تعداد نشریات | 49 |
تعداد شمارهها | 1,776 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,741,559 |
تعداد دریافت فایل اصل مقاله | 5,003,669 |
بررسی اثر افزودن نانو رس بر خواص فیلم دولایه آگار/ ژلاتین ماهی حاوی نانو ذرات دیاکسید تیتانیوم | ||
نشریه پژوهشهای علوم و صنایع غذایی ایران | ||
مقاله 3، دوره 14، شماره 1 - شماره پیاپی 49، فروردین و اردیبهشت 1397، صفحه 27-38 اصل مقاله (597.81 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/ifstrj.v1395i0.57476 | ||
نویسندگان | ||
سید مهدی اجاق ![]() | ||
1گروه فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2دانشگاه تکنولوژی چالمرز، گوتنبرگ، سوئد. | ||
چکیده | ||
فیلم دولایه آگار/ژلاتین حاوی نانو ذرات دیاکسید تیتانیوم (TiO2) (2 درصد وزنی- وزنی) و نانو رس (با غلظتهای 3، 5، 10 درصد وزنی- وزنی)، بهوسیله ترکیب در بستر فیلم ژلاتین به روش قالبریزی و طی 2 مرحله تولید شد و ویژگیهای ساختاری، فیزیکی، مکانیکی و نوری فیلم تولیدی موردمطالعه قرار گرفت. نتایج نشان داد که اضافه کردن 2 درصد TiO2 به فیلم دولایه باعث کاهش بیش از 15 درصدی نفوذپذیری نسبت به بخار در فیلم دولایه میشود. همچنین، نرخ جذب آب و میزان رطوبت با اضافه کردن 2 درصد TiO2 افزایش پیدا کرد. استفاده از نانو ذرات TiO2 بهطور قابلتوجهی خاصیت نفوذپذیری فیلم دولایه را در برابر نور UV بهبود بخشید بهطوریکه با افزودن 2 درصد وزنی- وزنی TiO2 خاصیت نفوذپذیری نور نسبت به فیلم آگار/ ژلاتین کاهش و کدورت فیلم تولیدی افزایش یافت. از طرفی، نتایج نشان داد که افزودن 3 درصد نانورس (وزنی- وزنی) به فیلم آگار/ ژلاتین حاوی 2 درصد TiO2 (وزنی- وزنی) حلالیت و مقاومت کششی فیلم تولیدی بهترتیب از 41/31 درصد و 55/11 مگاپاسکال به 24/33 درصد و 43/18 مگاپاسکال افزایش یافت. افزودن غلظتهای 5 و 10 درصد (وزنی- وزنی) نانو رس باعث کاهش حلالیت فیلمهای تولیدی از 41/31 درصد برای فیلم آگار/ ژلاتین شاهد به 09/26 و 49/21 درصد شد. همچنین، افزودن غلظتهای مختلف نانو رس به فیلم دولایه حاوی 2% TiO2 باعث کاهش معنیدار عبور نور، شاخص سفیدی، جذب آب و کدورت در فیلمهای تولیدی بهویژه در غلظت 10% شد. نتایج حاصل نشان داد که استفاده از غلظت 5 درصد نانو رس در فیلم آگار/ ژلاتین حاوی2 درصد TiO2 خواص فیزیکی، مکانیکی و نوری (با در نظر گرفتن کدورت) بهتری در مقایسه با سایر تیمارها داشت. | ||
کلیدواژهها | ||
آگار؛ ژلاتین ماهی؛ نانو کامپوزیت؛ تیتانیوم دیاکسید؛ نانورس | ||
مراجع | ||
Abdollahi, M., Alboofetileh, M., Rezaei, M., and Behrooz, R. 2013. Comparing physico-mchanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32(2), 416-424.
Alboofetileh, M., Rezaei, M., Hosseini, H., and Abdollahi, M. 2013. Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. Journal of Food Engineering, 117(1), 26-33.
Arancibia, M., Gimenez, B., Lopez-Caballero, M. E., Gomez-Guillen, M. C., and Montero, P. 2014. Release of cinnamon essential oil from polysaccharide bilayer films and its use for microbial growth inhibition in chilled shrimps. LWT - Food Science and Technology, 59(2, Part 1), 989-995.
Azeredo, H. 2009. Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253.
Bourtoom, T. and Chinnan, M. S. 2008. Preparation and properties of rice starch-chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9): 1633-1641.
Chang, P. R., Jian, R., Zheng, P., Yu, J., and Ma, X. 2010. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301-305.
Chen, C. H., Kuo, W. S. and Lai, L. S. 2010b. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food hydrocolloids, 24(2): 200-207.
Feng, X. X., Zhang, L. L., Chen, J. Y., Guo, Y. H., Zhang, H. P., and Jia, C. I. 2007. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. International Journal of Biological Macromolecules, 40(2), 105-111.
Freile, P.Y., Madera, S.T., Robledo, D., Veleva, L., Quintana, P. and Azamar, J. A. 2007. Degradation of agar films in a humid tropical climate: thermal, mechanical morphological and structural changes. Polymer Degradation and Stability, 92 (2): 244-252.
Gomez-Guillen, M. C., M. Perez-Mateos, J. Gomez-Estaca, E. Lopez-Caballero, B. Gimenez, and P. Montero. 2009. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, 20: 3-16.
Gontard, N., Guilbert, S., and Cuq, J.-L. 1992. Edible wheat gluten films-influence of the main process and environmental-conditions on thermal, amechnical and barrier properties. Abstracts of Papers of the American Chemical Society, 204, 217-AGFD.
Jang, S.-A., Lim, G.-O., and Song, K. B. 2010. Original article: use of nano-clay (Cloisite Na) improves tensile strength and vapour permeability in agar rich red algae (Gelidium corneum)-gelatin composite films. International Journal of Food Science and Technology, 45(9), 1883-1888.
Kanmani, P., and Rhim, J. W. 2014. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. International journal of biological macromolecules, 68: 258-266.
Lavorgna, M., Piscitelli, F., Mangiacapra, P. and Buonocore, G. G. 2010. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers, 82(2): 291-298.
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., and Leng, X. 2011. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104.
Mu, C., Guo, J., Li, X., Lin, W., and Li, D. 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1): 22-29.
Ojagh, S. M., Rezaei, M., Razavi, S. H., and Hosseini, S. M. H. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., and Moayedi, A. A. (2016). Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International journal of biological macromolecules, 89, 256-264.
Pavlath, A. E., Gosset, C., Camirand, W. and Roberton, G. H. 1999. Ionomeric films of alginic acid. Journal of Food Science, 64: 61-63.
Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A. and Martucci, J. F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25(5): 1372-1381.
Rhim, J. W., and Ng, P. K. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical reviews in food science and nutrition, 47(4): 411-433.
Rhim, J. W., Hong, S. I., Park, H. M., and Ng, P. K. W. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54, 5814–5822.
Shen, X. L., Wu, J. M., Chen, Y. and Zhao, G. 2010. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24: 285–290.
Vejdan, A., Ojagh, S. M., Adeli, A., and Abdollahi, M. 2016. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT - Food Science and Technology, 71, 88–95.
Zhou, J. J., Wang, S. Y. and Gunasekaran, S. 2009. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. Journal of Food Science, 74: 50-55.
Zolfi, M., Khodaiyan, F., Mousavi, M., and Hashemi, M. 2014. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118-125 | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 129 |