1. Farmer, C.M. and Lund, A.K., "Rollover risk of cars and light trucks after accounting for driver and environmental factors" Accident Analysis and Prevention, 34, pp. 163-173,) 2002(.
2. Hac, A., "Rollover Stability Index Including Effects of Suspension Design", SAE World Congress, Detroit, Michigan, March 4-7, )2002(.
3. Takano, S., Nagai, M., Taniguchi, T. and Hatano, T., "Study on vehicle dynamics model for improving roll stability", JASE Review, 24, pp. 149-156, (2003).
4. Zheng, X., Wu, J. and Zhou, Y., "Numerical analysis on dynamic control of five-degree-of-freedom Maglev Vehicle Moving on Flexible Guideways", Journal of Sound and Vibration, 235, pp. 43-61, (2000).
5. Poussot-Vassal, C., Sename, O., Dugard L. and Savaresi, S. M., “Vehicle dynamic stability improvements through gain-scheduled steering and braking control”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 49 (10) , pp. 1597-1621, (2011).
6. Zebala, J., Ciepka, P., Reza, A. and Janczur, R., "Influence of rubber compound and tread pattern of retreated tires on vehicle active safety", Forensic Science International 167, pp. 173-180, (2007).
7. Onoa, E., Asanoa, K., Sugaia, M., Itob, S., Yamamotob, M., Sawadac, M. and Yasuid, Y., "Estimation of automotive tire force characteristics using wheel velocity", Control Engineering Practice, 11, pp. 1361-1370, (2003).
8. Andrew, H., Gosline, C. and Hayward, V., "Eddy Current Brakes for Haptic Interfaces: Design, Identification and Control", ASME Transactions on mechatronics, 13(6), (2008).
9. Choi, S.B., "Antilock Brake System With a Continuous Wheel Slip Control to Maximize the Braking Performance and the Ride Quality", IEEE Transactions on Control Systems Technology, 16(5), (2008).
10. Kudarauskas, N., “Analysis of emergency braking of a vehicle”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 22(3), pp. 154-159, (2007).
11. Lukoseviciene O. and Sokolovskij, E., “Movement of the vehicle being braked when some wheels are incapable of braking or have lost touch with the road surface”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 21(1), pp. 8-11, (2006).
12. Xiang, W., Richardson, P., C., Zhao, C. and Mohammad, S., "Automobile Brake-by-Wire Control System Design and Analysis", IEEE Transactions on Vehicular Technology, 57(1), (2008).
13. Eslamian, M., Mirzaei, M. and Alizade, G., "Enhancement of Vehicle Lateral Stability by Non-linear Optimal Control of Yaw Dynamics", Mech. & Aerospace Eng. J., 2(3), (2007).
14. Anwar, S., "Predictive Yaw Stability Control of a Brake-By-Wire Equipped Vehicle via Eddy Current Braking", American Control Conference, New York City, USA, July 11-13 (2007).,
15. Schiebahn, M., Zegelaar, P.W., Lakehal-Ayat M. and Hofmann, O., “The yaw torque influence of active systems and smart actuators for coordinated vehicle dynamics controls”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 48(11), pp. 1269-1284, (2010).
16. Hac, A., "Effects of Brake Actuator Error on Vehicle Dynamics and Stability", SAE World Congress, Detroit, Michigan, April 11-14, (2005).
17. رضائی، موسی، ارغند،حسامالدین، ترقی اسگوئی، امین، بافندگان، محمد، «مطالعۀ تئوری و تجربی خطای نیروی ترمزی بر میزان انحراف عرضی خودرو» نشریۀ علوم کاربردی و محاسباتی در مکانیک، سال بیست و سوم، شمارۀ یک، (1390).
18. Wong, J.Y., "Theory of Ground Vehicles", Third Edition, John Wiley & Sons, (2001).
19. Rozyn M. and Zhang, N., “A method for estimation of vehicle inertial parameters”, Vehicle System Dynamics: I. J. of Vehicle Mechanics and Mobility, 48(5), pp. 547-565, (2010).