تعداد نشریات | 49 |
تعداد شمارهها | 1,777 |
تعداد مقالات | 18,925 |
تعداد مشاهده مقاله | 7,779,126 |
تعداد دریافت فایل اصل مقاله | 5,072,006 |
اعتبار سنجی مدل AquaCrop به منظور شبیهسازی عملکرد و کارایی مصرف آب گندم زمستانه تحت شرایط همزمان تنش شوری و خشکی | ||
آب و خاک | ||
مقاله 5، دوره 29، شماره 1، فروردین 1394، صفحه 67-84 اصل مقاله (1.43 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v0i0.31304 | ||
نویسندگان | ||
مسعود محمدی ![]() ![]() ![]() | ||
1دانشگاه فردوسی مشهد | ||
2دانشگاه بیرجند | ||
چکیده | ||
بهبود مدیریت آب در مزرعه و ارتقای کارایی مصرف آب تحت شرایط همزمان تنش شوری و کمآبی از اهمیت بالایی برخوردار است. مدلهایی که اثرات مقادیر و کیفیتهای مختلف آب بر روی عملکرد محصول را به صورت کمی شبیهسازی میکنند، ابزارهایی مفید در مدیریت آب در مزرعه و بهبود کارایی مصرف آب میباشند. مدل AquaCrop عملکرد محصول، نیاز آبی و کارایی مصرف آب را تحت شرایط مختلف، از جمله کمآبیاری و کیفیتهای مختلف آب آبیاری، شبیهسازی میکند. به منظور اعتبار سنجی مدل AquaCrop در منطقه بیرجند، آزمایشی در قالب طرح کرتهای خرد شده به صورت فاکتوریل انجام شد، که در آن سه فاکتور شوری آب آبیاری در سه سطح (S1، S2 و S3 به ترتیب معادل ۴/۱، ۵/۴ و ۶/۹ دسیزیمنس بر متر) به عنوان کرتهای اصلی و دو رقم گندم (قدس و روشن) و مقدار آب آبیاری در ۴ سطح (I1، I2، I3 و I4 به ترتیب معادل ۱۲۵، ۱۰۰، ۷۵ و ۵۰ درصد نیاز آبی گیاه) به صورت فاکتوریل به عنوان کرتهای فرعی اجرا گردید. در ابتدا مدل به طور جداگانه برای هر تیمار شوری و سپس به طور همزمان برای تیمارهای شوری واسنجی و صحتسنجی شد. عملکرد محصول، زیست توده و کارایی مصرف آب برای دو رقم گندم در شرایط شوری و کمآبی به خوبی شبیهسازی شد به طوری که آمارههای RMSE، ME ، d، CRM و R2 در شبیهسازی عملکرد محصول برای رقم روشن به ترتیب ۰۹/۷ درصد، ۶۱/۱۵ درصد، ۹۷/۰، ۰۰۱/۰ و ۹/۰ و برای رقم قدس به ترتیب ۱۶/۸ درصد، ۴۶/۱۷ درصد، ۹۸/۰، ۰۰۴/۰- و ۸۷/۰ بدست آمد. آنالیز حساسیت نشان داد که مدل نسبت به ضریب گیاهی مربوط به تعرق (KC-Tr)، بهرهوری آب نرمال شده (*WP)، شاخص برداشت (HIO)، رطوبت در ظرفیت زراعی، رطوبت اشباع و دمای هوا حساستر از سایر پارامترهاست. | ||
کلیدواژهها | ||
آنالیز حساسیت؛ زیست توده؛ مدلسازی گیاهی | ||
مراجع | ||
1- Afyooni D. 2005. The effect of seeding rate on wheat cultivars performance under salinity stress. Journal of Agriculture, 7(2): 7-16. (in Persian with English abstract)
2- Alizadeh H.A., Nazari B., Parsinejad M., Ramezani-Eetedali H., Janbaz H.R. 2010. Evaluation of AquaCrop model on wheat deficit irrigation in Karaj area.Iranian Journal of Irrigation and drainage, 2(4):273-283. (in Persian with English abstract)
3- Andarziana B., Bannayanb M., Stedutoc P., Mazraeha H., Barati M.E., Barati M.A., and Rahnama A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100:1-8.
4- Babazadeh H., and Sarai-Tabrizi M. 2012. Assessment of AquaCrop model under soybean deficit irrigation management conditions. Journal of Water and Soil, 26(2): 329-339, (in Persian with English abstract)
5- Bastiaanssen W.G.M., Allen R.G., Droogers P., D’Urso G., and Steduto P. 2007. Twenty five years modeling irrigated and drained soils: State of the art. Agricultural Water Management, 92(3), 111–125.
6- Doorenbos J., and Kassam A.H. 1979. Yield Response to Water. Irrigation and Drainage Paper No. 33. FAO, Rome.
7- Egli D.B., and Bruening W. 1992. Planting date and soybean yield: Evaluation of environmental effects with a crop simulation model: SOYGRO, Agricultural and Forest Meteorology Journal, 62:19-29.
8- Fayyaz F., Kheradnam M., Assad M.T. 2006. Evaluation of the morphophysiological traits heritability drought stress conditions in dread wheat genotypes (Triticum aestivum L.). Agricultural Sciences and Technology Journal, 20(5):35-46. (in Persian with English abstract)
9- Fereres E., and Soriano M.A. 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58, 147–159.
10- Geerts S., Raes D., Garcia M., Miranda R., Cusicanqui J.A., Taboada C., Mendoza J., Huanca R., Mamani A., Condori O., Mamani J., Morales B., Osco V., and Steduto P. 2009. Simulating yield response of quinoa to water availability with AquaCrop. Agronomy Journal, 101: 499–508.
11- Hajiabadi M.R., Sadeghzadeh A., and Soltani H.R. 2003. Determination of irrigation suitable date of wheat using evaporation pan data in Birhand region. Agriculture and Natural Resources Research Center of Khorasan. n. 109-12-56854, pp. 85. (in Persian)
12- Heng L.K., Hsiao T.C., Evett S., Howell T., and Steduto P. 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101: 488–498.
13- Hsiao T.C., Heng L.K., Steduto P., RojasLara B., Raes D., and Fereres E. 2009. AquaCrop–the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101, 448-459.
14- Jones C.A., Kiniry J.R., and Dyke P.T. 1986. CERES-Maize: A simulation model of maize growth and development, User's guide of CERES-Maize. Texas University Press College Station (USA).
15- Kroes J.G., and Van Dam J.C. 2008. Reference manual SWAP version 3.2., Alterra Green World Research, Wagenningen, Report 1649 (Available at: www.alterra.nl/models/swap).
16- Kuo S.F., Lin B.J., and Shieh H.J. 2006. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management, 82:433-451.
17- Lopez-Urrea R., Montoro A., Gonza lez-Piqueras J., Lopez-Fuster P., and Fereres E. 2009. Water use of spring wheat to raise water productivity. Agricultural Water Management, 96:1305-1310.
18- Marinov D., Querner E., and Roelsma J. 2005. Simulation of water flow and nitrogen transport for a Bulgarian experimental plot using SWAP and ANIMO models. Journal of Contaminant Hydrology, 77: 145-164.
19- Mebane, V.J., Day R.L., Hamlett J.M., Watson J.E., and Roth G.W. 2013. Validating the FAO AquaCrop model for rainfed maize in Pennsylvania. Agronomy Journal, 105(2):419-427.
20- Meyer G.E., Curry R.B., Streeter J.G., and Baker C.H. 1981. Simulation of reproductive processes and senescence in indeterminate soybeans. Transactions of the ASABE. 24 (2):421- 429.
21- Mkhabela M.S., and Bullock P.R. 2012. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management, 110:16– 24.
22- Owies T., Zhang H., and Pala M. 2000. Water use efficiency of rainfed and irrigated bread wheat in Mediterranean Environment, Agronomy Journal, 92:231-238.
23- Raes D. 2002. Reference manual of Budget model. K. U. Leuven, Faculty of Agricultural and Applied Biological Sciences, Institute for Land and Water Management, Leuven, Belgium.
24- Raes D., Steduto P., Hsiao T.C., and Fereres E. 2009. AquaCrop-the FAO crop model for predicting yield response to water: II. Main algorithms and software description. Agronomy Journal, 101:438–447.
25- Raes D., Steduto P., Hsiao T.C., and Fereres E. 2012. Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
26- Salemi H., Mohd Soom M.A., Lee T.S., and Mousavi S.F., Ganji A., and KamilYusoff M. 2011. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research,. 610: 2204-2215.
27- Shamsnia S.A., and Pirmoradian N. 2013. Simulation of rainfed wheat yield response to climatic fluctuations using AquaCrop model (case study: Shiraz region in southern of Iran). International Journal of Engineering Science Invention, 2(4):51-56.
28- Singh R. 2004. Simulation on direct and cyclic use of saline waters for sustaining Cotton-Wheat in a semi-arid area of north-west India. Agricultural Water Management, 66: 153-162.
29- Steduto P., Hsiao T.C., Raes D., and Fereres E. 2007. On the conservative behavior of biomass water productivity. Irrigation Science. 25:189–207.
30- Steduto P., Hsiao T.C., Raes D., and Fereres E. 2009. AquaCrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101:426-437.
31- Todorovic M., Albrizio R., Zivotic L., Abi Saab M., Stöckle C., and Steduto P. 2009. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101: 509–521.
32- Van Dam J.C., Groenendijk P., Hendriks R.F.A., and Kroes J.G. 2008. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7:640-653.
33- Zamani Gh.R. 2004. Ecophysiological aspects of wild oat competition with wheat under salinity stress. Ph.D. Thesis. Ferdowsi Univesity of Mashhad. | ||
آمار تعداد مشاهده مقاله: 318 تعداد دریافت فایل اصل مقاله: 242 |