Karyological Data of Tanacetum polycephalum Schultz-bip. and T. parthenium Schultz-bip. (Asteraceae) Populations

Hamideh Javadi *
Research Institute of Forests and Rangelands, Tehran, Iran

Received 16 October 2016 Accepted 15 November 2016

Abstract

Chromosome numbers in 19 populations of Tanacetum polycephalum and Tanacetum parthenium from natural resources gene bank, that collected from different regions of Iran, were determined for the first time. The samples prepared by using root tips. After pretreatment, fixation, hydrolysis and staining, the microscopic samples prepared by squash method, metaphases were captured using an optical microscope. The best metaphases plates were selected and used for karyotype analyses. In all of populations the basic chromosome number was $x=9$ and the populations showed two ploidy levels (diploid \& tetraploid). The type of the most chromosomes in all of the populations was metacentric (m) and sub-metacentric (sm) and located in 2A and 2B except for T. parthenium (Yazd, Taft) with $5 m+3 s m+1$ st karyotype formula and 2C Stebbins classes. In addition, T. polycephalum (Esfahan, Golpayegan) with the highest value of AR and A_{1} had karyotype heterogeneity, also T. polycephalum (Esfahan, Golpayegan) and T. polycephalum (West-Azerbaijan, Uromeyeh) had the highest value of chromosome length (TL). Detailed karyotype allows us to group the different populations based on Stebbins classes and asymmetry indices.

Keywords: Chromosome numbers, Ploidy levels, Karyotype, Tanacetum polycephalum, Tanacetum parthenium, Microscopic samples, Squash method

Introduction

Tanacetum L . is a genus of about 160 species of flowering plants in the Aster family, Asteraceae native to many regions of the Northern Hemisphere (Watson, 1754), Northern Europe, Canada, Alaska, and Northern Russia (Heywood and Humphries, 1977; Tutin et al., 1976; Hulten, 1968), though the center of diversity for Tanacetum is South-West Asia and the Caucasus in the Old World (Soreng and Cope, 1991; Heywood and Humphries, 1977).
Tanacetum L. is a medicinal herb which is found in many old Gardens (Mitich, 1992). The genus Tanacetum (Asteraceae) is represented by 26 species in the flora of Iran, as herbal, perennial and sometimes shrub plants that dispersed in many regions of Iran, 12 of them are endemic (Mozaffarian, 2006). These species have traditionally been used as a spicy additive for food. It has been used in folk medicine for reducing fever (Nezhadali and Zarrabi Shirvan, 2010).
Karyological data are essential information for any organism and many karyological investigations have been performed, providing important characters for plant systematic and evolutionary analyses (Stace, 2000).

Many species of Anthemideae have been studied in karyological comparisons (e.g., Carr et al., 1999; Watanabe, 2002; Valles et al., 2005; Chehregani and Mehanfar, 2008; Chehregani and Hajisadeghian, 2009; Chehregani et al., 2013). Since chromosome number of less than 40% of the species of the Asteraceae has been documented, , more studies are still necessary to improve the knowledge of the family as well as the tribe Anthemideae (Volkova and Boyko, 1986; Valles et al., 2005).
Basic chromosome number within Anthemideae tribe is $x=9$, though $x=8$ with different ploidy levels have been reported by some researchers (diploid, tetraploid and hexaploid) (Chehregani et al., 2011; Chehregani and Hajisadeghian, 2009; Chehregani and Mehanfar, 2008; Javadi et al., 2013).
In systematic, chromosome number is an important character for plant evolutionary studies and may provide some information about polyploidy and other highly significant genome changes (Guerra, 2008; Louzada et al., 2010) or the benefits of plant chromosome number databases are useful tools for systematic comparisons of geographical and taxonomical groups of plants (Peruzzi et al., 2012).

[^0]Also, chromosome counts can increase our understanding of phylogenetic relationships at different taxonomic levels (Yang et al., 2009).
The purpose of the present study is to determine chromosome number, ploidy levels, karyotype analyses and asymmetry indices in different populations of Tanacetun polycephalum SchultzBip. and Tanacetun parthenium Schultz-Bip. Asymmetry indices are the best knowledge of karyological feature of taxa (Altınordu et al., 2014). In literature, there is no sufficient data about chromosome number and karyotype analyses of studied taxa. We expect that our study will be performed in the light of previous cytotaxonomic studies.

Materials and Methods

In this study, we used root tip meristems from seedling obtained by the germination of ripe seeds collected from various locations (19 populations) on wet filter paper in petri dishes and have been left at $25^{\circ} \mathrm{C}$ temperature. The studied populations are listed in table 1.

Pretreatment and Preparation

Root tip meristems obtained from seedlings were pretreated with 0.05% (w/v) 8-hydroxyquinoline for 4 to 5 h at $16^{\circ} \mathrm{C}$. Pretreated root tips were fixed in a 3:1 (v / v) mixture of $95 \%(\mathrm{v} / \mathrm{v})$ ethanol and propionic acid for 24 h . Root tips were hydrolyzed in 1 M HCl for 5 to 7 min at $60^{\circ} \mathrm{C}$ and stained in Schiff's reagent for 2 h at room temperature.
Feulgen stain was removed and the root tips were rinsed with cold double-distilled water and stained with Carbol fuchsin stain overnight at $4^{\circ} \mathrm{C}$ in a refrigerator. After staining, the root tips were washed three to four times with cold double distilled water and stored in cold double-distilled water in a refrigerator.
Root tips were squashed in a droplet of 45% (v / v) acetic acid and lactic acid (10:1). The preparations were observed with an optical microscope (BX41 Olympus supplemented with Digital color video camera) at a magnification of about 2000 X. The best plates were selected and captured. For each population, 5 mitotic metaphase plates were prepared.

Karyotype Analyses

The following parameters were measured in each metaphase plate to characterize the karyotypes numerically: haploid chromosome numbers (n), long arm (LA), short arm (SA), total length ($\mathrm{TL}=\mathrm{LA}+\mathrm{SA}$), genome size $\left(\sum \mathrm{TL}\right)$, arm ratio (AR=LA/SA), centromeric index
[CI=SA/(LA+SA)], difference of range relative length (DRL=MaxRL\%-MinRL\%),
(MaxRL\% $=\left[\operatorname{MaxTL} /\left(\sum \mathrm{TL}\right) * 100\right]$,
(MinRL\% $=\left[\operatorname{MinTL} /\left(\sum \mathrm{TL}\right)^{*} 100\right]$,
that MaxRL\% and MinRL\% are relative length of longer and shorter chromosome respectively, karyotype formula (KF) according to Levan's method (Levan et al., 1964), the classification of chromosomes as median (m), submedian (sm), subterminal (st) and terminal point (T).
For analysis of karyotype asymmetry, the following methods were used. To describe karyotype asymmetry and to determine the relationships of karyotypic between species, Huziwara (1962) developed the total form percent (TF\% $\left.=\left[\left(\sum \mathrm{SA} / \sum \mathrm{TL}\right) * 100\right]\right)$. Romero Zarco (1986) also, provided a different method to measure karyotype asymmetry which is the intrachromosomal asymmetry index ($\mathrm{A}_{1}=1-$ $\left.\left[\sum(\mathrm{SA} / \mathrm{LA}) / n\right]\right)$, where SA and LA are the mean length of short and long arms of each pair of homologous, respectively and n is the number of homologous.
The other interchromosomal asymmetry index is $\left(\mathrm{A}_{2}=\mathrm{s} / \mathrm{x}\right)$, whereas s and x are the average of standard deviation and mean of chromosome length, respectively.
Also, karyotypic evolution has been determined using the symmetry classes of Stebbins (SC) (Stebbins, 1971). Stebbins (1971) distinguished 12 categories concerning the karyotype asymmetry and from which 10 categories were known to occur in higher plants.
He established these by recognizing three degrees of difference ($\mathrm{A}-\mathrm{C}$) between the largest and smallest chromosome complement, and four degrees (1-4) with respect to the proportion of chromosomes which are median pair with an arm ratio of less than 2:1.

Results

The pictures of the mitotic metaphase samples and their karyotypes were presented in Figures 1and 2. The results showed that in all of populations the basic chromosome number was $x=9$, and showed two ploidy levels (2 x and 4 x).
The type of all chromosomes usually were metacentric (m), sub-metacentric (sm) and rarely sub-telocentric (st). The somatic chromosome numbers (2 n) and karyotypic details for the studied populations were presented in Table 2.

Table 1. Materials used for chromosomal study of Tanacetum polycephalum Schultz-Bip. and Tanacetum parthenium Schultz-Bip. populations. (G.B.C:Gene Bank Code, H.C:Hetrbarium Code)

No.	G.B.C	H.C	Population	Location	altitude (m)	Latitude	Longitude
1	1459	102810	Tanacetum polycephalum	Hamadan, Malayer	2250	$\begin{gathered} 48^{\circ} 30^{\prime} 05^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$34^{\circ} 34^{\prime} 41^{\prime \prime} \mathrm{E}$
2	17650	102820	Tanacetum polycephalum	Qom, Qom	2310	$\begin{gathered} 5008^{\prime} 52^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$34^{\circ} 08^{\prime} 10^{\prime \prime} \mathrm{E}$
3	22613	102816	Tanacetum polycephalum	Kordestan, Baneh	1956	$\begin{gathered} 45^{\circ} 57^{\prime} 00^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 03^{\prime} 00^{\prime \prime} \mathrm{E}$
4	25991	102818	Tanacetum polycephalum	Kordestan, Qorveh	1995	$\begin{gathered} 47^{\circ} 43^{\prime} 03^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$35^{\circ} 12^{\prime} 46^{\prime \prime} \mathrm{E}$
5	31204	102814	Tanacetum polycephalum	Kohkiloyeh \& Boyerahmad	2435	$\begin{gathered} 51^{\circ} 42^{\prime} 37^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$30^{\circ} 03^{\prime} 33^{\prime \prime} \mathrm{E}$
6	33331	102812	Tanacetum polycephalum	Zanjan	2250	$\begin{gathered} 48^{\circ} 13^{\prime} 56^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 36^{\prime} 50^{\prime \prime} \mathrm{E}$
7	35122	102819	Tanacetum polycephalum	Esfahan, Golpayegan	1970	$\begin{gathered} 50^{\circ} 13^{\prime} 39^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$33^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{E}$
8	35185	102817	Tanacetum polycephalum	WestAzerbaijan,	1648	$\begin{gathered} 45^{\circ} 01^{\prime} 55^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$38^{\circ} 01^{\prime} 31^{\prime \prime} \mathrm{E}$
9	35579	102815	Tanacetum polycephalum	Mazandaran, Savadkoh	2024	$\begin{gathered} 52^{\circ} 57^{\prime} 16^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 51^{\prime} 52^{\prime \prime} \mathrm{E}$
10	35635	102813	Tanacetum polycephalum	Mazandaran, Amol	2570	$\begin{gathered} 52^{\circ} 06^{\prime} 00^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$35^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{E}$
11	10262	102811	Tanacetum parthenium	Yazd, Taft	2310	$\begin{gathered} 54^{\circ} 08^{\prime} 01^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$31^{\circ} 37^{\prime} 97^{\prime \prime} \mathrm{E}$
12	20096	102827	Tanacetum parthenium	Qazvin, Qazvin	1700	$\begin{gathered} 50^{\circ} 10^{\prime} 00^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 26^{\prime} 00^{\prime \prime} \mathrm{E}$
13	27153	102822	Tanacetum parthenium	Gilan, Shaft	970	$\begin{gathered} 49^{\circ} 11^{\prime} 12^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 56^{\prime} 40^{\prime \prime} \mathrm{E}$
14	27158	102826	Tanacetum parthenium	Gilan, Fuman	1120	$\begin{gathered} 49^{\circ} 02^{\prime} 42^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$37^{\circ} 08^{\prime} 52^{\prime \prime} \mathrm{E}$
15	27162	102825	Tanacetum parthenium	Gilan, Astara	1460	$\begin{gathered} 48^{\circ} 33^{\prime} 12^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$38^{\circ} 15^{\prime} 50^{\prime \prime} \mathrm{E}$
16	27173	102821	Tanacetum parthenium	Gilan, Talesh	945	$\begin{gathered} 48^{\circ} 42^{\prime} 53^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$37^{\circ} 58^{\prime} 12^{\prime \prime} \mathrm{E}$
17	29813	102823	Tanacetum parthenium	Kohkiloyeh \& Boyerahmad	1800	$\begin{gathered} 51^{\circ} 10^{\prime} 16^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$31^{\circ} 50^{\prime} 59^{\prime \prime} \mathrm{E}$
18	33183	102814	Tanacetum parthenium	Hamadan	21413	$\begin{gathered} 48^{\circ} 29^{\prime} 45^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$34^{\circ} 43^{\prime} 57^{\prime \prime} \mathrm{E}$
19	35190	102824	Tanacetum parthenium	West- Azerbaijan,	2167	$\begin{gathered} 46^{\circ} 41^{\prime} 72^{\prime \prime} \\ \mathrm{N} \end{gathered}$	$36^{\circ} 51^{\prime} 36^{\prime \prime} \mathrm{E}$

Figure 1. The mitotic metaphase samples and their karyotypes

Table 2. Karyotype characteristics of Tanacetum polycephalum Schultz-Bip. and T. parthenium Schultz-Bip. populations. 2 n - somatic chromosome number, SC- symmetry classes of Stebbins, Σ TL-length of genome(micron), TLmean of chromosome Length (micron), AR- arm ratio, CI- Centromer Index, TF\%- total form percentage, A 1^{-} intrachromosome asymmetry index, A_{2} - interchromosome asymmetry index, DRL- difference of relative length, KFkaryotype Formula (m: metacentric, sm: submetacentric, st: subtelocentric)

\mathbf{N}	Populat	$\mathbf{2}$	\mathbf{S}	$\Sigma \mathbf{T}$	$\mathbf{T L}$	\mathbf{A}	$\mathbf{C I}$	$\mathbf{T F}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A 2}_{\mathbf{2}}$	$\mathbf{D R}$	$\mathbf{K F}$
1	Tanacet	1	2	73.4	8.1	2.0	0.3	37.	0.3	0.2	7.9	$5 \mathrm{~m}(1,2,4,5,6)+3 \mathrm{Sm}(3,8,9)+1 \mathrm{St}(7)$
2	Tanacet	3	2	100.	5.5	1.7	0.3	37.	0.3	0.1	3.9	$10 \mathrm{~m}(3,5,7,8,9,10,11,12,13,16)+7 \mathrm{Sm}(2)$
3	Tanacet	3	2	129.	7.1	1.7	0.3	37.	0.3	0.1	3.3	$11 \mathrm{~m}(2,5,6,8,10,11,12,13,15,16,17)+5 \mathrm{~S}$
4	Tanacet	1	2	46.7	5.1	1.5	0.3	39.	0.3	0.2	7.2	$7 \mathrm{~m}(1,2,3,4,5,6,8)+2 \mathrm{Sm}(7,9)$
5	Tanacet	1	2	54.9	6.1	1.4	0.4	42.	0.2	0.0	2.3	$7 \mathrm{~m}(1,2,3,5,6,8,9)+2 \mathrm{Sm}(4,7)$
6	Tanacet	1	2	81.3	9.0	1.4	0.4	42.	0.2	0.1	3.9	$7 \mathrm{~m}(1,2,4,5,6,7,8)+2 \mathrm{Sm}(3,9)$
7	Tanacet	1	2	94.3	10.	2.0	0.3	35.	0.4	0.1	5.0	$4 \mathrm{~m}(1,2,4,5)+4 \mathrm{Sm}(3,6,7,9)+1 \mathrm{St}(8)$
8	Tanacet	1	2	95.4	10.	1.6	0.3	39.	0.3	0.2	8.3	$6 \mathrm{~m}(1,2,3,5,7,9)+2 \mathrm{Sm}(4,8)+1 \mathrm{St}(6)$
9	Tanacet	3	2	110.	6.1	1.6	0.3	39.	0.3	0.1	4.2	$14 \mathrm{~m}(1,2,5,6,7,8,10,11,12,13,14,16,17$,
1	Tanacet	1	2	45.6	5.0	1.3	0.4	43.	0.2	0.1	3.2	$8 \mathrm{~m}(1,2,3,5,6,7,8,9)+1 \mathrm{Sm}(4)$
1	Tanacet	1	2	59.1	6.5	1.7	0.3	38.	0.3	0.3	13.	$5 \mathrm{~m}(1,4,7,8,9)+3 \mathrm{Sm}(2,3,5)+1 \mathrm{St}(6)$
1	Tanacet	1	2	50.5	5.6	1.7	0.3	38.	0.3	0.1	4.9	$4 \mathrm{~m}(1,2,3,7)+5 \mathrm{Sm}(4,5,6,8,9)$
1	Tanacet	1	2	44.0	4.8	1.5	0.4	40.	0.3	0.1	4.5	$6 \mathrm{~m}(1,2,3,4,5,6)+3 \mathrm{Sm}(7,8,9)$
1	Tanacet	1	2	57.4	6.3	1.6	0.3	38.	0.3	0.1	4.7	$5 \mathrm{~m}(3,4,5,6,9)+4 \mathrm{Sm}(1,2,7,8)$
1	Tanacet	1	2	44.2	4.9	1.5	0.3	39.	0.3	0.1	6.1	$7 \mathrm{~m}(1,3,5,6,7,8,9)+2 \mathrm{Sm}(2,4)$
1	Tanacet	1	2	39.0	4.3	1.6	0.3	38.	0.3	0.2	6.3	$6 \mathrm{~m}(1,2,4,6,7,9)+3 \mathrm{Sm}(3,5,8)$
1	Tanacet	3	2	110.	6.1	1.6	0.3	38.	0.3	0.2	4.8	$11 \mathrm{~m}(2,5,6,8,9,10,11,14,16,17,18)+6 \mathrm{~S}$
1	Tanacet	1	2	43.2	4.8	1.6	0.3	39.	0.3	0.2	8.1	$6 \mathrm{~m}(3,4,5,6,7,8)+3 \mathrm{Sm}(1,2,9)$
1	Tanacet	3	2	74.2	4.1	1.3	0.4	42.	0.2	0.1	3.9	$17 \mathrm{~m}(1,2,3,4,5,6,7,8,10,11,12,13,14,15$,

In the present work, we have provided additional karyomorphological parameters using Symmetry of Stebbin's (SC), Total Form percentage (TF\%), asymmetry indices of Romro-Zarco (A_{1} and A_{2}) (Romero, 1986) and Difference Relative Length (DRL), which do not depend on chromosome number or chromosome size. The scatter diagram of populations dispersion based on two components $\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right)$ with Stebbins symmetry (SC) are represented graphically in Figure 3.

Figure 3. The scatter diagram of populations dispersion based on two components ($\mathrm{A}_{1}-\mathrm{A}_{2}$) with Stebbins symmetry (SC).

All populations are located in Stebbin's classes (SC) 2A and 2B, except for T. parthenium (10262), with the highest DRL value (13.615), and $\mathrm{A}_{2}(0.363)$, is located in 2C Stebbin's classes. T. polycephalum (35122) and T. polycephalum (1459) had the highest value of AR and A_{1}, respectively, while T. polycephalum (35635) had the lowest AR value (1.343), and A_{1} value (0.214). The differences in AR and A_{1} values among the other populations were not significant $\quad\left(\mathrm{AR}=1.355-1.799, \quad \mathrm{~A}_{1}=0.245-0.371\right)$. While the highest TF\% value (43.683) and CI value (0.435) belonged to T. polycephalum (35635), T. polycephalum (35185) and T. polycephalum (35122) had the highest of chromosome length (TL) in all populations. So these two populations have the longer chromosome than other populations.
The current available chromosome data showed polyploidy to be the most significant evolutionary trend in chromosome number within the Asteraceae (Carr et al., 1999; Valles et al., 2005; Chehregani et al., 2013).
In this survey, we study variation of chromosome number in Tanacetum polycephalum Schultz-Bip. and Tanacetum parthenium Schultz-Bip. populations from natural gene bank. We had 10
populations from T. polycephalum and nine populations from T. parthenium. In all populations the basic chromosome number was $\mathrm{x}=9$ and the populations showed two ploidy levels: Diploid and Tetraploid (Table 2 and Figures 1 and 2). This is the first report of chromosome number in Tanacetum polycephalum and T. parthenium for populations in natural resources gene bank of Iran, indicating diploid and tetraploid level (2 x and 4 x) based on $\mathrm{x}=9$. Our results agree with other results, showing the basic chromosome number is 9 with different ploidy levels in Anthemidaea tribe (Goldblat and Johnson, 1979; Torrel et al., 2001; Valles et al., 2005; Yousefzadeh et al., 2010).
The diploid chromosome number ($2 \mathrm{n}=2 \mathrm{x}=18$) has already been reported in T. albipannosum Hub.-Mor and Grierson, T. macrophyllum Sch. Bip., T. coccineum (Willd.) Grierson ssp. chamaemelifolium (Sommier and Levier) Grierson, and T. sorbifolium (Boiss.) Grierson from Turkey (Inceer and Hayirlioglu-Ayaz, 2007).
Sonboli and et al., (2011) showed that in Tanacetum fisherae, from Kerman province, the constant chromosome number found in all metaphase plates was $2 \mathrm{n}=44+1 \mathrm{~B}$ that indicates a pentaploid level (5 x) based on $x=9$. A new ploidy level (pentaploidy) is reported for the first time for the genus.
Chehregani and et al., (2011) showed that in 14 populations of Tanacetum polycephalum located in west region, the number of chromosomes was 18 (Diploid), 36 (Tetraploid) and 54 (Hexaploid). Some populations were mixoploidy, such as Diploid and Tetraploid or Tetraploid and Hexaploid.
Finally, in Anthemideae tribe both $x=9$ and $x=8$ were reported. It seems polyploidy is the cause of polymorphism in this species (Valles et al., 2005; Chehregani and Hajisadegian, 2009).
In Table 2 we showed the Length of Genome ($\sum \mathrm{TL}$) existed in tetraploid populations including T. polycephalum (Qom, Qom), T. polycephalum (Kordestan, Baneh), T. polycephalum (Mazandaran, Savadkoh), T. parthenium (Kohkiloyeh and Boyerahmad) and T. parthenium (West-Azerbaijan, Shahindej) The values of Σ TL are high and the highest value of \sum TL belonged to T. polycephalum (Kordestan, Baneh). In diploid populations, the highest value of $\sum \mathrm{TL}$ is shown in T. polycephalum (West-Azerbaijan, Uromeyeh) and T. polycephalum (Esfahan, Golpayegan). So, in tetraploid populations, T. polycephalum (Kordestan, Baneh) have the longest chromosome ($\mathrm{TL}=7.197 \mu \mathrm{~m}$) and in diploid populations, T. polycephalum (West Azerbaijan, Uromeyeh) and T. polycephalum (Esfahan, Golpayegan), have the longest chromosome with $\mathrm{TL}=10.602 \mu \mathrm{~m}$ and

TL $=10.482 \mu \mathrm{~m}, \quad$ respectively. The smallest chromosome length $(4.124 \mu \mathrm{~m})$ is observed in the population of T. parthenium (West-Azerbaijan, Shahindej). Therefore the population of T. polycephalum has the longest chromosomes (bigger) than the population of T. parthenium.
When we compare the karyotype asymmetry in genus Tanacetum according to Stebbins (1971) classification, all of the populations are located in Stebbin's classes (SC) 2A and 2B, except for T. parthenium (Yazd, Taft), that is classified to symmetry classes of Stebbins as 2C. Among these classes, 2A class is more symmetrical than 2B class and 2B class is more symmetrical than 2C class, but we cannot determine which 2 A class has higher symmetry. So Stebbins classification does not clarify this situation. In order to determine the most symmetrical or asymmetrical karyotype we used other indices. The karyotype asymmetry was evaluated based on six different parameters includes AR (arm ratio), CI (centromeric index), $\mathrm{TF} \%$ (total form percentage), A_{1} and A_{2} (intrachromosome and interchromosome asymmetry index), DRL (difference relative length). CI and TF\% have a direct relation with symmetry of karyotype based on type of chromosomes. Increase of the CI and TF\% values is associated with increased symmetry in karyotype and vice versa. . The AR, $\mathrm{A}_{1}-\mathrm{A}_{2}$ and DRL values increase with increasing of asymmetry (Zuo and Yuan, 2011).
The $A R$ and A_{1} are the asymmetric parameters showing the chromosomes are not the same in type. So according to AR and A_{1} indices, T. polycephalum (Mazandaran, Amol) has the most symmetrical karyotype and T. polycephalum (Esfahan, Golpayegan) has the most asymmetrical karyotype. Also, the karyotype formula confirmed this issue; in population of T. polycephalum (Mazandaran, Amol) karyotype formula is $8 \mathrm{~m}+1 \mathrm{sm}$, in which 8 chromosomes are metacentric and one chromosome is sub-metacentric.
T. parthenium (Yazd, Taft) had the highest of A_{2} and DRL values. A_{2} and DRL also are asymmetric parameter and show that karyotype is asymmetric based on length of chromosomes. So population of T. parthenium (Yazd, Taft) have an asymmetric karyotype based on the length of chromosomes and its classification in 2C Stebbins classes.
In addition to various symmetrical states by Stebbins, the variance of different populations according to A_{1} and A_{2} values are presented in Figure 3. With regard to Figure 3, the pattern of variation of A_{1} and A_{2} values have been compared with the pattern of Stebbins system. This diagram also shows that the T. parthenium (Yazd, Taft) has
the most derived karyotype.
In the present research, somatic chromosome number, karyotype analysis and karyotype asymmetries of 19 popilations T. polycephalum and T. parthenium from the family of Asteraceae were defined for the first time. This study will play a positive role to enlighten this taxonomically revision genus (Taner et al., 2014). Determination of the number of chromosomes in the genus Tanacetum also shed light on the opinions of further studies in this regard.

Discussion and Conclusions

In all of the populations the basic chromosome number was $x=9$, and showed two ploidy levels (2 x and 4 x).
The populations of Tanacetum polycephalum have the longest chromosomes than populations of T. parthenium.
The asymmetric and symmetric karyotype is shown in populations of T. polycephalum from EsfahanGolpayegan and T. polycephalum from Mazandaran-Amol, respectively.
Populations of T. parthenium from Yazd-Taft with the longer and smaller chromosome (highest of A_{2} and DRLvalue) also have an asymmetric karyotype.

Acknowledgment

The authors are grateful to the Gene Bank for providing of seeds and the Research Institute of Forests and Rangelands (RIFR) in Iran for financial support.

References

1. Altınordu F. and Martin E. (2014) New chromosome counts, karyotype analyses and asymmetry indices in some taxa of genus Senecio L. and related genera Tephroseris (Rchb.) Rchb. and Turanecio Hamzaoglu belong to tribe Senecioneae (Asteraceae) from Turkey. Plant Systematics and Evolution 300: 2205-2216.
2. Carr GD., King RM., Powell AM. and Robinson H. (1999) Chromosome number in Compositeae XVIII. American Journal of Botany 86: 1003-1013.
3. Chehregani A., Atri M., Sarmadi J. and Asgari M. (2011) Chromosome number variation in Tanacetum polycephalum Schultz bip. (1.) (Asteraceae) in west of Iran. Caryologia 64(3): 302-308.
4. Chehregani A. and Hajisadeghian S. (2009) New chromosome counts in some species of Asteraceae from Iran. Nordic Journal of Botany 27: 247-250.
5. Chehregani A., Heidarian M. and Jalali F.
(2013) Cytological Investigations on Achillea wilhelmsii C. Koch (Asteraceae) in the Western part of Iran. Chromosome Botany 8:13-16.
6. Chehregani A. and Mehanfar N. (2008) New chromosome counts in the tribe Anthemideae (Asteraceae) from Iran). Cytologia 73(2):189-196.
7. Goldblatt P. and Johnson DE. (1979) The family of Asteraceae. Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Available in www.tropicos.org.
8. Guerra M. (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetic and Genome Research 120: 339-350.
9. Heywood VH. and Humphries CJ. (1977) Anthemideae-systematic review. In: Heywood,V.H.R., Harborne, J.B. and Turner, B.L. (eds). The biology and chemistry of the Compositae. Volume II. Academic Press, Great Britain. pp. 851-897.
10. Hulten E. (1968) Flora of Alaska and Neighboring territories. A manual of the vascular plants. Stanford University Press, Stanford, California. 1008 pp.
11. Huziwara Y. (1962) Karyotype analysis in some genera of compositae. VШ Further studies on the chromosomes of Aster. American Journal of Botany 49:116-119.
12. Inceer H. and Hayirlioglu-Ayaz S. (2007) Chromosome numbers in the tribe Anthemideae (Asteraceae) from north-east Anatolia. Botanical Journal of Linnaean Society 153(2): 203-211.
13. Javadi H., Alizadeh MA., Emami H. and Salehi Shanjani P. (2013) Cytogenetics investigation in different populations of Anthemis tinctoria L. (yellow chamomile) accessions from Iran. Chromosome Science 16: 43-49.
14. Levan A., Fredge K. and Sanberge A.A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201220.
15. Louzada RB., Palma-Silva C., Corrêa AM., Kaltchuk-Santos E. and Wanderley MDGL. (2010) Chromosome number of Orthophytum species (Bromeliaceae). Kew Bull 65: 53-58.
16. Mitich LW. (1992) Intriguing world of weeds-Tansy. Weed Technology 6: 242-244.
17. Mozaffarian V. (2006) A Dictionary of Iranian Plant Names. Latin-English-Persian. Fahang Moaser, 671 pp.
18. Nezhadali A. and Zarrabi-Shirvan B. (2010) Separation, identification and determination of volatile compounds of Ziziphora persica bunge using HS-SPME/GCMS. International Journal of Environmental Science and Development 1(2): 115-118.
19. Peruzzi L., Góralski G., Joachimiak AJ. and Bedini, G. (2012) Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. Comparative Cytogenetics 6: 371-377.
20. Romero Zarco C. (1986) A new method for estimating karyotype asymmetry. Taxon 36: 526-530.
21. Sonboli A., Olanj N. and Pourmirzaei A. (2011) Biosystematics and phylogeny of Tanacetum fisherae, a new record from Iran. Rostaniha (Botanical Journal of Iran) 12 (2): 165-175.
22. Soreng R. J. and Cope E. A. (1991) On the taxonomy of cultivated species of the Chrysanthemum genus-complex (Anthemideae: Compositae). Baileya 23:145165.
23. Stace CA. (2000) Cytology and cytogenetics as a fundamental resource for $20^{\text {th }}$ and 21 th centuries. Taxon 49: 451-477.
24. Stebbins GL. (1971) Chromosomal evolution in higher plants. Edward Arnold Publisher, London, Ltd. p. 216.
25. Taner Ö., Gezer E. and Martin E. (2014) Karyotype analyses on the genus Lallemantia fisch. \& C. A. Mey. (Lamiaceae) from Turkey. Cytologia 79(4): 553-559.
26. Torrel M., Valles J., Garcia-Jakas N., Mozaffarian V. and Gab-rielian E. (2001) New or rare chromosome counts in the genus Artemisia L. (Asteraceae, Anthemideae) from Armenia and Iran. Botanical Journal of the Linnean Society 135: 51-60.
27. Tutin T., Heywood V., Burges N., Moore D., Valentine D., Walters S. and Webb D. (1976) Flora europaea: plantaginaceae to compositae (and Rubiaceae). Vol. 4. Cambridge University Press, Cambridge.
28. Valles J., Garnatje T., Garcia S., Sanz M. and Ko-Robkov A. A. (2005) Chromosome numbers in the tribes Anthemideae and Inuleae (Asteraceae) in Kazakhstan. Botanical Journal of Linean Society 148: 7785.
29. Volkova S. A. and oyko E. V. (1986) Chromosome numbers in some species of Asteraceae from the southern part of the Soviet Far East. Botanicheskii Zhurnal 71: 16-93.
30. Watanabe K. (2002) Index to chromosome numbers in Asteraceae. Available in http://www-asteraceae.cla.kobe-u.ac.jp/ index.html.
31. Watson L. E. (1754) Flora of North America, Tanacetum. Vol, 19, 20 and 21. Available in www.eFloras.org.
32. Yang Z., Zhang L., Zhao H., Yang R., Ding C., Zhou Y. and Wan D. (2009) Chromosome numbers of some species of Salvia
(Lamiaceae) from the Sichuan Province, China. Nordic Journal of Botany 27: 287291.
33. Yousefzadeh K. Hoshmand S. and Zinali H. (2010) Karyological study four speices of Anthemis from Iran. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research 18(1): 55-62.
34. Zuo L. and Yuan Q. (2011) The difference between the heterogeneity of the centromeric index and intrachromosomal asymmetry. Plant Systematics and Evolution 297: 141145.

Open Access Statement:

This is an open access article distributed under the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^0]: Corresponding authors E-mails:
 *Javadi@rifr-ac.ir; hjavadim@yahoo.com

