Abdollahi, M., Alboofetileh, M., Rezaei, M., and Behrooz, R. 2013. Comparing physico-mchanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32(2), 416-424.
Alboofetileh, M., Rezaei, M., Hosseini, H., and Abdollahi, M. 2013. Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. Journal of Food Engineering, 117(1), 26-33.
Arancibia, M., Gimenez, B., Lopez-Caballero, M. E., Gomez-Guillen, M. C., and Montero, P. 2014. Release of cinnamon essential oil from polysaccharide bilayer films and its use for microbial growth inhibition in chilled shrimps. LWT - Food Science and Technology, 59(2, Part 1), 989-995.
Azeredo, H. 2009. Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253.
Bourtoom, T. and Chinnan, M. S. 2008. Preparation and properties of rice starch-chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9): 1633-1641.
Chang, P. R., Jian, R., Zheng, P., Yu, J., and Ma, X. 2010. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301-305.
Chen, C. H., Kuo, W. S. and Lai, L. S. 2010b. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food hydrocolloids, 24(2): 200-207.
Feng, X. X., Zhang, L. L., Chen, J. Y., Guo, Y. H., Zhang, H. P., and Jia, C. I. 2007. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. International Journal of Biological Macromolecules, 40(2), 105-111.
Freile, P.Y., Madera, S.T., Robledo, D., Veleva, L., Quintana, P. and Azamar, J. A. 2007. Degradation of agar films in a humid tropical climate: thermal, mechanical morphological and structural changes. Polymer Degradation and Stability, 92 (2): 244-252.
Gomez-Guillen, M. C., M. Perez-Mateos, J. Gomez-Estaca, E. Lopez-Caballero, B. Gimenez, and P. Montero. 2009. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, 20: 3-16.
Gontard, N., Guilbert, S., and Cuq, J.-L. 1992. Edible wheat gluten films-influence of the main process and environmental-conditions on thermal, amechnical and barrier properties. Abstracts of Papers of the American Chemical Society, 204, 217-AGFD.
Jang, S.-A., Lim, G.-O., and Song, K. B. 2010. Original article: use of nano-clay (Cloisite Na) improves tensile strength and vapour permeability in agar rich red algae (Gelidium corneum)-gelatin composite films. International Journal of Food Science and Technology, 45(9), 1883-1888.
Kanmani, P., and Rhim, J. W. 2014. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International journal of biological macromolecules, 68: 258-266.
Lavorgna, M., Piscitelli, F., Mangiacapra, P. and Buonocore, G. G. 2010. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers, 82(2): 291-298.
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., and Leng, X. 2011. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104.
Mu, C., Guo, J., Li, X., Lin, W., and Li, D. 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1): 22-29.
Ojagh, S. M., Rezaei, M., Razavi, S. H., and Hosseini, S. M. H. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., and Moayedi, A. A. (2016). Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International journal of biological macromolecules, 89, 256-264.
Pavlath, A. E., Gosset, C., Camirand, W. and Roberton, G. H. 1999. Ionomeric films of alginic acid. Journal of Food Science, 64: 61-63.
Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A. and Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(5): 1372-1381.
Rhim, J. W., and Ng, P. K. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical reviews in food science and nutrition, 47(4): 411-433.
Rhim, J. W., Hong, S. I., Park, H. M., and Ng, P. K. W. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54, 5814–5822.
Shen, X. L., Wu, J. M., Chen, Y. and Zhao, G. 2010. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24: 285–290.
Vejdan, A., Ojagh, S. M., Adeli, A., and Abdollahi, M. 2016. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT - Food Science and Technology, 71, 88–95.
Zhou, J. J., Wang, S. Y. and Gunasekaran, S. 2009. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. Journal of Food Science, 74: 50-55.
Zolfi, M., Khodaiyan, F., Mousavi, M., and Hashemi, M. 2014. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118-125