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Abstract 
 This paper presents a novel approach to monitor food process based on Modular Neural Networks (MNNs) 

and fuzzy inference system. The proposed MNN consists of three separate modules, each using different image 
features as input including: edge detection, wavelet transform, and Hough transform. The sugeno fuzzy inference 
system was used to combine the outputs from each of these modules to classify the images of quince during 
osmotic dehydration process. To test the method, for classification, database was made of 108 quince samples’ 
images (12 classes). In experiments, the developed architecture achieved 91.6% recognition accuracy. Next step, 
solid gain, water loss and moisture content of quince samples were considered as MNNs outputs, whereas 
osmotic dehydration time and classified images were MNNs inputs. The minimum %MRE (18.153) with 89% 
prediction ability for water loss (WL) was obtained when applying two hidden layers with 6 neurons per each 
two layers. The lowest %MRE (35.5335) with 93% prediction ability for solid gain (SG) was obtained when 
using 6 and 8 neurons per first and second layer, respectively. And finally %MRE was at least (7.4759) with 
96% prediction ability for moisture content (MC) by 6 and 5 neurons per first and second layer, respectively. 
The results show that this model could be commendably implemented for quantitative modeling and monitoring 
of food quality changes during osmotic dehydration process. 
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Introduction1 
Food monitoring is a very active area of 

study in many research institutes nowadays. 
Many methods have been developed for 
monitoring systems in food industry. Such 
systems usually look for some factors used in 
quality and process control. Among these 
methods, artificial neural networks, fuzzy 
logic, and image processing are new 
techniques to develop the monitoring systems 
in food technology. Computer vision is used 
for analyzing image to achieve information or 
to control food process (Pandit et al., 2005). It 
can also be a successful tool for classifying 
food products in different operations such as 
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sorting, determination of ripeness, and grading  
 
Computer vision has been used in many 

literatures for classifying. For example, Blasco 
et al (2009) classified and recognized 11 types 
of the most common external defects in citrus 
via computer vision systems. Near infrared 
reflectance and ultraviolet induced 
fluorescence of images were used as spectral 
information and they were combined with 
morphological estimations of defects in order 
to classify the fruits. A unified method was 
introduced to combine many features of 
images of fruits and vegetables to classify 
them with less training, this method was 
amenable to continuous learning, both when 
refining a learned model and also when adding 
new classes to be discriminated. The results 
presented that the solution reduced the 
classification error in up to 15 percent (Rocha 
et al, 2010). Different methods were utilized to 
classify the apple. Multilayer feed-forward 
artificial neural networks had the prediction 
ability of 97% and 99% for unripe and ripe 
categories, respectively (Alonso-salces et al., 
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2005). Crispiness of freeze-dried Durian was 
classified through imaging method and fuzzy 
logic. The physical changes of a freeze dried 
durian include the pores appearing in the 
images. Three physical features including (1) 
the diameters of pores (2) the ratio of the pore 
area and the remaining area and (3) the 
distribution of the pores are considered to 
contribute to the crispiness. The fuzzy logic 
was used for making the decision. The results 
showed that the accuracy of this method was 
83.33 percent (Kanitthakun et al., 2007). 
Beans were classified by means of computer 
vision and artificial neural networks. The 
standard images were captured from beans and 
then images were coded in Matlab software for 
segmentation, morphological operation and 
colour quantification of the samples (Kılıç et 
al, 2007). For grading strawberries, machine-
vision system was applied by Liming et al 
(2010), the features were shape, size and 
colour for grading. The results displayed that 
the error of size was not more than 5% and the 
preciseness of colour grading based on the a* 
channel was about 88.8% and the preciseness 
of shape sorting was over than 90%.  

Also fuzzy set and neural network methods 
were useful to determine food process set 
points and classification. For example rice 
cake production was used as a model and its 
sensory characteristics were measured with a 
trained panel. New products were performed 
through the process set points and sensory 
characteristics of product matched the 
desirable sensory target values by less than 9% 
error. The results indicated the ability of fuzzy 
set idea and neural network method in sensory 
quality-based food process control 
(Kupongsak and Tan, 2006). The fuzzy 
method was studied for baby food and water 
quality estimation with an electronic tongue. 
The outcomes were displayed to the users 
similar to traffic light signal. Green light, red 
light and yellow light stand for good quality, 
bad quality and warning situation respectively 
(Iliev et al., 2006). A fuzzy traceability was 
applied to enhance the handling attributes in 
continuous production of liquid food. A real 
dairy line was used for demonstrating this 

method (Skoglund and Dejmek, 2007). 
Combining discriminate analysis and neural 
networks were used for corn variety 
identification. Five China corn varieties were 
identified according to their external features 
based on machine vision and pattern 
recognition. The classification accuracies were 
between 88 and 100% for different corn 
varieties (Chen et al., 2010). 

Osmotic dehydration is widely used to 
remove part of the water content of fruit to 
achieve a product of intermediate moisture or 
as a pre-treatment before further processing 
(Lenart, 1996; Torreggiani & Bertolo, 2004). 
Osmotic dehydration is also used to treat fresh 
produce before further drying to improve 
sensory, functional and even nutritional 
properties. The shelf life quality of the final 
product is better than without such treatment 
due to the increase in sugar/acid ratio, the 
improvement in texture and the stability of the 
colour pigment during storage. Bchir (2009) 
studied osmotic dehydration of pomegranate 
seeds. Bchir (2009), Bui (2009), Abraão et al 
(2013), Abbasi Souraki et al (2013), da Silva 
et al (2014), Nowacka et al (2014), Silva et al 
(2014), Mauro et al (2015) and Derossi et al 
(2015) studied osmotic dehydration of 
pomegranate seeds, tomato slices, candied 
pumpkins, green bean, pineapple, kiwifruit, 
pineapple, cherry tomatoes and apple 
respectively in different osmotic solutions and 
conditions. Quince is a very ancient and 
delicious fruit. Iran is one of the leading 
growers of quince in the world. A few authors 
have been performed the quince dehydration. 
Koc et al (2007) worked to model the change 
of bulk density, porosity and shrinkage of 
quince during drying. Kaya et al (2007) 
illustrated the experimental study on the 
drying kinetics of quince.  The objective of 
this research was to predict the solid gain, 
water loss, and moisture content of osmosed 
quince through the classified images and 
osmotic dehydration time as inputs of 
predictive module. The modular neural 
networks (MNNs) coupled with the fuzzy 
logic response integration (FLRI), as an 
effective tool, classified the images of 
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osmosed quince before the predictive module. 
The hybrid application of MNN coupled with 
FLRI is firstly introduced in this paper to 
monitor the osmotic dehydration 
characteristics of quince. 

 
Material and method  
 Class preparation  

Quinces were washed and then cut into 
pieces with dimensions of 1.78 × 1.78 × 0.5 
cm3 as samples. We used the following three 
different osmotic solutions: 50%, 60%, and 
70% (w/w) sucrose solution, (Merck, 
Darmstadt, Germany). Quince samples were 
put at two different temperatures, 25º C and 
75º C. The ratio of osmotic solution to quince 
was maintained at 5:1 and 10:1 in volume in 
order not to dilute the osmotic solution by 
water removal from the sample during the 
experiments. The samples were kept in the 
osmotic solutions under the above mentioned 
conditions for 8 hours. And then they were left 
in equilibrium condition of osmotic 
dehydration for the next 16 hours. 

 
Solid gain and water loss determination 

Solid gain and water loss of quince samples 
(osmotically dehydrated into sucrose 
solutions) were calculated from the following 
equation: 
SG or WL = ௠బ௫బ

೔ି	௠೟௫೟
೔

௠బ
                                   (1) 

Where m0 and X0 are the initial mass of the 
sample and the initial mass fraction, 
respectively. mt and Xt are the sample mass 
and the mass fraction at time t, respectively. 
Superscript i stand either for solid gain (for 
SG) or water loss (for WL) (Shafafi zenozian 
and Devahastin, 2009). 

 
 Image capturing System 

An image acquisition system, consisting of 
four basic components; illuminating, camera, 
hardware, and software was used (Fig.1). A 
sample was illuminated using tube fluorescent 
lamp (Barmika, SCL-T9-32W., Taiwan) with 
the surface temperature of 65 °C and a colour 
reproduction index close to 95%. The tube 

lamp was installed on the ceiling of box to 
give an even uniform light intensity over the 
sample. Images of quince samples were 
captured directly by means of a digital camera 
(Olympyus, SP-565UZ, Vietnam) under dark 
background. The digital camera was set on top 
of the box (outside) and its distance from the 
samples was 3 cm. The dimensions of box 
were 53 × 55 × 19 cm3. Images were captured 
at the resolution of 3648×2736 pixels. 

 
Image Preprocessing 

Preprocessing of image was performed to 
reduce the noise of images and clean the sides 
of main section of each image. This stage was 
done automatically before database creations 
for each ANN. Images dimension were 
3648×2736 that we resized them to 
2000×2000 pixels to reduce computing 
complexity.  After resizing, first we used 
roicolor function in order to convert original 
images to binary format. It was created a 
predefined 2-D filter by fspecial function. It 
was applied the Laplacian 2-D Operator as the 
filter type, the Laplacian of an image 
highlights regions of rapid intensity change 
and is often used for edge detection and also 
it’s used in order to reduce image’s sensitivity 
to noise, so this filter provided the best results 
for our case study.  

Finally, to select the region of interest, 
(ROI) roifilt2 (Filter Region of Interest) 
function was applied. In fact, the result of this 
reprocess is cleaning the noise and preparing 
the images to create the images database for 
each ANN. This approach was based on 
segmentation technique in which we can select 
the desired section of image. Database 
Creation 

Database creation stage was really time 
consuming and sensitive. The inputs of this 
system were original images that could 
perform all necessary preprocesses for the 
modules and could provide inputs related to 
each artificial neural network. As mentioned 
before, original images had 2000×2000 pixels 
and after preprocessing, images were in gray 
scale and without any noise. Each module had 
specific database of images that was obtained 
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from related feature selection.  

 
Fig. 1. Components of a computer vision system A: software and PC, B: digital camera, C: tube light,  

D: food sample, F: illumination box 
 

After image preprocessing, dimension of 
each image change into 200×200 pixels. Fig. 2 
depicts some databases of quince image’s 
samples 

 
Fig. 2. Quince images from database 

 
Modular neural networks 

 The designed system consisted of a 
modular neural networks occupied with three 
separate modules. Each module is given as 
input. The features extracted from different 
feature extraction techniques: edge detection, 
wavelet transform, and Hough transform. The 
responses were obtained from each module 
and then were combined by a sugeno fuzzy 
integral, i.e. this function determined the class 
to which the input image corresponds. Each 
image recognition system was developed by 
using modular neural networks (MNNs) 
conjugated with a sugeno fuzzy integral. As 
mentioned before, just an image was the input 
to recognize the class. In order to overcome 
some of the shortcomings of monolithic 
ANNs, several investigators have proposed 
modular approaches. MNNs were based on the 
general principle of divide-and-conquer, where 
one attempts to split a large problem into 
smaller sub-problems that are easier to 
analysis independently. Then these partial 
solutions are collected in order to achieve the 
comprehensive answer for the original 
problem (Beltran et al. 2009). In fact, only 
computed image features were extracted easily 
and underwent preprocessing, these features 
were: image edges, wavelet transform 
coefficients and the Hough transform matrix. 

The MNN was used to perform a very accurate 
discrimination of the input data applied in 
experimental tests. Therefore, it had been 
confirmed that a MNN system can solve 
difficult food recognition problems based on 
image processing by a simple set of image 
features. MNNs employed a parallel 
combination of several ANNs, and normally 
contained two main components: (1) local 
experts; and (2) an integrating unit. The basic 
architecture is seen in Fig.3. When using a 
modular network, a given task was dividing up 
among several local experts ANNs. The 
average load on each ANN was decreased in 
comparison with a single ANN that must learn 
the entire task, and thus the hybrid model 
might be able to overcome the weak points of 
a single ANN implementation. The output of a 
certain number of local experts (Oi) was 
mediated by an integration unit. The 
integration unit put the outputs together 
through estimated combination weights (gi). 
The overall output Y was:  
Yi = ∑ ௜݃݋௜                                                                 (2) 

The gating network used a softmax 
activation gi of ith output unit given by Jordan 
and Jacobs (1994). 
݃௜ = ௘௫௣	(௨೔)

∑ ௘௫௣ೕ 	(௨೔)	
                                        (3) 

Where ui was the weighted sum of the 
inputs flowing to the ith output neuron of the 
gating network. Use of the softmax activation 
function in modular networks made a sort of 
"competitive" combining perspective because 
the ith local expert's output Oi with a minor 
activation ui did not have a great impact on the 
overall output Yi.  
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Fig. 3. Architecture of a modular network 

 
Sugeno Fuzzy Integral 

 To integrate the results of the three features 
of an image, sugeno fuzzy integral was used to 
identify the class. Sugeno fuzzy integral is a 
nonlinear aggregation operator that can 
combine different sources of information.  In 
order to replicate this process through an 
automatic system, a good model can be 
obtained via a fuzzy representation. The 
architecture of the fuzzy system used for this 
decision process has been displayed in Fig. 4. 

Table 1 displays the complete set of fuzzy 
rules that has been used in the fuzzy system 
for image recognition. Three membership 
functions covered the range of its input for 
each feature selection. Sugeno fuzzy inference 
also had three constant values for the results; 
therefore, there are 27 rules made of output 
combination of these membership functions. 

 
Fig. 4. Architecture of the Fuzzy system for quince image 
recognition E: Edge Detection, H: Hough Transform, W: 

Wavelet Transform 
 

Feature extraction 
In this research, three individual modules 

were used, and each received different image 
features extracted from the original image of 
quince samples. Mirzaei et al (2011) used edge 
detection, Curvelet transform and hough 
transform to offline signature recognition and 
Shafafi Zenoozian and Devahastin (2009) used 
wavelet transform to predict physicochemical 
properties of osmotically dehydrated pumpkin. 
We applied these ideas to extract image 

features in order to classify quince images 
during osmotic dehydration.  

 
Table1. Fuzzy rule base for quince image recognition 

Rule Edge  Wavelet Hough Decision 
 1 A A A A 
2 A A B A 
3 A A C A 
4 A B A A 
5 A B B B 
6 A B C B 
7 A C A A 
8 A C B C 
9 A C C C 
10 B A A A 
11 B A B B 
12 B A C A 
13 B B A B 
14 B B B B 
15 B B C B 
16 B C A C 
17 B C B B 
18 B C C C 
19 C A A A 
20 C A B A 
21 C A C C 
22 C B A B 
23 C B B B 
24 C B C C 
25 C C A C 
26 C C B C 
27 C C C C 

A, B and C are the output value of each module 
 (Here three neural network modules and a Sugeno Fuzzy 
Integral were used to predict the results. Output of each neural 
network sends to Sugeno Fuzzy Integral as a Membership 
Function. Each membership function values are between 0 and 
1. Set of fuzzy rules are needed for Sugeno Fuzzy Integral in 
order to make decision and finally predict the results base on 
values of membership function. Because in definition of fuzzy 
rules the value is not important and just being equal or not 
equal of output values of membership function is the matter, 
here the values are shown as A, B and C.) 

 
Edge detection  

For images of quince sample, the edges 
could capture lots of the internal structures. 
Hence, Canny edge detector was used for each 
image generating a binary image of edge 
pixels. Fig. 5 exhibits the original image of 
quince sample and image edges obtained via 
edge detection. 

 

 
 

Fig. 5. (a) Original image and (b) Image edges of quince 
sample 
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 Wavelet transform 
The wavelet transform decomposes a signal 

through a family of orthogonal functions, it 
accounts for both the frequency and the spatial 
location at each point. The discrete wavelet 
transform (DWT) was used by a Haar wavelet. 
The DWT produces a matrix of wavelet 
coefficients that allows predicting the food 
properties (Shafafi Zenoozian and Devahastin, 
2009) 

 
Hough transform 

The Hough transform matrix was applied as 
image features through the third module. The 
Hough transform could extract line segments 
from the image. Fig. 6 displays the Hough 
transform matrix for quince sample. In order to 
reduce the size of the matrix, and the size of 
the corresponding ANN, the information of the 
Hough matrix was reduced in size by resizing 
each image to 10% of its original size. Under 
these circumstances we have the small matrix 
with useful data. Thus, the computational 
burden decreased (Ballard, 1981).  

 

 
Fig. 6. Hough transform matrix for quince sample 

 
Determination of Colour changes (∆E)  

 
The colour changes of the quince samples 

were monitored in terms of the total colour 
change (ΔE), which was calculated by:      
∆E = [(∆L)2 + (∆a)2 + (∆b)2 ]1/2                   (4) 

Where ΔL=L0-L, Δa=a0-a, Δb=b0-b. L, a, b 
corresponds to the color values of quince 
samples at the end of osmotic dehydration 
whereas L0, a0, b0 are related to the quince 
samples before osmotic dehydration.  

All algorithms for preprocessing of full 
images, segmentation of background and 
colour analysis were written by Matlab™ 
(version7.8.0.347) 

 

Experimental Setup 
There were three parameters including; 

temperature of 25 and 75º C, ratio of 1:5 and 
1:10 and three sucrose solutions of 50, 60 and 
70% w/w. Therefore, there were twelve 
classes. For each class, there were nine image 
samples. Eight images were related to first 
eight hours of osmotic dehydration and the 
ninth one was captured after 16 hours in 
equilibrium condition of osmotic dehydration. 
108 images were available for all classes, from 
which 84 images, equal to 78% of total, were 
randomly selected for training and the 
remaining, 22% of total images, were 
considered for the test. Each input image was 
of 200×200 dimensions after preprocessing. 
Each monolithic neural network had these 
elements: 1- It was applied 100 neurons to the 
1st layer; i. e. Input layer 2-There were 80 
neurons at the 2nd layer; i. e. Hidden layer. 3- 
The output layer was left with 12 neurons 
occupied with TANSIG transfer functions. The 
training function updates weight and bias 
values according to the scaled conjugate 
gradient method (TRAINSCG) and adaptation 
learning function was gradient descent with 
momentum (TRAINGDM). One of the 
methods used for input vectors was Max-Min 
normalization method. This method mapped 
the range of original input to new range.  

The designed system consisted of a 
modular neural network including three 
separate modules. Each module is given as 
input the features extracted from different 
feature extraction techniques: edge detection, 
wavelet transform and Hough transform. The 
responses were obtained from each module 
then they were combined through a sugeno 
fuzzy integral, i.e. this function determined the 
class to which was belonged to the input image 
corresponds. Therefore, it would have 27 rules 
that they can be constructed from combination 
of output of these membership functions. After 
recognition, the predictive module was 
conjugated. A general schematic of 
architecture is depicted in Figure 7. 
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Fig. 7. General architecture of the proposed Modular Neural Network for image recognition and estimating parameters, E: 
Edge detection, H: Hough transform, I: Integrate or SFI, R: Recognition, P: Prediction Module, W: Wavelet transform, 1, 2 

and 3 are modules. 
The prediction module was developed by 

Matlab TM (version7.8.0.347) through the 
Neural Network Toolbox 4. As can be seen 
from Figure 3, the artificial neural network 
was simulated based on a multi-layer feed-
forward algorithm. The classified images and 
drying time were applied as the ANN inputs, 
whereas the three factors (solid gain, water 
loss and moisture ratio) were the ANN 
outputs. Data sets of inputs and outputs 
consisted of sucrose solution (108 classes). 
Data set was subtracted into three groups, 
consisting of 58% for training, 22% for testing 
and 20% for validation. The number of 
neurons in the first hidden layer was fluctuated 
from 5 to 30. Also, the number of neurons in 
the second hidden layer was altered from 5 to 
20. To realize the combination of hidden 
layers and neurons that produced the minimum 
error, a hyperbolic tangent (tansig) was used as 
the transfer function in each hidden layer 
while a linear transfer function (purelin) was 
applied in the output layer. The training 
procedure was the back-propagation 
technique. The input neurons were given the 
input data and the network gave its outputs. If 
the latter were not equal to the predicted 
outputs, the procedure calculated the 
differences (mean square error) between the 
two values and changed the weights in order to 
minimize them. These operations were 
repeated for each input pattern until the error 
was minimized. Minimization of error was 
done via the Levenberg– Marquardt algorithm 
(Bazaraa et al., 2006). Training was ended 
when the mean square error (MSE) converged 
and was less than 0.001. If the MSE did not go 
below 0.001, training was finished after 1000 
epochs, where an epoch represents one 
complete sweep through all the data in the 

training set. The optimized configurations 
based on the training of each neuron were 
selected from thirty trial configurations based 
on the neural network performance, which 
introduced the minimum error from the 
training process. The percentage of relative 
mean square error (%MRE) was used to 
compare the performance of different ANN 
models as: 
%MRE = ቀଵ

௡
∑ ∆ ோܲ
ே
௜ୀଵ ቁ 	× 100                  (5) 

Where ΔPR =|(Pp - PE)/PE|, Pp is the 
predicted output for solid gain, moisture 
content and water loss and PE is the 
experimentally measured outputs.  

 
Result and discussion 
Monolithic ANNs 

The results for monolithic ANNs (Edge 
detection, wavelet and Hough features) are 
summarized in Table 2. This table depicts a 
corresponding identification number for each 
training case, the total epochs required to reach 
the goal error and the neurons in each hidden 
layer. Recognition performance is displayed 
with the correct number .Recognitions was 
acquired by 24 testing images, and the 
corresponding accuracy score. In this case, the 
best performance was accomplished in the 
seventh training run where the algorithm 
required 76 epochs, and the ANN exactly 
classified 17 of the quince testing images. The 
second monolithic ANN used the wavelet 
features as input. In this case the superlative 
performance was obtained in the eighth 
training run, through a total of 83 epochs, and 
21 correctly classified images. It was 
noticeable that wavelet features gave an 
excellent discriminative description of the 
quince images that it was tested. The third 
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monolithic ANN applied the Hough transform 
matrix and the consequence results are seen in 
Table 2. The best performance was achieved in 
the ninth training run, by means of total of 82 
epochs and 20 correctly classified images. It is 
important to note that in all three cases, the 
monolithic methods did provide valuable 
results. The best performance was achieved 
via the wavelet features. The Hough transform 
matrix also led to acceptable results. On the 
other hand, the simple edge features yielded a 
less accurate recognition than the other two 
approaches. Beltran et al (2009) reported the 
same results i.e. accurate recognition at 87, 96 
and 94% for edge detection, wavelet features 
and Hough transform in signature recognition, 
respectively. And Mirzaei et al (2011) 
reported accurate recognition at 83.3, 93.3 and 
90% for edge detection, curvelet transform and 
Hough transform in signature recognition, 

respectively.   
 

Modular neural network - sugeno fuzzy integral 
The final experimental results correspond to 

the comprehensive MNN depicted in Fig. 4. 
Table 3 summarizes the results of ten 
independent training runs. With a brief glance, 
it can be clearly realized that Modular Neural 
Network achieves 91.66% accuracy and 22 
corrected classified images 100-80 neurons. 
Having considered the information in Table 3, 
it can be easily inferred that when the neuron 
numbers were increased the accuracy was 
reduced significantly. Beltran et al (2009) and 
Mirzaei et al (2011) reported that using 
modular neural network lead to better accuracy 
in signature recognition in compare with 
Monolithic ANNs.  

. 

 

Table 2. The best performance for monolithic ANN using edge, wavelet and Hough features  
monolithic ANN Neurons Epochs Time Correct/Total Accuracy (%) 
Edge detection 100_80   76 00:02:11 17/24 70.83 

Wavelet features  100_80       83 00:00:04   21/24    87.5 
Hough transform   90_90       82 00:01:52   20/24    83.33 

      
 

 
Table 3. Results for the modular neural network 

No Neurons Correct/Total Accuracy (%) 
1 100_100 13/24 54.16 
2 100_100 16/24 66.66 
3 100_100 18/24 75 
4 100_90 17/24 70.83 
5 100_90 15/24 62.5 
6 100_80 20/24 83.33 
7 100_80 17/24 70.83 
8 100_80 22/24 91.66 
9 90_90 15/24 62.5 
10 80_80 15/24 62.5 

 
Solid gain and water loss 

Water loss and solid gain of quince samples 
undergoing different osmotic condition are 
shown in Table 4. The osmotic pretreatments 
resulted in approximate maximum water loss 
and solid gain of 0.607 and 0.313 respectively. 
With a brief glance, it can vividly perceive that 
water loss and solid gain reveal an escalating 
trend when temperature and concentration of 
osmotic solution are accelerated. The 
increasing of water loss and solid gain with 
increasing in temperature and concentration of 
osmotic solution is resulted from the increase 

in the mass transfer throughout the osmotic 
solution. Irani et al (2010), Shafafi Zenoozian 
and Devahastin (2009) and Bui et al (2009) 
reported similar results for quince, pumpkins 
and tomatoes, respectively, immersing in 
sucrose solution 

 
Moisture content(MC) 

Table 4 indicates the final quince moisture 
contents. Regarding Table 4, it can be clearly 
realized that the moisture content of quince 
altered from 0.364 (T2R2S3) to 0.721 
(T1R1S1) for each osmotic solution. When the 
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sucrose concentration and temperature is 
increased, moisture content shows a reducing 
rate significantly. The similar outcomes were 
published by Shafafi-Zenoozian et al (2009) 
for osmotic dehydration of pumpkin in 
different osmotic solutions. 

 
Colour change (∆E) 

The various ∆E values of quince samples 
are listed in Table 6. Having considered Table 
4, it can be easily inferred that colour change 
values had fluctuating trend during osmotic 
dehydration through different conditions. 
Many reactions could be affected colour 
changes undergoing dehydration. Sucrose 
could contribute to colour change reactions. 
Chemical nature of the infused solute could be 
more important than for example, glass 
transition temperature in preventing colour 
changes. As far as, Table 4 is regarded the 
colour changes had not significant correlation 
with temperature and sucrose concentration. 
However, colour changes altered from 3.897 
(T1R1S2) to 33.857 (T2R2S3). It can be 
supposed that assumed that polyphenol quince 
components might be affected the quince 
image colour changes for the duration of 
osmotic dehydration. These conclusions are 
confirmed by results of other researchers 
(Fathi et al., 2009). 

 
Perdictive module 

The results illustrated that the numbers of 
hidden layers and the number of neurons per 
hidden layer that gave minimum errors were 
distinctive for different osmotic solutions 
(Tables 5). As can be seen, the Table 5 shows 
the errors in the prediction of water loss with 
different neurons per layer. As far as, the 
Table 5 is regarded the minimum %MRE 
(18.153) for quince osmotically dehydrated 
was achieved when applying two hidden layers 
with 6 neurons per two each layers, 
correspondingly. Table 5 reveals the errors in 
the forecast of solid gain through different 
neurons per layer. Having surveyed in Table5, 
the lowest %MRE (35.5335) for solid gain was 
noticed when using 6 and 8 neurons per first 
and second layer, congruently.  

Table 5 depicts the errors in the prediction 
of moisture content by different neurons per 
layer. It can be stated that minimum %MRE 
(7.4759) and maximum R2 (0.96) for moisture 
content was obtained by 6 and 5 neurons per 
first and second layer, respectively. Also, the 
%MRE value shows reducing trend drastically 
when the neuron number is increased. On the 
other hand, the data for errors in the estimating 
of water loss had the greatest error (%MRE = 
36.733) and lowest R2 = 0.58 for water loss by 
15 neuron at first layer. With a short glance in 
Table5, it can be vividly perceive that the 
highest %MRE (96.9622) and the lowest R2 = 
0.8 in support of solid gain was indicated 
when applying 20 and 15 neurons per first and 
second layer, correspondingly. As well as, the 
maximum %MRE was 49.5892 and lowest R2 
= 0.85   for moisture content. This value 
related to 10 and 10 neurons for each layers. 

 Plots of experimentally determined water 
loss, solid gain and moisture content against 
module predicted values are shown in Figures 
8. Figure 8 depicts the water loss estimated 
results against water loss experimental data for 
test database of quince. Regarding the figure 8, 
it can be clearly realized that the data had good 
correlation, R2 = 0.8945, for predicted water 
loss. Therefore, there were good agreements 
between the predicted and experimental values 
in all experiments. It was desirable to 
introduce a novel modeling method to estimate 
the quality parameters from the osmotic 
processing conditions. Figure 8 shows the 
comparison between the predicted and 
experimental solid gain of the optimum neural 
network module. Plotted points represent 
predicted versus experimental values, while 
solid line indicates a perfect fit between 
predicted versus experimental values. Hence, 
the predicted values were very close to the 
desired values in most cases (R2= 0.933). 
Thus, this neural network model could be used 
to predict the solid gain of the product under 
the osmotic dehydration system. Figure 8 also 
shows that estimated moisture content 
depicted excellent relationship with 
experimental data (R2= 0.9674). The proposed 
neural network had a good generalization in 
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predicting the moisture content of the osmosed 
quince from the drying process. Also we used 
the method proposed by Haykin (1994) to 
detect overtraining involves monitoring the 
validation data set, and noting when the 
classification performance fails to improve by 
a user specified amount (e.g., 0.5 percent). 

 
Conclusion 

This paper stated that modular neural 
networks with fuzzy logic response integration 
can be used to monitor the physico-chemical 
properties of quince undergoing osmotic 
dehydration techniques in term of only quince 
image. This Model was found to produce 
excellent classification for monitoring of 
quince osmotic dehydration. Drying time and 
classified images extracted by modular neural 
network conjugated with sugeno fuzzy integral 
could be used as input variables for predicting 
some physicochemical properties of osmosed 
quince. A modular system was introduced 
through ANNs and three types of image 
features: edges, wavelet coefficients, and the 
Hough transform matrix. It is confirmed that 
the modular approach always outperforms, 
with varying degrees, the monolithic ANNs. If 
the recognition problem is made more 
difficult, the modular architecture will more 

clearly show a better overall performance than 
the monolithic ANNs. 

The results of model also depicts that even 
with the simple image features utilized in this 
study, each of the ANN modules is capable of 
discriminating functions that can correctly 
differentiate between our set of quince images. 
Therefore, it can be concluded that modular 
architectures and more specifically developed 
system can present a suitable technique to 
provide an osmotic dehydration classification 
method. Generally, model results were in a 
good agreement with experimental data. It can 
be concluded that the optimized models could 
estimate moisture content, solid gain and water 
loss by R2 values greater than 0.894 in all 
cases. As the final analysis, it can be inferred 
that proposed model was developed for 
prediction of characteristics of osmotically 
dehydrated quince for a broad collection of 
experimental conditions. All in all, this 
technique is user-friendly apply to control and 
automation of osmotic dehydration processes. 

The results develop several possible 
extensions for future investigation. First, 
different integration systems can be 
conjugated with the MNN architecture 
illustrated here; e.g., fuzzy inference system. 

 
 
 

Table. 4. Values of quince properties during different osmotic dehydration conditions. T: Temperature (T1=25°c, T2 =75°c), 
R: Ratio (R1=5:1, R2 =10:1), S: Sucrose Solution (S1 = 50, S2 = 60, S3 =70% (w/w)) 

Treatment WL SG ΔE MC 
T1 R1 S1 0.309 0.110 8.372 0.721 
T1 R1 S2 0.256 0.103 3.897 0.743 
T1 R1 S3 0.378 0.125 6.855 0.681 
T1 R2 S1 0.267 0.119 5.572 0.727 
T1 R2 S2 0.326 0.114 22.168 0.711 
T1 R2 S3 0.455 0.133 19.325 0.635 
T2 R1 S1 0.405 0.236 11.775 0.581 
T2 R1 S2 0.517 0.278 25.443 0.466 
T2 R1 S3 0.553 0.294 8.542 0.455 
T2 R2 S1 0.330 0.261 31.664 0.598 
T2 R2 S2 0.511 0.293 21.416 0.472 
T2 R2 S3 0.607 0.313 33.857 0.364 
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Table. 5. Errors in the prediction of water loss, solid gain and moisture content with different neurons per layer. 

Number of 
neuron 

Water Loss Solid Gain Moisture Content 
% MRE R2 % MRE R2 % MRE R2 

5 23.587 0.83 44.6252 0.89 31.1904 0.89 
10 23.427 0.77 41.8083 0.90 31.7231 0.87 
15 36.733 0.58 51.6627 0.93 21.6747 0.90 
20 28.762 0.75 64.8402 0.90 33.6 0.82 
30 18.432 0.75 66.5014 0.89 21.446 0.91 
5,5 19.271 0.87 40.3239 0.88 32.269 0.90 
6,5 21.134 0.88 67.8637 0.91 7.4759 0.96 
6,6 18.153 0.894 37.7965 0.92 12.5957 0.94 
6,8 21.372 0.84 35.5335 0.93 12.4182 0.90 
7,7 25.505 0.84 66.4809 0.92 35.8878 0.94 
7,10 24.111 0.86 60.8171 0.90 11.3447 0.95 

10,10 21.625 0.75 38.7185 0.91 49.5892 0.85 
10,15 23.613 0.83 58.0818 0.90 30.9929 0.85 
10,20 21.145 0.84 96.6286 0.87 18.6132 0.95 
15,10 21.412 0.58 82.4477 0.92 31.2878 0.89 
15,15 28.026 0.81 77.0235 0.88 29.2697 0.94 
15,20 25.233 0.79 48.9053 0.90 22.3799 0.92 
20,10 25.236 0.84 40.1583 0.91 25.3514 0.93 
20,15   96.9622 0.80 48.5492 0.64 
20,20   115.035 0.86 26.2759 0.94 

 
Second, it might be used to solve a closely 

related task, such as food image verification 
which uses a more difficult classification 
process. Finally, this system can be examined 

through a complicated image database, by 
using food dehydration images and a lower set 
of training food samples, in order to verify the 
robustness of technique.  

 

 
 

   
Fig.8. Experimental versus predicted values for water loss, solid gain and moisture content of osmotically dehydrated quince 

by optimum module. 
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پایش فرآیند آبگیري اسمزي میوه بهِ توسط روش ابداعی ترکیب مدول هاي شبکه   
  (FMNN-FL) منطق فازي -عصبی

  3حسن ایرانی -2مسعود شفافی زنوزیان -1*مهدي ایرانی
  02/10/1393تاریخ دریافت 
  02/03/1394تاریخ پذیرش 

  چکیده

و سیستم استنتاج فازي جهت مونیتور کردن و کنترل فرآیند غذایی ارائـه  ) MNNs(این مقاله روش جدیدي را بر پایه مودول هاي شبکه عصبی 
: پیشنهاد شده متشکل از سه مودول است، هر یک از آنها مشخصه هاي مختلف تصویر را جهت ورددي اسـتفاده میکننـد، کـه شـامل     MNN. میدهد

edge detection ،wavelet transform  وHough transform خروجی هاي مدول هاي شبکه عصبی در رابطه بـا طبقـه   جهت ترکیب . هستند
جهت تست این روش، براي طبقه بندي، پایگاه داده . استفاده شد sugenoبندي تصاویر میوه به در طی فرآیند آبگیري اسمزي از سیستم استنتاج فازي 

% 6/91ین روش توسعه یافته، طبقه بندي تصاویر را با دقت در آزمایشات صورت گرفته ا. تشکیل شد) طبقه بندي یا کلاس 12(تصویر میوه به  108از 
بعنوان خروجی مودول هاي شبکه عصبی ) MC(و محتواي رطوبتی ) WL(، میزان دفع آب )SG(در مرحله بعد، مقادیر جذب ماده جامد . تشخیص داد

حـداقل  . وان ورودي هاي شبکه عصبی در نظر گرفته شـدند در نظر گرفته شدند، در جاییکه زمان فرآیند آبگیري اسمزي و تصویر طبقه بندي شده بعن
MRE) %153/18 ( براي میزان دفع آب % 89به همراه توانایی پیشگویی)WL ( نرون استفاده شد، بدست آمد 6زمانیکه از دو لایه مخفی و در هر لایه .

زمانیکه از از دولایه مخفی به نحوي کـه در  ) SG(ه جامد براي میزان جذب ماد% 93به همراه توانایی پیشگویی ) MRE) %3535/35کمترین میزان 
بـه همـراه توانـایی    ) %4759/7 (MREحـداقل  ) MC(و در نهایت براي محتواي رطوبتی . نرون استفاده شد، بدست آمد 8و در لایه دوم  6لایه اول 
نتایج نشان دادند که این روش بطور ستونی میتواند در جهـت   .نرون به ترتیب در لایه مخفی اول و دوم بدست آمد 5و  6در استفاده از % 96پیشگویی 

 .مدل سازي کیفی و مونیتور کردن تغیرات کیفی مواد غذایی در حین فرآیند آبگیري اسمزي مورد استفاده قرار بگیرد
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