1. C. Andrade, R. d’Andrea, and N. Rebolledo, "Chloride Ion Penetration in Concrete: The Reaction Factor in the Electrical Resistivity Model", Cement and Concrete Composites, Vol. 47, PP. 41-46, (2014).
2. A. Atkinson and A. K. Nickerson, "The Diffusion of Ions through Water-saturated Cement", Journal of Materials Science, Vol. 19, PP. 3068-3078, (1984).
3. K. Audenaert, Q. Yuan, and G. De Schutter, "On the Time Dependency of the Chloride Migration Coefficient in Concrete", Construction and building materials, Vol. 24, PP. 396-402, (2010).
4. R. D. Hooton and E. Karkar, "Specifying Fluid Penetration Resistance of Concrete", presented at the international congress on durability of concrete, (2012).
5. H. Sorensen and J. M. Fredriksen, "Testing and Modelling of Chloride Penetration into Concrete", Nordic Concrete Research, Research Projects 1990, Oslo, PP. 354-356, (1990).
6. Z. T. and O. E. Gjorv, "A Fundamental Study of Chloride Diffusion into Cementitious Materials" Journal of Physical Chemistry, (1995).
7. A. Pilvar, A. A. Ramezanianpour, and H. Rajaie, "New Method Development for Evaluation Concrete Chloride Ion Permeability", Construction and Building Materials, (2015).
8. D. Whiting, "Rapid Determination of the Chloride Permeability of Concrete", Final Report Portland Cement Association, Skokie, IL. Construction Technology Labs., Vol. 1, (1981).
9. A. A. Ramezanianpour, A. Pilvar, M. Mahdikhani, and F. Moodi, "Practical Evaluation of Relationship between Concrete Resistivity, Water Penetration, Rapid Chloride Penetration and Compressive Strength", Construction and Building Materials, Vol. 25, PP. 2472-2479, (2011).
10. P. E. Streicher and M. G. Alexander, "A Chloride Conduction Test for Concrete", Cement and Concrete Research, Vol. 25, PP. 1284-1294, (1995).
11. Nordtest, "NT Build 355: Concrete, Mortar and Cement Based Repair Mmaterials: Chloride Diffusion Coefficient from Migration Cell Experiments. Nordtest Standards Institution", ed, (1995).
12. T. Luping and L.O. Nilsson, "Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electric Field", ACI Materials Journal, Vol. 89, (1993).
13. Y. Shimizu, "An Electrical Method for Measuring the Setting Time of Portland Cement", Mill Section of Concrete, Vol. 32, PP. 111-113, (1928).
14. J. Calleja, "Effect of Current Frequency on Measurement of Electrical Resistance of Cement Pastes", in ACI Journal Proceedings, (1952).
15. H. Whittington, J. McCarter, and M. Forde, "The Conduction of Electricity through Concrete", Magazine of Concrete Research, Vol. 33, PP. 48-60, (1981).
16. "Resistivity Measurements in Cementitious Systems: Observations of Factors that Influence the Measurements," Journal of the Transportation Research Board, Vol. 2342, PP. 90 - 98, (2013).
17. A. A. Ramezanianpour, A. R. Pilvar, M. Mahdikhani, F. Moodi, and R. Pilvar, "Developing a Modified Rapid Chloride Permeability Test for Mortar Concrete", in Concrete Repair, Rehabilitation and Retrofitting III, ed: CRC Press, PP. 279-286, (2012).
18. J. O. M. Bockris and A. K. N. Reddy, Modern Electrochemistry, 2nd Edition ed.: Macdonald Ltd. London, (2000).
19. R. K. Dhir, M. R. Jones, H. E. H. Ahmed, and A. M. G. Seneviratne, "Rapid Estimation of Chloride Diffusion Coefficient in Concrete", Magazine of Concrete Research, Vol. 42, PP. 177-185, (1990).
20. K. Snyder, "The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations", Concrete Science and Engineering, Vol. 3, PP. 216-224, (2001).
21. L. Tang, "Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete—Current Development," Magazine of concrete research, Vol. 48, PP. 173-179, (1996).
22. C. L. Page and Ø. Vennesland, "Pore Solution Composition and Chloride Binding Capacity of Silica-Fume Cement Pastes", Materials and Structures, Vol. 16, PP. 19-25, (1983).
23. M. Pigeon, F. Garnier, R. Pleau, and P.-C. Aitcin, "Influence of Drying on the Chloride Ion Permeability of HPC", Concrete International, Vol. 15, (1993).
24. ASTM, "C 1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration", ed. ASTM International: West Conshohocken Pennsylvania, (2012).
25. ASTM, "C 1760: Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete", ed, (2012).
26. ASTM, "C 1556: Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion", ed, (2011).
27. C. Shi, J. A. Stegemann, and R. J. Caldwell, "Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and its Implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1202) Results", ACI Materials Journal, Vol. 95, (1998).
28. A. Ramezanianpour, S. M. Motahari Karein, P. Vosoughi, A. Pilvar, S. Isapour, and F. Moodi, "Effects of Calcined Perlite Powder as a SCM on the Strength and Permeability of Concrete", Construction and Building Materials, Vol. 66, PP. 222-228, (2014).