Amir, J., and Sinclair, T.R., 1991. A model of water limitation on spring wheat growth and yield. Field Crops Research 28: 59–69. https://doi.org/10.1016/0378-4290(91)90074-6.
Amiri, E., Khorsand, A., Daneshian, J., and Yousefi, M., 2018. Predicting biomass and grain yield in canola under different water regimes and fertilizers using AquaCrop model. Journal of Irrigation Sciences and Engineering 41(1): 57-72. (In Persian with English Summary)
Arvaneh, H., and Abbasi, F., 2014. Validation and calibration of the model aqua crop for Brassica napus in field conditions. Journal of Iran Water Research 14: 9-17. (In Persian with English Summary)
FAO and DWFI., 2015. Yield gap analysis of field crops– Methods and Case Studies, by Sadras, V.O., Cassman, K.G.G., Grassini, P., Hall, A.J., Bastiaanssen, W.G.M., Laborte, A.G., Milne, A.E., Sileshi, G., Steduto, P. FAO Water Reports No. 41, Rome, Italy.
FAOSTST., 2014, Available in http://faostat.fao.org/site/339/default.aspx [15 June 2014].
Geerts, S., and Raes, D., 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management 96: 1275-1284.
Ghanem, M.E., Marrou, H., Biradar, C., and Sinclair, T.R., 2015. Production potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems 137: 24–38.
Hajjarpoor, A., Vadez, V., Soltani, A., Gaur, P., Whitbread, A., Babu, D.S., Gumma, M.K., Diancoumba, M., and Kholová, J., 2018. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research 223: 93–104.
Hammer, G.L., Van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., Harland, P., and Muchow, R.C., 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany 61: 2185–2202.
Honar, T., Sarverestani, A., Kamgarhaghighy, A.A., and Shams, S., 2012. CropSyst calibration model to predict performance and simulation of plant growth. Journal of Soil and Water (Agricultural Science and Technology) 25(3): 593-605. (In Persian with English Summary)
Hoogenboom, G., Jones, J.W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, J.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., Tsuji, G.Y., and Koo, J., 2012. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5. University of Hawaii, Honolulu, Hawaii (CD-ROM).
Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., and Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E., 2009. AquaCrop—the FAO crop model to simulate yield response to water: III Parameterization and testing for maize. Agronomy Journal 101: 448–459.
Jamieson, P.D., and Semenov, M.A., 2000. Modelling nitrogen uptake and redistribution in wheat. Field Crops Research 68: 21–29.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., and Ritchie, J.T., 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235–265.
Keating, B.A., Asseng, S., Brown, S.D., Carberry, P.S., Chapman, S., Dimes, J.P., Freebairn, D.M., Hammer, G.L., Hargreaves, J.N.G., Hochman, Z., Holzworth, D., Huth, N.I., Meinke, H., McCown, R.L., Probert, M.E., Robertson, M.J., Silburn, M., Smith, C.J., Snow, V.O., Verburg, K., and Wang, E., 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., and Hochman, Z., 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.
Kiniry, J.R., Blanchet, R., Williams, J.R., Texierb, V., and Jones, C.A., 1992. Sunflower simulation using the EPIC and A LM A N A C models. Field Crops Research 30: 403–423.
Koo, J., and Dimes, J., 2010. HC27 Generic Soil Profile Database. Version 1, July. International Food Policy Research Institute, Washington, DC.
Laurance, W.F., Sayer, J., and Cassman, K.G., 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 29: 107–116. https://doi.org/10.1016/j.tree.2013.12.001.
Marrou, H., Sinclair, T.R., and Metral, R., 2014. Assessment of irrigation scenarios to improve performances of lingot bean (Phaseolus vulgaris) in southwest France. European Journal of Agronomy 59: 22–28.
Mousavizadeh, S.F., Honar, T., and Ahmadi, S.H., 2016. Assessment of the aquacrop model for simulating canola under different irrigation management in a semiarid area. International Journal of Plant Production 10(4): 1735-6814.
Nehbandani, A.R., Soltani, A. Zeinali, E., Raeisi, S. and Rajabi, R., 2015. Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. Journal of Plant Production Reasearch (JOPPR) 22(3): 1-26. (In Persian with English Summary)
Noorhosseini, S., Soltani, A., and Ajamnoroozi, H., 2018. Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the Simple Simulation Model (SSM). Computers and Electronics in Agriculture 145: 63–75. https://doi.org/10.1016/j.compag.2017.12.020
Priestley, C.H.B., and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using largescale parameters. Monthly Weather Review 100: 81-92.
Ritchie, J., Singh, U., Godwin, D., and Bowen, W., 1998. Cereal growth, development and yield. In Understanding options for agricultural production 79-98. Springer, Dordrecht.
Robertson, M.J., Carberry, P.S., Huth, N.I., Turpin, J.E., Probert, M.E., Poulton, P.L., Bell, M., Wright, G.C., Yeates, S.J., and Brinsmead, R.B., 2002. Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Crop Science 53: 429–446.
Sinclair, T., Farias, J., Neumaier, N., and Nepomuceno, A., 2003. Modeling nitrogen accumulation and use by soybean. Field Crops Research 81: 149-158.
Sinclair, T.R., and Muchow, R.C., 1999. Radiation use efficiency. Advances in Agronomy 65: 215–265.
Sinclair, T.R., Marrou, H., Soltani, A., Vadez, V., and Chandolu, K.C., 2014. Soybean production potential in Africa. Global Food Security 3: 31–40.
Soltani, A., 2009. Mathematical modeling of the crop. Publication Mashhad University Jihad, Iran p. 175. (In Persian)
Soltani, A., 2015. All About Importing Iranian Edible Oils. http://aftabeyazd.ir/6631.
Soltani, A., and Sinclair, T.R., 2011. A simple model for chickpea development, growth and yield. Field Crops Research 124: 252–260.
Soltani, A., and Sinclair, T.R., 2012. Identifying plant traits to increase chickpea yield in water-limitedenv ironments. Field Crops Research 133: 186–196. https://doi.org/10.1016/J.FCR.2012.04.006
Soltani, A., and Sinclair, T.R., 2012. Modeling Physiology of Crop Development, Growth, and Yield. CABI Publication, 322 pp.
Soltani, A., and Sinclair, T.R., 2015. A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crops Research 175: 37-46.
Soltani, A., and Torabi, B., 2009. Mathematical Modeling in Field Crop. Jehad Daneshgahi Mashhad Press, Iran. (In Persian)
Soltani, A., Ghassemi-Golezani, K., Khooie, F.R., and Moghaddam, M., 1999. A simple model for chickpea growth and yield. Field Crops Research 62: 213–224.
Soltani, A., Hajjarpour, A., and Vadez, V., 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research 185: 21–30.
Soltani, A., Maddah, V., and Sinclair, T.R., 2013. SSM-Wheat: a simulation model for wheat development, growth, and yield. International Journal of Plant Production 7: 711–740.
Soltani, A., and Sinclair T.R., 2011. A simple model for chickpea development, growth, and yield. Field Crops Research 124: 252–260.
Stockle, C.O., Donatelli, M., and Nelson, R., 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy 18: 289–307.
Tanner, C.B., and Sinclair, T.R., 1983. Efficient water use in crop production: research or re-search? In: Taylor, H. M., Jordan, W. R., and Sinclair, T. R (Eds.) Limitations to Efficient Water Use in Crop Production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin, pp. 1–27.
Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E., 2011. Assessment of yield gap due to nitrogen management in wheat. Australian Journal of Crop Science 5: 879-884.
Vadez, V., Halilou, O., Hissene, H.M., Sibiry-Traore, P., Sinclair, T.R., and Soltani, A., 2017. Mapping water stress incidence and intensity, optimal plant populations, and cultivar duration for African groundnut productivity enhancement. Frontiers In Plant Science 8: 432.
Vadez, V., Soltani, A., and Sinclair, T.R., 2013. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Research 146: 1–9.
Van Ittersum, M., Leffelaar, P., van Keulen, H., Kropff, M., Bastiaans, L., and Goudriaan, J., 2003. On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18: 201–234. https://doi.org/10.1016/S1161-0301(02)00106-5
Yang, C., Gan, Y., Harker, K.N., Kutcher, H.R., Gulden, R., Irvine, B., and May, W.E., 2014. Up to 32 % yield increase with optimized spatial patterns of canola plant establishment in western Canada. Agronomy for Sustainable Development 34(4): 793-801.