1. Anklam, E. 1998. A review of the analytical methods to determine the geographical and botanical origin of honey. Food chemistry 63: 549-562.
2. Arshak, K., E. Moore, G. M. Lyons, J. Harris, and S. Clifford. 2004. A review of gas sensors employed in electronic nose applications. Sensor review 24: 181-198.
3. Bhattacharyya, N. R. Bandhopadhyay. Electronic nose and electronic tongue. Pages 73-100. Nondestructive Evaluation of Food Quality, Springer.
4. Bogdanov, S. P. Martin. 2002. Honey authenticity: a review. Mitt. Lebensm. Hyg 93: 232-254.
5. Cotte, J. F. O., H. Casabianca, S. Chardon, J. Lheritier, and M. F. Grenier-Loustalot. 2003. Application of carbohydrate analysis to verify honey authenticity. Journal of Chromatography 1021: 145-155.
6. Cotte, J. F. O., H. Casabianca, B. Giroud, M. Albert, J. Lheritier, and M. F. Grenier-Loustalot. 2004. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Analytical and bioanalytical chemistry 378: 1342-1350.
7. de Rodriguez, G. O., B. S. de Ferrer, A. Ferrer, and B. Rodriguez. 2004. Characterization of honey produced in Venezuela. Food Chemistry 84: 499-502.
8. Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of human genetics 7: 179-188.
9. Ghasemi-Varnamkhasti, M., S. S. Mohtasebi, M. L. Rodriguez-Mendez, J. Lozano, S. H. Razavi, and H. Ahmadi. Potential application of electronic nose technology in brewery. Trends in Food Science & Technology 22: 165-174.
10. Hai, Z. J. Wang. 2006. Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B: Chemical 119: 449-455.
11. Haykin, S. 1999. Multilayer perceptrons. Neural Networks: A Comprehensive Foundation 2: 156-255.
12. Heidarbeigi, K., S. S. Mohtasebi, A. Foroughirad, M. Ghasemi-Varnamkhasti, Sh. Rafiee, and K. Rezaei. Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties 18: 1391-1401.
13. Lammertyn, J., E. A. Veraverbeke, and J. Irudayaraj. 2004. zNose™ technology for the classification of honey based on rapid aroma profiling. Sensors and actuators B: Chemical 98: 54-62.
14. Li, C., P. Heinemann, and R. Sherry. 2007. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sensors and Actuators B: Chemical 125: 301-310.
15. Mahmoudi, E. 2009. Electronic nose technology and its applications. Sensors & Transducers 107: 17.
16. Mateo, R. F. Bosch-Reig. 1998. Classification of Spanish unifloral honeys by discriminant analysis of electrical conductivity, color, water content, sugars, and pH. Journal of Agricultural and Food Chemistry 46: 393-400.
17. Mildner‐Szkudlarz, S., and H. H. Jeleń. 2010. Detection of olive oil adulteration with rapeseed and sunflower oils using mos electronic nose and SMPE‐MS. Journal of food quality 33: 21-41.
18. Nagle, H. T., R. Gutierrez-Osuna, and S. S. Schiffman. 1998. The how and why of electronic noses. IEEE spectrum 35: 22-31.
19. Pearce, T. C., J. W. Gardner, S. Friel, P. N. Bartlett, and N. Blair. 1993. Electronic nose for monitoring the flavour of beers. Analyst 118: 371-377.
20. Radovic, B. S., M. Careri, A. Mangia, M. Musci, M. Gerboles, and E. Anklam. 2001. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry 72: 511-520.
21. Roussel, S., V. Bellon-Maurel, J. M. Roger, and P. Grenier. 2003. Authenticating white grape must variety with classification models based on aroma sensors, FT-IR and UV spectrometry. Journal of Food Engineering 60: 407-419.
22. Son, H. J., J. H. Kang, E. J. Hong, C. L. Lim, J. Y. Choi, and B. S. Noh. 2009. Authentication of sesame oil with addition of perilla oil using electronic nose based on mass spectrometry. Korean Journal of Food Science and Technology 41: 609-614.
23. Subari, N., J. Mohamad Saleh, A. Y. Md Shakaff, and A. Zakaria. A hybrid sensing approach for pure and adulterated honey classification. Sensors 12: 14022-14040.
24. Tomas-Barberan, F. A., I. Martos, F. Ferreres, B. S. Radovic, and E. Anklam. 2001. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of the Science of Food and Agriculture 81: 485-496.
25. Tudu, B., B. Kow, N. Bhattacharyya, and R. Bandyopadhyay. 2008. Comparison of multivariate normalization techniques as applied to electronic nose based pattern classification for black tea. Pages 254-258. Sensing Technology, 2008. ICST 2008. 3rd International Conference on: IEEE.
26. Zakaria, A., A. Y. M. Shakaff, M. J. Masnan, M. N. Ahmad, A. H. Adom, M. N. Jaafar, S. A. Ghani, A. H. Abdullah, A. H. A. Aziz, and L. M. Kamarudin. A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors 11: 7799-7822.