1- Ayyasamy P.M., Chun S., and Lee S. 2009. Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters. Journal of Hazardous Materials, 161: 1095-1102.
2- Bascomb C. L. 1968. Distribution of pyrophosphate extractable iron and organic carbon in soils of various groups. Journal of Soil Science, 19: 251-268.
3- Bonneville S., Cappellen P.V., and Behrends T. 2004. Microbial reduction of iron(III) oxyhydroxides- effects of mineral solubility and availability. Chemical Geology, 212: 255-268.
4- Cornell R.M., and Schwertmann U. 1996. Iron oxides in the laboratory: Structure, Properties, Reactions, Occurrence and Uses. VCH.
5- Castillo F., Roldan M.D., Blasco R., Huertas M.J., Caballero F.J., Moreno-Vivian C., and Martinez M. 2005. Biotechnologia ambiental. Ed. Tebar, 202-203.
6- Castro L., Garcia-Balboa C., Gonzalez F., Bahhester A., Luisa Blazquez M.,and Muniz J.A. 2013. Effectiveness of anaerobic iron bio-reduction of jarosite and the influence of humic substances. Hydrometallurgy, 131: 29-33.
7- Davranche M., and Bollinger J.C. 2000. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: Effect of reductive conditions. Journal of Colloid and Interface Science, 227: 531-539.
8- Ghorbanzadeh N. 2014. Bioreduction of iron minerals and its effect on Fe availability in calcareous soil. PhD Thesis, (in Persian with English abstract).
9- ISO 11466. 1995. Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia. International Standard. 1-6.
10- Jackson M.L., Lim C.H., and Zelazny L.W.1986. Oxides, hydroxides, and aluminosilicates. In: Klute A. (Editor), Methods of Soil Analysis. Agronomy, 9:101-150.
11- Jaisi D.P., Kukkadapu R.K., Eberl D.D., and Dong H. 2005. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta, 69: 5429-5440.
12- Jiangzhou H. E., and Dong Q.U. 2008. Dissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids. Environmental Science Journal, 20: 1103- 1108.
13- Kamura T., Takai Y., and Ishikawa K. 1963. Microbial reduction mechanism of ferric iron in paddy soils. Soil science and Plant nutrition, 9: 5-9.
14- Kappler A., Benz M., Schink B., and Brune A. 2004. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology, 47: 85-92.
15- Lovely D.R., and Phillips E.J. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 4: 683-689.
16- Lovely D.R., and Phillips E.J. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 4: 1536-1540.
17- Lovely D.R., and Phillips E.J. 1988. Novel mode of microbiological energy metabolism: organic carbon oxidation couple to dissimilatory reduction of iron or manganese. Applied Environmental Microbiollogy, 54 (6): 1472-1480.
18- Lovely D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology Reviews, 55: 259-287.
19- Liyod J.R. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, 27: 411-425.
20- Laguna C., Gonzales F., Garcia-Balboa C., Ballester M.L., and Munoz J.A. 2011. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Minerals Engineering, 24: 10-18.
21- Marshall M.J., Beliaev A.S., Dohnalkova A.C., Kennedy D.W.,Shi L., Wang Z.M., Boyanov M.I., Lai B., Kemner K.M., Mclean J.S., Reed S.B., Culley D.E., Bailey V.L., Simonson C.J., Saffarini D.A., Romine M.F., Zachara J.M., and Fredrickson J.K. 2006. C-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biology, 4: 1324–1333.
22- Marsili E., Baron D.B., Shikhare I.D., Coursolle D., Gralnick J.A., and Bond D.R. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. PNAS. Proceeding of the National Academy Sciences of the United States of America, 105(10): 3968-3973.
23- Nevin K.P., and Lovley D.R. 2000. Potential for nonenzymatic reduction of Fe (III) via electron shuttling in subsurface sediments. Environmental Science Technology, 34: 2472–2478.
24- O,loughlin E.J. 2008. Effect of electron transfer mediators on the bioreduction of lepidocrocite by Shewanella putrefaciens CN32. Environmental Science Technology, 42: 6876-6882.
25- Piepenbrock A., Behrens S., and Kappler A. 2014. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers. Geomicrobiology Journal, 31: 917-928.
26- Royer R.A., Burgos W.D., Fisher A.S., Jeon B.H., Unz R.F., and Dempsey B.A. 2002a. Enhancement of hematite bioreduction by natural organic matter. Environmental Science Technology, 36: 2897-2904.
27- Royer R.A., Burgos W.D., Fisher A.S., Unz R.F., and Dempsey B.A. 2002b. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environmental Science and Technology, 36: 1939-1946.
28- Royer R.A., Dempsey B.A., Jeon B.H., and Burgos W.D. 2004. Inhibition of biological reductive dissolution of hematite by ferrous iron. Environmental Science Technology, 38: 187–193.
29- Stooky L.L. 1970. Ferrozine- a new spectrophotometric reagent for iron. Analytical Chemistry, 42: 779-781.
30- Scott D., McKnight D., Blunt-Harris E., Kolesar S., and Lovley D. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science and Technology, 32: 2984–2989.
31- Shi L., Richardson D.J., Wang Z., Kerisit S.N., Rosso K.M., Zachara J.M., and Fredrickson J.K. 2009. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environmental Microbiology Reports, 1(4): 220-227.
32- Sanchez-Alcala I. 2012. Bioavailability of iron in calcareous soils: Microbial reduction and nanofertilizer application. Servicio de Publicaciones de la Universidad de Cordoba. Campus de Rabanales Ctra. Nacinal IV, Km.
33- Shimizu M., Zhou J., Schroder C., Obst M., and Kappler A. 2013. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environmental Science and Technology, 47: 13375-13384.
34- Wolf M., Kappler A., Jiang J., and Meckenstock R.U. 2009. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environmental Science and Technology, 43: 5679-5685.
35- Zakhara J.M., Kukkadapu R.K., Peretyazhko T., Bowden M., Wang C., Kennedy D.W., Moore D., and Arey B. 2011. The mineralogic transformation of ferrihydrite induced by heterogeneous reaction with bioreduced anthraquinone disulfonate (AQDS) and the role of phosphate. Geochimica et Cosmochimica Acta, 75: 6330-6349.
36- Zhang G., Dong H., Kim J.W., and Eberl D.D. 2007a. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 92: 1411-1419.
37- Zhang G., Kim J.W., Dong H., and Sommer A.J. 2007b. Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer. American Mineralogist, 92: 1401-1410.