] evaluated the performance of four open
source controllers including NOX, Beacon, Maestro, NOx,
and NOX-MT which was presented by the authors as an
optimized version of NOX controller. They discussed that
the real performance of these controllers could be
considerably better in an optimized network environment
than previously assumed. They also designed Cbench that
works as a benchmarking tool specifically designed for
OpenFlow switch emulations to measure some specific
performance metrics. NOX-MT is a multithreading version
of NOX which uses optimization methods (e.g., I/O
batching) for baseline performance improvements and was
proven to outperform NOX by a factor of 33 in the overall
performance. Note that this study is outdated because newer
versions of these controllers were introduced and also the
evaluation of other important controllers such as ONOS,
Floodlight, and OpenDaylight had been left out.

Stancu, Halunga, Vulpe, Suciu, Fratu and Popovici [20]
analyzed performances of RYU, POX, ONOS, and
OpenDaylight controllers based on end-to-end delay and
bandwidth parameters. A fixed four level tree topology
containing 16 hosts had been utilized as a test environment
for the controllers’ performance. The study was concluded
in RYU having the least end-to-end delay and ONOS with
the highest bandwidth among these four controllers. Also,
the best suited controllers based on the objectives or
outcome expectations were introduced. POX was introduced
as the most suitable in an environment with configuration
simplicity as the highest priority, although in case of
performance POX is not comparable to RYU,
OpenDaylight, and ONOS controllers. This study is limited
to a static network topology and limited performance
parameters in all levels of test, thus leading to a non-general
conclusion about controllers in all other types of networks
with various parameters in priority.

A performance benchmarking of OpanDaylight and
Floodlight was performed in [21] concerning latency and
throughput in Cbench. The authors concluded that
OpenDaylight is not efficient for use in the industry and
Floodlight would be a more mature choice in comparison.
They also argued that Cbench lacks traffic models similar to
data center network models for testing, and proposed

66 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

changes to this tool in order to support datacenter traffic
models. Similar to the previously stated works, this study
shows some limitations as well like the few number of
analyzed controllers (in this case two), irrelevance of the
chosen set of controllers to each other in case of function,
and the incomplete parameters and network variables in
order to find the best suited controllers.

Shiva, Vajihe and Manije [22] discussed the

performance of Floodlight and OpenDaylight controllers in

different scenarios with different networks topologies under

various traffic loads in terms of network latency and packet

loss. They state that OpenDaylight acts better in case of

latency in networks with tree topologies under half-

bandwidth traffics, while Floodlight performs better under

heavy loads in terms of packet loss in a tree type network. It

is also stated that the comparison between the two could be

different in more complex network scenarios (one of the

limitations that can be stated about this study is again the few

number of controllers studied, limited comparison

parameters, and using few network parameters in

evaluations).

Darianian, Williamson and Haque [23] evaluated

OpenDaylight and ONOS, two novel and adequate

distributed OpenFlow controllers. They used Cbench as a

benchmarking tool for throughput and latency of the

controllers’ performances (in both physical and virtual

environment). They concluded that ONOS has better

throughput and less delay than OpenDaylight. One of the

limitations of this study is the fact that these two controllers

are not evaluated in test scenarios similar to data centers and

cloud networks, which are where they are mostly used.

Fancy and Pushpaltha [23] analyzed POX -a python-

based controller- and Floodlight -a java-based controller- as

representatives of all controllers developed by these two

programming languages. They executed a performance

comparison between them on throughput and delay. The

tests were done in Mininet with various network topologies.

This study was also limited to two controllers that do not

necessarily cover all other controllers developed by python

or java; also limited network variables were measured.

IV. Qualititative comparison of ten OpenFlow

controllers
Table I and Table II present separate qualitative comparisons

for both centralized and distributed groups of controllers,
each by different evaluation features and from various
perspectives. This part is mostly based on theories and
features each controller possesses which might be used as a
way of categorizing controllers and predicting their
properties, but does not necessarily categorize behaviors in
each group as numerous factors take part in the controller
performance.

V. Configurations and benchmarking tools

A. Configurations and evaluation scenarios

ONOS: To launch and execute the ONOS controller, we

need at least a 2-core processor with 2 GBs of RAM. One of

the advantages of this controller is its active support team

and complete documentation which facilitates

troubleshooting. ONOS is java-based and requires JRE 1.8

or higher in order to be executed on our system. We used the

latest version of ONOS at the time in our tests and

evaluations.

OpenDayLight: ODL is executed in a Java Virtual

Machine (JVM) and can run on any system that supports

java. However, on a system with a Linux distribution and a

1.7 JVM, ODL performs its best. We used the latest version

of ODL at the time in our tests.

Floodlight: Floodlight is a java-based controller and one

of the most popular and applied controllers which is mostly

used in small networks and academic environments.

RYU: RYU is a python based controller, also popular in

academia and small networks. This controller supports 1.1,

1.2, 1.3, 1.4, and 1.5 versions of the OpenFlow protocol as

well as Netconf [26] and OF-config protcols.

POX: POX is a python-based controller and is known as

one of the most popular controllers for academic purposes.

B. Test environment and benchmarking tools

We use Mininet [24] and Cbench [26] to establish a test

environment. Also using python, we created datacenter

topologies to establish tests based on them as well. The

datacenters are crucial to our study because of the role they

play in today’s world and most possibly in the future [28].

Table. 1. Qualitative comparison of general-purpose controllers

controller platform Port number GUI Multithreading
Programming

language
Open
source

NOX [29] Linux 6633 Yes Yes C++/python Yes

POX
Linux, Mac,

Windows
6633 Yes - Python Yes

Maestro [30] Linux 6653 No Yes Java Yes

Beacon [31][32] Linux 6653 Yes Yes Java Yes

Floodlight Linux 6653 Yes - Java Yes

RYU Linux 6633 - - Python Yes

Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019 67

Table. 2. qualitative comparison of distributed controllers

Controller
Network

type

Data
structure
instances

Mapping Controller-switch arrangement Related
projects Dynamic Static Master/Slave IPalias

Elasticon [33][33] Data centers Hazelcast -

DISCO
Data

centers-
WAN

Extended DB - - Floodlight

HYPERFLOW WAN Wheelfs - - NOX

ONOS Data centers Raftlog

Establishing the test environment: A test environment is
built on a system with a 7-core processor and 16 GB RAM.
Two virtual machines with 4GB RAM and a 3-core
processor are built on this server that runs Ubuntu 16.0.4
LTS. One of the virtual machines is used for the controller
installations and the other for establishing the test network
with Cbench and Mininet installed on it. Cbench, Mininet,
and wireshark are the tools chosen based on functionality
and the metrics that can be measured by them, for our study
towards benchmarking the controllers.

Cbench: Cbench is a popular tool, especially designed for
OpenFlow controllers’ evaluations. It produces packet-ins in
order to simulate asynchronous flows. Also, it emulates
some switches that are connected to the controller. These
switches send packet-ins to the controller. Reception of a
packet-in by the controller results in a new flow entry for the
switch. In reply, the controller runs its algorithm and adds
new rows in the flow table for the requesting switch and
sends the flow table back to the switch. The switch will wait
until it receives a flow-mod message from the controller.
Cbench uses fake switches instead of physical switches to
send packets to the controller in order to be able to specify
the exact number of packets sent and other parameters from
the process initiation to obtain precise output statistics and
analyze them. Fake switches determine the following
parameters including OFP_Hello exchange messages that
ban response and request messages, FS parameter which is
a fake switch pointer, SOCK parameter which identifies a
socket connection, BUFSIZ parameter which shows the size
of the in/out buffer, MODE parameter which distinguishes
the latency or throughput mode from each other, and
total_mac_adresses that is the number of all the hosts
connected to the switch.

Mininet: Mininet is a network emulator that we use as a
bench marking tool in our study. It allows the creation of
networks with various topologies consisting of a number of
virtual hosts, links and switches. With the use of this tool
you can easily access any of the network components by the
Mininet CLI and design the network specifically according
to your needs, share it with others, and eventually develop it
using real hardware. Mininet enables us to test a network and
improve it in an emulated environment before the actual
implementation of our network. The default topology in
Mininet consists of a switch and hosts that are connected to
the switch and each other while the switch itself is connected
to an OpenFlow controller. In Mininet hosts are capable of
running on separate linux CLIs [15] e.g. the iperf command
which returns the bandwidth between user and the server is

easily obtainable in this manner. A desired topology in
Mininet can be created by python script writing while there
are only a few topologies available in this tool such as tree,
linear, and single topologies as default.

Wireshark: Wireshark [36] is a powerful open source tool
for capturing and analyzing various traffics and network
protocols. It is easy to use and is popular among network and
security specialists.

VI. Quantitative comparison of five OpenFlow

controllers
In section five, we introduced some of the basic concepts of
SDN networks and summarized some of the previous work
done in performance evaluation of OpenFlow controllers.
Since the related studies have analyzed limited parameters
in their evaluations and less focus had been put on
decentralized controllers, in this paper, we propose a new,
more thorough and comprehensive framework for
performance evaluation of OpenFlow controllers with more
emphasis on the distributed type. Out of the ten controllers
presented in our qualitative review, five of them were chosen
that represent unique controller features best suited for our
study as shown in Table III. Different approaches,
parameters, and criterion has been presented based on the
category which controller belongs to.

We present a quantitative comparison of OpenFlow
controllers that can be utilized as a comprehensive
evaluation framework by network managers. In our
framework we separately evaluate centralized and
distributed controllers. We first measure performance
metrics that we have specifically chosen for each category
of controllers. Delay, throughput and the overall QoS are the
performance parameters chosen for centralized controllers
while for distributed controllers it is the network delay. Then
we identify and analyze other effective factors on
controllers’ performance including topology type and scale
of a network for both centralized and distributed controllers.
However, for distributed controllers, traffic load and routing
protocols are also analyzed. At last, we will be able to
determine any controller’s performance behavior with
specifically-defined policies and features based on our
results.

68 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

Table. 3. controllers used in our qualitative evaluation

controller Support partners NBAPI SBAPI
Supported
platforms

Centralized
/distributed

Programming
language

ONOS

ON.LAB, AT&T,
Ciena, Cisco,

Ericsson, Fujitsu,
Huawei, Intel, Nec,

Nsf.Ntt
Communication,

SK Telecom

REST API
OF 1.0, 1.3,
NETCNF

Linux, MAC
OS, and

Windows
Distributed Java

OpenDayLight

Linux Foundation
with memberships
covering over 40

companies, such as
Cisco, IBM, NEC

REST API

OF 1.0, 1.3, 1.4,
NETCONF/Yang,
OVSDB, PCEP,
BGP/LS, LISP,

SNMP

Linux, MAC
OS, and

Windows
Distributed Java

POX Nicira REST API OF 1.0
Linux, MAC

OS, and
Windows

Centralized Python

RYU
Nippo Telegraph
And Telephone

Corporation

REST For
Southbound

OF 1.0, 1.2, 1.3,
1.4, NETCONF,

OFCONFIG

Most supported
on Linux

Centralized Pyrhon

Floodlight
Big Switch
Networks

REST API OF 1.0, 1.3
Linux, MAC

OS, and
Windows

Centralized Java

Centralized controllers: These controllers were the first

introduced SDN structures in which a single controller

manages all the devices in a network. Each flow is received

at the controller as a packet-in and after the controller

processes the packet based on the defined policies by the

application layer and defines an action for that flow, it sends

the requesting switch packet-out and flow-add packets.

There are various controllers developed by java and python

programming languages namely, RYU [29], Beacon [9],

floodlight [16], POX [28] and NOX [23]. The main concept

of these networks refer to the physical centrality which

means each controller is aware of the overall state of the

network and is connected to all the switches in topology.

These types of controllers mostly have academic and

research use in small scale networks. Among POX, NOX,

and RYU, three python-based controllers, we only evaluate

POX and RYU as POX is the improved version of NOX.

Between Floodlight and Beacon that are java-based and

require large memory allocations, we chose Floodlight as

according to [2] it requires less memory than Beacon.

Decentralized controllers: One of the main challenges of

networks with centralized controllers is scalability and their

inefficiency for data centers and cloud networks that are

nowadays crucial. Distributed contollers such as

HYPERFLOW, Elasticon, ONOS, DISCO, and Open

DayLight have some unique features like the physical

distribution of the particiapting controllers in a network

topology and the fact that there is no need for all switches in

the network to be connected to the controller. These types of

controllers are used in large scale networks like WANs and

data centers. For our study, we only evaluate ONOS and

OpenDayLight, two inherently distributed controllers as

they are the most commonly used controllers in industry

utilized in data centers and cloud infrastructures. Another

advantage of these two controllers is being supported by

well-known brands such as Cisco, Intel, Ericsson, Fujitsu,

and Huawei. ONOS and OpenDayLight are both java-based

and are executable on platforms containing OSGi.

1) Determining the appropriate evaluation criterion

QoS performance in centralized controllers: End-to-end

delay and network bandwidth are two very effective factors

on QoS and performance of centralized controllers. Network

delay refers to the transmission time from source to

destination, and bandwidth between two hosts refers to the

available bandwidth for data transmission. The lowest end-

to-end delay and highest bandwidth results in the highest

QoS. For centralized controllers in our study namely POX,

RYU, and Floodlight, we analyze QoS in different scales

and topologies and introduce the controller with the highest

QoS in each of the scenarios. In each stage we perform tests

10 times and take the average of these 10 outcomes as the

final result. Also, we gradually increase the size of the

network from 1 to 63 OpenFlow switches. According to Fig.

4, RYU performs better than POX and Floodlight in terms

of latency as the scale increases, while POX has the highest

delay in networks with more than seven switches. According

to Fig. 5, all three controllers have similar decreasing

patterns of bandwidth but again RYU closely out performs

the other two and thus is the best choice in an increasing-

scale network.

Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019 69

Fig. 4. End-to-end delay vs. network scale

Fig. 5. Bandwidth vs. network scale

Delay and throughput performance in centralized
controllers: When a new flow arrives at a switch, firstly
the switch looks up its flow table for matches and if any
matches are made, the corresponding action is executed
on the flow otherwise the switch sends the flow towards
the controller in the form of a packet-in and requests an
action for the flow. Then the controller responds with a
defined action in form of a packet-out. The amount of time
needed for this process or in other words the amount of
time required by the controller to process packet-ins and
send out packet-outs is referred to as the controller delay.
On the other hand, throughput is the amount of
configuration requests a controller can handle over a time
unit. Throughput in a control layer is the main parameter
towards determining the number of required controllers in
a specific network scenario in order to sufficiently handle
traffic loads. Fig. 6 illustrates POX, RYU, and Floodlight
delay results against different number of switches. RYU
has somewhat static delay in every scale while delay
increases as the network scale does in POX and Floodlight
has relatively the highest delay in every scale than all of
them. Thus, in a delay-sensitive network RYU is the best
choice. Also from the perspective of the development
language of a controller python-based controllers showed
less delay than the ones that are java-based. In terms of
throughput, Fig. 7 shows that RYU has the least but static
throughput throughout all scales while Floodlight has the
highest throughput than others and is the best suited.

Fig. 6. dealy against network scale

Fig. 7. Throughput against network scale

RTT in distributed controllers: Comparison between
OpenFlow controllers is done through the evaluations on
communication efficiency between hosts. Round-Trip Time
(RTT) between hosts is calculated by a ping command using
ICMP request-response. In a test environment, ping is run on
two hosts farthest away from each other. We specifically
introduce controller with the lowest RTT in each scenario.

2) Effective network variables on performance

One of the effective factors on the controllers’ performance
is the structural variables of a network which directly impact
performance such as network size and topology type.

Network scale in centralized controllers: Increases in
network scale mean more switches and more hosts which
leads to more requests towards the controller directly
affecting controllers’ performance.

Fig. 8. Single topology structure

Fig. 9. Linear topology structure

70 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

Fig. 10. Tree topology structure

Fig. 11. En-to-end delay against topology type

Fig. 12. Bandwidth against topology type

Topology in centralized controllers: An effective factor
on QoS of OpenFlow controllers is the network topology
type including single, linear, and tree topologies as shown
in Fig. 8, Fig. 9, and 0 that are mostly seen in small scale
networks and academic environments. We evaluate QoS of
POX, RYU, and Floodlight controllers by delay and
throughput amounts as stated before.

 Single topology: Networks with this type of topology
contain only one OpenFlow switch with several hosts
connected to it and the switch is connected to the
controller. Results as illustrated in Fig. 11 and Fig. 12
show that if we arrange the three controllers in this
manner all of them obtain similar QoS considering their
delay and throughput.

 Linear topology: In this type of topology, there are
several switches that have linear connections. Each host
is connected to a switch linearly connected to other
switches all of which are connected to the controller.
According to Fig. 11 and Fig. 12 Floodlight has the least
delay than others after RYU, while all three of them
show similar bandwidths. Thus, in a network with a
linear structure Floodlight provides the best QoS.

 Tree topology: In a tree topology all OpenFlow switches
and hosts are hierarchically connected. Fig. 11 and Fig.
12 illustrate that RYU and Floodlight have roughly the
same delay whereas RYU has higher bandwidth than
Floodlight and POX. Thus,, RYU is the proper choice in
a network with tree topology.
Transmission packet size in distributed controllers:

Maximum Transmission Unit (MTU) refers to the size of the
largest packet allowed to pass through network links. By
standard the largest transmission packet is 1500 bytes and
larger packets are discarded. Data center networks require
low delay and large MTUs. In this section, we gradually
increase MTU from 1400 to 1500 and observe the impact of
packet size on end-to-end delay. Fat-tree is the network
topology with 16 hosts. Fig. 13 shows that OpenDayLight’s
performance is negligible to packet size while ONOS shows
increasing delay with increases in MTU. Thus
OpenDayLight is the suitable choice in this scenario.

Fig. 13. End-to-end delay against MTU in facebook fat-tree

topology

Network scale in distributed controllers: By increasing
the number of switches and hosts, the number of requests
toward controller increases as well which directly impacts
performance.

Datacenter topology in distributed controllers: Data

centers are rapidly increasing and act as an essential part of

cloud computation and online web services. Data centers

consist of thousands of nodes that demand high bandwidths.

For instance corporates like amazon, google and microsoft

profit from high scale data centers carying out their cloud

computations. Even corporates such as Dropbox and Apple

are leaning toward private cloud centers. Statistics show

data centers’ increasing traffic loads which is a confirmation

of every day increasing bandwidth requirements in these

types of networks. Data centers play an important role in

cloud-based applications’ performance efficiency. Many

topologies have been developed over the years to overcome

these challenges and fullfill data center demands. One of

these solutions is the fat tree topology which have showed

better outcomes than others. Google fat-tree and Facebook

fat-tree [13] are among the most used and most adequate

topologies in case of performance in datacenter networks.

Thus, we analyzed these topologies in our tests and

evaluation environments.

 Google fat tree: This topology is currently the most
popular in data centers and consists of different levels as
shown in 0 .This topology has three switch layers
including edge, aggregation, and core switches. Edge
switches are directly connected to hosts in a way that n

Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019 71

ports of the switch are connected to n/2 hosts and the rest
are connected to higher level switches called the
aggregation switches. In the same manner the aggregation
switches are connected to core switches. In this topology
there are several paths between every two hosts which
eventually increases fault tolerability. We evaluate
performance ONOS and OpenDayLight in a google fat-
tree topology based on delay and with 8, 16, 32, and 64
switches. Fig. 15 shows their performance based on delay
against the number of switches. OpenDayLight has less
delay and shows little increase with more switches while
ONOS shows ascending increase over more number of
switches. Thus OpenDayLight is the best suited for a
google fat-tree topology.

Fig. 14. Google fat-tree topology

Fig. 15. End-to-end delay against network scale in google fat-

tree topology

 Facebook fat-tree: This topology is illustrated in Fig. 16.
In this setting, the whole illustrated structure is called a
pod. Each pod in this topology consists of a number of
fabric switches and Top-Of-Rack (TOR) switches that can
be used up to 48 in maximum. For test purposes we can
initiate the network by 4 fabric switches and 16 TORs and
enlarge the network gradually. We evaluate performance
ONOS and OpenDayLight in a Facebook fat-tree topology
based on delay and with 16, 24, and 32 hosts. Based on Fig.
17 ONOS outperforms OpenDayLight in delay and is
better suited in this scenario. According to Facebook fat-
tree structure, it can be said that in a network with the least
number of switch layers and the least number of steps from
a host to controller, ONOS is best suited for managing the
network.

Fig. 16. Facebook fat-tree topology

Fig. 17. End-to-end delay against network scale in facebook fat-

tree topology

Fig. 18. OpenDaylight and ONOS performance without a routing

protocol against different network scales

Routing protocols of distributed controllers: Protocols
are also one of the effective factors on performance of
OpenFlow controllers. In SDN, controller possesses an
overall vision of the network and is aware of all the existing
paths in the network. Controller chooses the best path based
on its knowledge. With the use of OpenFlow routing
protocols controllers transmit paths’ information to network
devices and this protocol is basically utilized for
communication between the controller and network
hardware. By default, controllers do not use a specific
algorithm or routing protocol. They simply forward packets
by their overall vision of the network and shortest-path
policies. By the use of appropriate protocols, we can
positively affect controller performance. Firstly, we evaluate
the performance of ONOS and OpenDayLight without a
routing protocol based on end-to-end delay against network
scale of 16, 32, and 64 hosts. Then we install BGP protocol
on both of the controllers and repeat the test. In this test, we
use fat-tree to implement the network topology. As
illustrated in Fig. 18 and Fig. 19 controllers utilizing a
routing protocol perform better and ONOS outperforms
OpenDayLight and the effect of BGP was greater on ONOS.
In Fig. 20 the effect of BGP on ONOS performance
improvement is illustrated [34]. Based on the policies
defined for BGP the virtual topology is divided into areas in
each of which routing takes place separately from other
areas. Due to this policy the number of requests sent towards
the controller decreases and leads to better overall
performance. As shown in Fig. 18 and Fig. 19 the effect of
BGP is only visible in large networks while under small size
networks, the effect in negligible and it is better to use the
default routing without any specific routing protocols.

72 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

Fig. 19. OpenDaylight and ONOS performance with bgp

against different network scales

Fig. 20. Routing in ONOS with BGP

VII. Conclusions
In this paper, we introduced SDN and its different layers
including the controller layer and its fundamental role on the
overall network performance. We performed a comprehensive
study of the OpenFlow controllers and proposed an evaluation
platform of centralized and distributed controllers based on
multiple criteria.

We first categorized the controllers into two groups of
centralized and distributed. Centralized controllers are used
in small networks while distributed controllers can manage
large scale networks like datacenters or cloud networks.
Then we presented the methods and scenarios used in our
study with specific parameters to aid us choose the best
suited controller for each situation. In our evaluations for the
centralized controllers parameters consisting of QoS,
latency, and throughput were measured in various topologies
and different scales, while end-to-end delay was measured
for distributed controllers in Google fat-tree and Facebook
fat-tree, two of the most well-known datacenter topologies
with different scales under various workloads.

At last the following evaluation results were achieved:

 Among our chosen centralized controllers, RYU
performed best in network management for large scale
networks in term of QoS while in small networks
Floodlight outperformed others in QoS.

 Among our chosen set of centralized controllers, RYU
outperformed others in a network with a tree topology
and Floodlight performed best in a network with a
linear topology than others although for a single

topology the performance differences between
controllers were negligible.

 Among our chosen centralized controllers, RYU
performed best in terms of least delay in a large scale
network while Floodlight showed the highest
throughput than others.

 Among our chosen distributed controllers,
OpenDayLight outperformed ONOS in a Google fat-
tree topology while in a Facebook fat-tree topology
ONOS performs better.

 Among our chosen distributed controllers,
OpenDayLight was the more stable in a network with
increases in workload overtime than ONOS which
showed increased delay.

In distributed controllers, changing the default routing protocols
to BGP caused performance improvements in both
OpenDayLight and ONOS while this effect was greater on
ONOS.
Data Availability
The data used to support the findings of this study are

available upon request to the corresponding author.
Conflict of Interest
The authors declare that there are no conflict of interest
regarding the publication of this paper.

Refrences

[1] Lu, Jie and Zhang, Zhen and Hu, Tao and Yi, Peng and

Lan, Julong, ” A survey of controller placement problem

in software-defined networking,” IEEE Access, vol. 7,

pp. 24290-24370, (2019).

[2] Zhang, Yuan and Cui, Lin and Wang, Wei and Zhang,

Yuxiang, ”A survey on software defined networking

with multiple controllers,” Journal of Network and

Computer Applications, vol. 103, pp. 101-118, (2018).

[3] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S.

Azodolmolky, and S. Uhlig,”Software-Defined

Networking: A Comprehensive Survey,” Proceedings

of the IEEE, pp.14–76, (2015).

[4] “POX,” http://noxrepo.org, visited: 2017-8-17.

[5] NTT, “Ntt laboratories osrg group,”

http://osrg.github.com/ ryu, Visted: 2019-8-28.

[6] “Floodlight,”

http://www.projectfloodlight.org/floodlight/ Visted:

2019-8-23.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, “ONOS:

Towards an open, distributed SDN OS,” In Proceedings

of the third workshop on Hot topics in software defined

networking , pp.1-6, (2014).

[8] J. Medved, R. Varga, A. Tkacik, and K. Gray,

“Opendaylight: Towards a model-driven sdn controller

architecture,” In Proceedings of IEEE International

Symposium on a World of Wireless, Mobile and

Multimedia Networks, pp. 1–6, (2014).

[9] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P.

Tran-Gia, “Ofcprobe: A platform-independent tool for

openflow controller analysis,” in IEEE International

Conference on Communications and Electronics, pp.

182–187, (2014).

[10] M. Sanaei and S. Mostafavi, "Multimedia delivery

techniques over software-defined networks: A

survey," 5th International Conference on Web

Research (ICWR), pp. 105-110, (2019).

http://noxrepo.org/
http://www.projectfloodlight.org/floodlight/

Journal of Computer and Knowledge Engineering, Vol. 2, No.2. 2019 73

[11] J. Liao, H. Sun, J. Wang and K. Li, “Density cluster

based approach for controller placement problem in

large-scale software defined networkings,” Computer

Networks, vol.112, pp.24-35, (2017).

[12] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.

Rothenberg, S. Azodolmolky and S. Uhlig, "Software-

defined networking: a comprehensive survey," In

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,

(2015).

[13] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, ”OpenFlow: Enabling innovation in campus

networks,” In Proceeding of the ACM SIGCOMM

Computer Communication Review, pp.69–74, (2008.

[14] ”Open Networking Foundation specifications,”

https://www.opennetworking.org/sdn-resources/onf-

specifications, Visited: 2019-1-20.

[15] OpenFlow Switch Specification Version 1.0.0. Open

Networking Foundation (ONF), December (2009).

[16] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and

T. Turletti,” A Survey of Software-Defined

Networking: Past, Present, and Future of Programmable

Networks,” In Proceeding of IEEE Communications

Surveys and Tutorials, pp. 1617–1634, (2014).

[17] “OpenFlow,” http://www.openflow.org/ ,visited:(2018-

2-15.

[18] “Open Networking Foundation,”

http://www.opennetworking.org , Visited:(2018).

[19] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado,

and R. Sherwood,” On Controller Performance in

Software-Defined Networks,” In Proceedings of the 2nd

USENIX Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services,

(2012).

[20] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu

and E. C. Popovici, "A comparison between several

Software Defined Networking controllers," In

Proceedings of the 12th International Conference on

Telecommunication in Modern Satellite, Cable and

Broadcasting Services (TELSIKS), pp. 223-226, (2015).

[21] Z. Khattak, M. Awais, and A. Iqbal, “Performance

Evaluation of OpenDaylight SDN Controller, “ In

Proceedings of the 20th IEEE International Conference

on Parallel an Distributed Systems, pp. 671-676,

(2014).

[22] R. Shiva, A. Vajihe and K. Manijeh, “Performance

evaluation of sdn controllers: Floodlight and

OpenDaylight,” IIUM Engineering Journal, vol. 17, pp.

47-57, (2016).

[23] M. Darianian, C. Williamson, I. Haque, “Exprimental

evaluation of two openflow controllers,” In Proceeding

of the 25th international conference on Network

Protocols, pp. 1-6, (2017).

[24] C. Fancy and M. Pushpaltha, “Performance Analysis of

SDN/Openflow controllers: POX Versus Floodlight,”

Wireless Personal Communications, vol. 98, no. 1, pp.

1679-1699, (2018).

[25] “MiniNet,”http://yuba.stanford.edu/foswiki/bin/view/

OpenFlow/Mininet,visited: 2017-9-10.

[26] “Cbench,”http://www.openflow.org/wk/index.php/Oflo

ps, visited: 2018-3-11.

[27] . R. Enns, M. Bjorklund, J. Schoenwaelder, and A.

Bierman, “Network Configuration Protocol

(NETCONF)”. RFC 6241, Internet Engineering Task

Force (IETF), June 2011.

[28] S. Mostafavi and V. Hakami, “A new rank-order

clustering algorithm for prolonging the lifetime of

wireless sensor networks”, International Journal of

Communication Systems, vol. 33, no. 7, (2020.

[29] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.

McKeown and S. Shenker, "NOX: towards an operating

system for networks," In Proceeding of the ACM

SIGCOMM Computer Communication Review, pp. 105-

110, (2008).

[30] Z. Cai, A. L. Cox and T. S. Eugene Ng. "Maestro: A

system for scalable openflow control," In Proceeding of

the Technical Report, pp. 10-11, Rice University, Dec

(2010).

[31] “BeaconOpenFlowController,”

https://openflow.stanford.edu/display/Beacon,

Visited:2017-10-24.

[32] D. Erickson,”The Beacon OpenFlow Controller,” In

Proceedings of The Second ACM SIGCOMM Workshop

on Hot Topics in Software Defined Networking, p. 13-

18, (2013).

[33] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman and R.

R. Kompella, "ElastiCon: an elastic distributed SDN

controller," In Proceedings of the ACM/IEEE

Symposium on Architectures for Networking and

Communications Systems, pp. 17-27, (2014).

[34] A. Dixit, F. Hao, S. Mukherjee, T. V. Laseshman and

R. Kompella, "Towards an elastic distributed SDN

Controller,” In Proceedings of the second ACM

SIGCOMM workshop on Hot Topics in Software

Defined Networking, pp. 7-12, (2013).

[35] “ONOS and BGP Protocol,”

https://wiki.onosproject.org /display/ONOS/BGP+

protocol +with+Link-State +Distribution, visited: 2019-

1-18.

[36] “wireshark,” http://wireshark.org, Visited: 2017-11-4.

https://www.opennetworking.org/sdn-resources/onf-specifications
https://www.opennetworking.org/sdn-resources/onf-specifications
http://www.openflow.org/
http://www.opennetworking.org/
http://www.openflow.org/wk/index.php/Oflops
http://www.openflow.org/wk/index.php/Oflops
https://openflow.stanford.edu/display/Beacon

74 Seyed Akbar Mostafavi, et.al: Performance Evaluation of Software-Defined Networking…

