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Abstract 

Oxidative stress occurs as a result of breaking down the balance between oxidants (e.g., reactive 

oxygen species (ROS)) and antioxidants in cells. Several studies have shown that there is a close relationship 

between oxidative stress and inflammation at the sites of injury. Mesenchymal stem cells (MSCs) are 

exposed to endogenous and exogenous oxidants generated during their ex vivo expansion or following in vivo 

transplantation. α-tocopherol (vitamin E) is a fat-soluble compound known for its anti-oxidant and anti-

inflammatory properties. In many studies, the immunomodulatory effects of vitamin E have been observed in 

vivo. This study aimed to determine whether pretreatment of MSCs with antioxidants like vitamin E, will 

enhance the anti-inflammatory and immunomodulatory properties of these cells. For this purpose, adipose-

derived MSCs (ASCs) were treated with vitamin E (600 µM) for 48 h. Quantitative PCR (qPCR) 

experiments were performed to evaluate the expression of genes related to inflammation (IL-1β, IL-6, IL-17, 

IL-10) or immunomodulation (TSG-6, COX-2, TDO2, TGF-β1). Results indicated that vitamin E 

significantly increased the expression of COX-2, TSG-6, and IL-1β genes at the mRNA level compared with 

the control group, while it significantly decreased IL-6 and TGF-β expressions. No effect was observed for 

IL-17, IL-10, and TDO2 genes. These results suggest that in vitro preconditioning of ASCs with vitamin E 

may allow the cells to improve their anti-inflammatory and immunoregulatory capacities. Vitamin E 

pretreatment could lead to the improvement of their therapeutic abilities in conditions that are influenced by 

oxidative stress. 
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Introduction1∗

Reactive oxygen species (ROS), which are 

generated during cellular metabolisms (Schieber 

and Chandel, 2014), are neutralized by antioxidants 

to gain a balance between oxidants and anti-

oxidizing agents. Oxidative stress occurs as a result 

of excessive levels of ROS or low levels of 

antioxidants (Barrows et al., 2019). Oxidative stress 

as a pathophysiological condition is closely related 

to inflammation. ROS can initiate intracellular 

signal transductions and mediates the activation of 

various transcription factors (e.g., Nuclear factor 

kappa-light-chain-enhancer of activated B cells 
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(NF-қB)) (Yuan et al., 2019). These transcription 

factors, in turn, raise the expression of pro-

inflammatory genes and induce chronic 

inflammatory status (Biswas, 2016). Concurrently, 

inflammatory cells promote oxidative stress by 

releasing numerous reactive species at the sites of 

inflammation (Droge, 2002). 

     Antioxidant therapy seems to be a beneficial 

strategy to prevent or improve inflammatory 

diseases caused by oxidative stress. Nevertheless, 

some clinical studies were not promising (Kelly et 

al., 2008; Mahmood et al., 2018; Mishra et al., 

2003). α-tocopherol (vitamin E) is the most 

effective lipid-soluble antioxidant that protects 

polyunsaturated fatty acids (PUFAs) of biological 

membranes (Azzi, 2007) and, is critical in the 

regulation of the immune response (Lee and Han, 

2018).  
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     Numerous studies have illustrated that vitamin E 

has a modulatory effect on the immune system. Xue 

et al. showed that this vitamin improved 

experimental autoimmune neuritis (EAN) in a rat 

model by suppressing the production of pro-

inflammatory cytokines and inhibiting progressive 

oxidative damages (Kihara et al., 2019). It was also 

suggested that vitamin E modulates the phase 

conversion between naïve T cells and T helper1 

(Th1) or T helper (Th2) cells, as a response to the 

stimulation of dendritic cells (Xue et al., 

2016). The anti-inflammatory effects of vitamin 

E have also been reported in vivo, which seems to 

be independent of its antioxidant properties. 

Tahan et al., in 2011, found that vitamin E 

suppresses inflammatory cytokines and inhibits 

the acetic acid-induced chronic inflammation in 

a rat model (Tahan et al., 2011). Xue et al. in 

2016, revealed that vitamin E decreases the 

number of inflammatory cells in lymph nodes 

and spleens of the animals in vivo and inhibits the 

proliferation of stimulated splenocytes in vitro 

(Xue et al., 2016). 

     Stem cell-based therapy is a proper strategy for 

controlling the symptoms of inflammatory and 

immune-mediated diseases. Mesenchymal 

stem/stromal cells (MSCs) have been widely used 

for allogeneic cell therapy to treat autoimmune 

diseases (Rad et al., 2019), inflammation-mediated 

disorders (Francis et al., 2019; Zhao et al., 2019), 

and cardiovascular diseases (Yun and Lee, 2019). 

The successful isolation of MSCs from a variety of 

adult tissues, e.g., bone marrow and adipose tissues, 

has provided a powerful tool for applied biological 

research (Wei et al., 2013). 

     Many studies revealed that some environmental 

and pharmacological stimuli (e.g., small molecules) 

or preconditioning strategies could influence the 

functional properties of MSCs in the context of 

immunotherapy (Linares et al., 2016; Pittenger and 

Martin, 2004; Schaefer et al., 2016). Furthermore, 

endogenous and exogenous oxidants that MSCs 

may expose to them during ex vivo expansion or in 

vivo transplantation procedures are considered as 

significant bottlenecks in cell therapy experiments 

(Yang et al., 2015). High levels of ROS are harmful 

to preserve self-renewal, reparative, and 

immunoregulatory functions of MSCs (Denu and 

Hematti, 2016; Yang et al., 2015). ROS, as a 

metabolic side product, increases adipogenic 

differentiation, enhances senescence, diminishes 

osteogenic differentiation, and hinders the 

immunomodulatory properties of MSCs (Denu and 

Hematti, 2016). Moreover, inflammatory responses, 

in addition to the production of ROS at the 
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ischemic target sites, lead to the loss of transplanted 

MSCs. Hence, it is vital to reduce ROS either by 

manipulating the cells or their target sites (Devine 

et al., 2001; Pittenger and Martin, 2004; Yang et 

al., 2015). 

Accordingly, understanding the effects of ROS on 

MSCs biology could shed light on the 

immunomodulatory behaviors of the cells under 

inflammatory conditions. 

     To the best of our knowledge, this is the first 

study that evaluates the effects of vitamin E on 

immunomodulatory and anti-inflammatory 

properties of human ASCs. Considering the vitamin 

E’s evident antioxidant and anti-inflammatory 

properties, we anticipated that priming of ASCs 

with vitamin E could boost the beneficial effects of 

these therapeutically valuable cells.  

Materials and Methods 

Isolation and culture of human ASCs 

     Adipose tissues were obtained from three 

healthy donors undergoing elective liposuction at a 

private cosmetic day clinic in Mashhad, Iran. All 

three patients signed the informed consent form. 

The Academic Center for Education, Culture, and 

Research (ACECR) Biomedical Research Ethics 

Committee authorized all downstream protocols 

(IR.ACECR.JDM.REC.1398.009). 

     200 ml of adipose tissues were washed three 

times with phosphate-buffered saline (PBS) 

containing 0.1% penicillin-streptomycin (pen-strep) 

(Biowest, Canada) and incubated for one hour in 

constant–temperature bath at 37°C in the presence 

of 0.1% collagenase type I (Invitrogen, USA). Fetal 

bovine serum (FBS, Gibco, USA, 10%) was 

applied for collagenase I inactivation. Then, the 

mixture was centrifuged at 800 g for 10 min to 

remove adipose cell debris. In the following, pellets 

were suspended in Dulbecco’s Modified Eagle 

Medium (DMEM, Biowest, Canada) contained 

10% FBS and 0.1% pen-strep. Then, the cells were 

transferred into cell culture vessels and kept in a 

5% CO2 incubator at 37°C (Naderi-Meshkin et al., 

2016). We changed the culture medium every three 

days. All the following experiments were 

conducted with the cells at passage number 3.  

Characterization of human ASCs 

     Flowcytometric approach was applied for the 

identification of mesenchymal lineage-specific 

surface markers. A suspension of 106 single cells 

was transferred into the staining buffer contained 

PBS and 5% FBS.  Then, anti-human monoclonal 
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antibodies (all from Cytognos, Spain) against 

clusters of differentiation 44 (CD44), CD90, CD73, 

CD13, CD14, CD34, and 

human leukocyte antigen– DR (HLA-DR) antigens 

were mixed with the cells and incubated for 45 min 

at 4 °C. FACS Calibur cytometer equipped with 

488 nm argon laser (Bioscience, US) was used for 

data acquirements. Data analysis was performed 

using FlowJo (7.6.1) software. 

The capacity of the cells for differentiation 

toward osteogenic and adipogenic lineages was 

qualitatively determined based on the previously 

described alizarin red and oil red O staining 

methods, respectively (Naderi‐Meshkin et al., 

2016). Briefly, adipogenesis was induced through 

the culture of ASCs in the presence of DMEM 

supplemented by 10% FBS, 200 mM indomethacin, 

10 mM β-glycerophosphate, and 1 mM 

dexamethasone. After 14 days, the cells were rinsed 

with PBS and fixed in 10% formalin solution. 

Then, they were stained with 0.5% Oil Red O 

(Sigma, Germany) for 15 min. 

     The osteogenic inductive medium was 

composed of DMEM, 10% FBS, 0.5 mM acid 

ascorbic, 10 mM β-glycerophosphate, and 1 mM 

dexamethasone. The cells were incubated in this 

medium for 21 days. Then, they were fixed and 

stained with alizarin red (Sigma, Germany) for 30 

min to detect the mineralized matrix of the bone, 

secreted by differentiated cells.  

Preconditioning of human ASCs with vitamin E 

     Human ASCs were cultured in DMEM 

supplemented with 10% FBS and 1% pen-strep. 

Upon reaching 80% confluency, the proper 

concentration of vitamin E (Sigma, Germany) was 

added to the cultures. Untreated ASCs or cells that 

had been cultured with ethanol-containing media 

were applied as controls.  

MTT assay 

MTT (2, 3-bis (2-methoxy-4-nitro-5-5 

sulfoxyphenyl)-2H-tetrazolium assay was carried 

out to evaluate the possible toxic effects of various 

concentrations of vitamin E against human ASCs. 

104 cells were seeded in 96-well plates, and after 

reaching 80% confluency, they were treated with 

200, 400, 600, 800, and 1000 µM of vitamin E for 

24 to 72 hours. Cells cultured in the presence of 

DMEM or DMEM supplemented by an equal 

volume of ethanol were used as blank and control 

groups, respectively. Cell viabilities were 

determined following the addition of MTT dye (5 

mg/ml) to the wells, incubating the vessels at 37°C 

for 4 hours, and recording optical densities (ODs) at 

540nm by NanoDrop spectrophotometer 

(Nanodrop, BIO-TEK, Winooski, VT). 

RNA extraction and quantitative PCR (qPCR) 

     Total RNAs were extracted from ASCs after 48 

hours of treatment with 600 µM of vitamin E and 

control cells using TriPure according to the 

protocol provided by the manufacturer (Roche, 

Germany). The integrity of RNA samples was 

indicated using 1% agarose gel, and their 

concentrations were assessed via a NanoDrop 

spectrophotometer (Nanodrop, BIO-TEK, 

Winooski, VT). 

One µg of DNase I-treated total RNA was 

used for cDNA synthesis in each case (Thermo 

Scientific, USA). cDNA synthesis steps were 

performed according to the kit instructions (Takara, 

Japan). 

 qPCR was accomplished by SYBR Green PCR 

Master Mix (amplicon, USA) according to the kit 

protocol with The CFX ConnectTM Real-Time PCR 

Detection System (Bio-Rad, Germany). Ribosomal 

protein lateral stalk subunit P (RPLP0) gene was 

used as an internal control (reference gene) to 

normalize the transcript level of tested genes. 

Primers were designed by AlleleID 6 software and 

are shown in table 1. 

Statistical analysis 

     Statistical analysis was performed using 

GraphPad Prism 6. Data were expressed as mean of 

independent experiments±SEM. One way ANOVA 

and two samples T-test were used for statistical 

analysis. Events with p values less than 0.05 were 

considered significant.  

Table 1. Primer sequences used for qPCR. 
product 

length 

(bp) 

Primer sequences 

(5’ 3’) 
Genes 

119 
F: TGGTCATCCAGCAGGTGTTCGA    

R: ACAGACACTGGCAACATTGCGG 
RPLP0 

153 
F: GTTCAAGCAGAGTACACACAGC  

R: GTATTTCTGGTACAGCTCCACG 
TGF-β1 

156 
F: GCTGCTGGATGGATGGCTAAG   

R: CTCCTTTGCGTGTGGGTTGTAG 
TSG-6 

168 
F:CCAGAGCAGGCAGATGAAATACC 

R: ACCAGAAGGGCAGGATACAGC 
COX-2 

186 
F: CCTCTCTCACCTCTCCTACTCAC  

R: CTGCTACTTCTTGCCCCCTTTG 
IL-1β 

163 
F:CGGCAGGCACAAACTCATCC 

R:TTGTCCTCAGAATTTGGGCATCC 
IL-17 

114 
F:GAGATGCCTTCAGCAGAGTGAAGA 

R:AGGCTTGGCAACCCAGGTAAC 
IL-10 

151 
F: ACCTCCGTGCTTCTCAGACAG 

R: GACCTCCTTTGCTGGCTCTATTC 
TDO2 

196 
F: ACTCACCTCTTCAGAACGAATT      

R: GCAAGTCTCCTCATTGAATCCAG 
IL-6 
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Results 

Characterization of human ASCs 

     Cultured ASCs were characterized through 

investigation of surface markers expression levels 

and their potential for multi-lineage differentiation. 

Flow cytometry analysis results indicated that > 

98% of these cells expressed ASC specific markers 

including CD13, CD44, CD90 and CD73 and < 3% 

showed the expression of hematopoietic cell-

specific markers including CD14, CD34, CD45, 

and HLA-DR (Figure 1). 

     The differentiation potential toward adipocytes 

and osteocytes was investigated using adipogenic 

and osteogenic differentiation media and staining 

with Oil Red O and Alizarin Red, respectively 

(figure 2 D, E & F).  

Both lipid depositions and mineralization of the 

extracellular matrixes were visualized following the 

staining procedures, which confirmed the 

adipogenesis and osteogenesis of ASCs.  

Investigating the toxic effects of vitamin E on 

ASCs  

     The effects of various concentrations of vitamin 

E (200-1000 µM) on ASCs’ survival rate was 

explored by MTT assay. The results showed that 

after 24, 48, and 72 h, no significant difference 

(P<0.05) was observed between cell viabilities of 

control and sample groups among all 

concentrations and investigated time points (Figure 

3). 

Figure 2. Immunophenotype characterization of sub-cultured MSCs at passage 3. Diagrams show flow cytometry data 

for MSC specific surface markers (CD13, CD44, CD73 & CD90) and hematopoietic markers (CD14, CD34, CD45 & 

HLA-DR).  Data presents the percentages of the cells which were positive for each marker. 

Figure 1. Characterization of human ASCs. Photomicrographs show the morphology and differentiation capacity of 

ASCs. A) Spindle-like morphology of human ASCs 8 days after harvesting from adipose tissues. B) Morphology of 

the control group after 48h. C) Morphology of ASCs preconditioned with 600 µM of vitamin E after 48 h. D) Oil 

Red O staining to detect adipogenic differentiation. E) Alizarin Red staining to measure osteogenic differentiation. 

F) Alkaline phosphatase assay to confirm osteogenic differentiation.



Journal of Cell and Molecular Research (2020) 11 (2), 99-107

103 http://jcmr.um.ac.ir 

Figure 3. Mean of cell viabilities (%) calculated for 

pre-conditioned ASCs as obtained by MTT assay. As 

demonstrated, differences were not significant (p 

<0.05) in comparison to control groups at different 

concentrations and time points. 

Gene expression profiling of vitamin E 

stimulated ASCs  

     The expression levels of two categories of genes 

were investigated in this study: inflammatory-

related genes including interleukin 1-betta (IL-1β), 

IL-6, IL-17, IL-10 and immunomodulatory genes 

such as TNF-stimulated gene 6 (TSG-6), 

cyclooxygenase-2 (COX-2), tryptophan 2,3-

dioxygenase (TDO2) and transforming growth 

factor- beta (TGF-β). The qPCR results showed that 

pretreatment with vitamin E markedly enhanced the 

gene expression of TSG-6, IL-1β, and COX-2 at 

mRNA level and significantly (p<0.05) reduced the 

expressions of IL-6 and TGF-β compared with the 

control group (Figure 4). In contrast, ASCs 

pretreatment did not affect IL-10, IL-17, and TDO2 

gene expressions compared to the control group. 

Discussion 

As a recommended supplement, vitamin E 

inhibits the production of ROS molecules and pro-

inflammatory cytokines and depicts 

immunosuppressive properties (Lee and Han, 

2018b). The findings of this study demonstrated 

that Vitamin E when applied as a small molecule 

for preconditioning of ASCs, altered the expression 

of some genes which are involved in 

immunomodulation and inflammation. Here, we 

argued that the pretreatment of stem cells with 

Vitamin E before cellular therapy could have 

beneficial effects on their immunoregulatory 

capacities. 

ASCs are multipotent cells with a high 

capability for interacting with a variety of immune 

cells. These cells release various factors with 

immunomodulatory potential such as cytokines and 

chemokines, which make them a decent choice to 

treat numerous immune-mediated diseases 

accompanied by chronic inflammation (Baer et al., 

2018). Priming MSCs with appropriate agents can 

promote the efficacy of some specific 

immunotherapeutic applications (Hu and Li, 2018; 

Silva et al., 2018; Tang et al., 2014; Wisel et al., 

2009). 

     Vitamin E is recognized not only for its 

antioxidant properties but also for its regulatory 

effects on signaling pathways through the induction 

of gene expression modifications (Azzi, 2018; 

Sangiorgi et al., 2016; Zingg, 2015). We studied the 

consequences of vitamin E treatment at a high 

concentration (600 μM) on the cell proliferation 

rate and cytokine production status of the cells in 

vitro. Our findings showed that the preconditioning 

of MSCs by 600 μM of vitamin E significantly 

attenuated the expression of IL-6 at least by two 

folds and altered the expression of TGF-β slightly. 

We also observed a significant increase in the 

expression of COX-2, TSG6, and IL-1β. 

     Wang et al. found that rat bone marrow-derived 

MSCs could ameliorate peritoneal injury by 

repairing mesothelial cells. They also showed that 

MSCs lacking TSG-6 (TSG-6-siRNA MSCs) had 

no apparent effects on the peritoneal fibrosis. Thus, 

it was confirmed that the secretion of TSG-6 by 

MSCs made a significant contribution to their 

clinical outcomes (Wang et al., 2012). In line with 

their findings, Roddy et al. reported that 

Figure 4. Vitamin E preconditioning of ASCs changed 

the expression of IL-1β and IL-6 (inflammatory 

markers), in addition to TSG-6, COX-2, and TGF-β 

(immunomodulatory markers). Vitamin E treatment 

suppressed the expression of IL-6 and TGF- β and 

enhanced the expression of IL-1β, COX-2, and TSG-6 

when compared to the control group. Results were 

expressed as mean±standard deviation (SD), and (*) 

represents p < 0.05, (**) represents p < 0.01, (***) 

represent p < 0.001 and (****) represent p < 0.0001. 

The expression levels of all investigated genes were 

considered equal to 1, conventionally. 
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intravenous administration of human MSCs primed 

to express TSG-6 suppressed the inflammatory 

damages of the cornea following the induction of 

chemical injury in rats. Additionally, Roddy et al. 

demonstrated that the siRNA knockdown of TSG-6 

impeded the anti-inflammatory effects of these cells 

on damaged corneal epithelial cells (Roddy et al., 

2011). Given these observations, we suggest that 

preconditioning of MSCs with vitamin E could 

improve their immunomodulatory properties by 

enhancing the expression of TSG-6.  

     IL-6 is a pleiotropic and multifunctional 

cytokine involved in many physiological events, 

such as inflammation through NF-қB and signal 

transducers and activators of transcription (STAT) 

signaling pathways. It was shown that blockade of 

IL-6 prevents the progression of autoimmune-based 

diseases and tumor formation (Barnes et al., 2011; 

Schaper and Rose-John, 2015; Tanaka et al., 2014). 

The blockade of TGF-β1 also causes anti-tumor 

immunity and tumor regression (Mariathasan et al., 

2018; Shangguan et al., 2012), which increases 

safety concerns in tumorigenesis. COX-2 is a 

crucial enzyme in prostaglandin E2 synthesis, 

which promotes the anti-inflammatory features of 

macrophages (M2) (Lu et al., 2017; Németh et al., 

2009). The pro-inflammatory cytokine, IL-1β, is 

regulated through NF-қB and c-jun signaling 

pathways (Libby, 2017; Palomo et al., 2015; 

Rodriguez et al., 2019). In contrast, MSC pre-

treatment did not affect IL-10, IL-17, and TDO2 

gene expressions in the current study. Their weak 

expression by naïve MSCs could explain it (Ben-

Zwi et al., 2019). 

     There was a strong correlation between the 

changes in redox potential and the production of 

pro-inflammatory cytokines with the inflammatory 

pathways, e.g., NF-қB. NF-қB is a transcription 

factor thought to be modulated by oxidative stress 

(Behl et al., 1994; Lingappan, 2018). Antioxidants 

like vitamin E are believed to prevent the activation 

of NF-қB and other inflammatory pathways 

through the inhibition of lipid peroxidation (Saxena 

et al., 2019).  

Together, these findings support the notion that 

vitamin E improves the anti-inflammatory 

characteristics of ASCs. This effect could be due to 

inhibition of the activation of some inflammatory 

signaling pathways, such as NF-Қb, in human 

MSCs that inhibits the production of pro-

inflammatory cytokines. 
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