تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,493 |
تعداد مشاهده مقاله | 9,277,807 |
تعداد دریافت فایل اصل مقاله | 6,509,802 |
بررسی اثر وجود دیوار شمالی بر مقدار مصرف انرژی یک گلخانه یکطرفهی شرقی- غربی | ||
ماشین های کشاورزی | ||
مقاله 3، دوره 7، شماره 2 - شماره پیاپی 14، 1396، صفحه 350-363 اصل مقاله (1.86 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jam.v7i2.52534 | ||
نویسندگان | ||
حسن قاسمی مبتکر* 1؛ یحیی عجب شیرچی1؛ سید فرامرز رنجبر2؛ منصور مطلوبی3 | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2گروه مهندسی مکانیک، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران | ||
3گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
امروزه گلخانههای کشاورزی امکان تولید محصولات کشاورزی در تمام طول فصل را فراهم کردهاند. یکی از مهمترین مشکلات گلخانههای کشاورزی بهویژه در مناطق سردسیر، نیاز به انرژی و هزینهی زیاد برای گرمایش آن میباشد. انرژی خورشیدی بهعلت فراوانی، کاربرد آسان و نداشتن اثرات زیستمحیطی یکی از بهترین منابع تجدیدپذیر برای گرمایش گلخانهها است. در این مطالعه اثر وجود دیوار شمالی آجری با دو رویه سیمان بر میزان جذب تابش دریافتی و همچنین میزان انرژی لازم برای گرمایش یک گلخانهی یکطرفه شرقی- غربی در شهرستان تبریز بررسی شد. تابش کل خورشیدی در گلخانه براساس قانون لیو و جردن محاسبه و با استفاده از یک مدل پایا میزان انرژی لازم برای گرمایش گلخانه محاسبه شد. نتایج نشان دادند در یک روز متوسط زمستانی در صورتی که از دیوار شمالی در گلخانه استفاده شود میزان تابش کل دریافتی روزانه حدود %14 کاهش مییابد، اما به خاطر کاهش تلفات تابشی و افزایش مقاومت حرارتی دیوار شمالی مصرف انرژی به میزان %32 کاهش مییابد. برای اعتبارسنجی مدل ارائه شده از یک گلخانهی یکطرفه با دیوار شمالی آجری با دو رویهی سیمانی استفاده و ارزیابیها در یک روز زمستانی صورت گرفت. مقایسه بین نتایج مدل با دادههای تجربی نشان داد که میانگین درصد خطای مدل برابر با %34/2- میباشد که این حاکی از دقت نسبتاً خوب مدل ارائه شده در تخمین انرژی مورد نیاز گلخانه میباشد. | ||
کلیدواژهها | ||
تابش خورشیدی؛ دیوار شمالی؛ گلخانهی یکطرفه؛ مدل حرارتی پایا؛ مصرف انرژی | ||
مراجع | ||
1. Abdel-Ghany, A. M., and I. M. Al-Helal. 2011. Solar energy utilization by a greenhouse: General relations. Renewable Energy 36: 189-196.
2. Ajayi, O. O., O. D. Ohijeagbon, C. E. Nwadialo, and O. Olasope. 2014. New model to estimate daily global solar radiation over Nigeria. Sustainable Energy Technologies and Assessments 5: 28-36.
3. Ajayi, O. O., R. O. Fagbenle, J. Katende, J. O. Okeniyi, and O. A. Omotosho. 2010. Wind Energy Potential for Power Generation of a Local Site in Gusau, Nigeria. International Journal of Energy for a Clean Environment 11(1-4): 99-116.
4. Al-Helal, I. M., S. A. Waheeb, A. A. Ibrahim, M. R. Shady, and A. M. Abdel-Ghany. 2016. Modified thermal model to predict the natural ventilation of greenhouses. Energy and Buildings. 99: 1-8.
5. Berroug, F., E. K. Lakhala, M. El Omaria, M. Faraji, and H. El Qarniac. 2011. Thermal performance of a greenhouse with a phase change material north wall. Energy and Buildings 43 (11): 3027-3035.
6. Chen, W., W. Lue, and B. Lue. 2006. Numerical and experimental analysis of heat and moisture content transfer in a lean-to greenhouse. Energy and Buildings 38: 99-104.
7. Duffie, J. A., and W.A. Beckman. 2013. Solar Engineering of Thermal Processes, fourth edition. John Wiley & Son, New Jersey.
8. ELkhadraoui, A. S. Kooli, I. Hamdi, and A. Farhat. 2015. Experimental investigation and economic evaluation of a new mixed–mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy 77: 1–8.
9. Ghasemi-Mobtaker, H., Y. Ajabshirchi, S. F. Ranjbar, M. Matloobi, and C. Amini. 2015. Determining of total solar fraction and solar fraction for north wall of different-shaped greenhouses using Auto–CAD software. ISESCO Journal of Science and Technology. In press.
10. Ghosal, M. K., and G. N. Tiwari. 2004. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy. Solar Energy 76 (5): 603-613.
11. Ghosal, M. K., and G. N. Tiwari. 2006. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energy Conversion and Management 47 (13-14): 1779-1798.
12. Gupta, A., and P. Chandra. 2002. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy 27: 777-794.
13. Gupta, R., and G. N. Tiwari. 2005. Modeling of energy distribution inside greenhouse using concept of solar fraction with and without reflecting surface on north wall. Building and Environment 40: 63–71.
14. Gupta, R., G. N. Tiwari, A. Kumar, and Y. Gupta. 2012. Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD. Energy Buildings 47: 27-34.
15. Jain, D., and G. N. Tiwari. 2002. Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Conversion and Management 43(16): 2235-2250.
16. Jain, D., and G. N. Tiwari. 2003. Modeling and optimal design of ground air collector for heating in controlled environment greenhouse. Energy Conversion and Management 44 (8): 1357-1372.
17. Kendirli, B., 2006. Structural analysis of greenhouses: a case study in Turkey. Building and Environment 41: 864-871.
18. Kumar, A., and G.N. Tiwari. 2006. Thermal modeling of a natural convection greenhouse drying system for jaggery: An experimental validation. Solar Energy 80 (9): 1135-1144.
19. Kumari, N., G. N. Tiwari and M. S. Sodha. 2007. Performance Evaluation of Greenhouse having Passive or Active Heating in Different Climatic Zones of India. Agricultural Engineering International: CIGR Journal IX: 1-19.
20. Santamouris, M., A. Argiriou, and M. Vallindras. 1994. Design and operation of a low energy consumption passive solar agricultural greenhouse. Solar Energy 52 (5): 371-378.
21. Sethi, V. P. 2009. On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Solar Energy 83: 21-38.
22. Sethi, V. P., and S. K. Sharma. 2007. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system. Solar Energy 81 (6) 723-741.
23. Sethi, V. P., and S. K. Sharma. 2008. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy 82 (9): 832-859.
24. Shukla, A., G. N. Tiwari, and M. S., Sodha. 2008. Experimental study of effect of an inner thermal curtain in evaporative cooling system of cascade greenhouse. Solar Energy 82 (1): 61-72.
25. Singh, R. D., and G. N. Tiwari. 2010. Energy conservation in the greenhouse system: A steady state analysis. Energy 35 (6): 2367-2373.
26. Singh, R. D., and G. N. Tiwari. 2000. Thermal heating of controlled environment greenhouse: a transient analysis. Energy Conversion and Management 41 (5): 505-522.
27. Taki, M., Y. Ajabshirchi, S. F. Ranjbar, A. Rohani, and M. Matloobi. 2016. Heat transfer and MLP Neural Network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy and Buildings 110: 314-329.
28. Tiwari, G. N., A. Gupta, and R. Gupta. 2003. Evaluation of solar fraction on north partition wall for various shapes of solarium by Auto-Cad. Energy and Buildings 35 (5): 507-514. | ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 279 |