1. De Michele C., Salvadori G., Canossi M., Petaccia A., Rosso R., 2005. Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1): 50–57.
2. Desa M., and Rakhecha P.R. 2007. Probable maximum precipitation for 24-h duration over an equatorial region. Atmospheric research, 84(2): 84 –90.
3. Dinpashoh Y., Mirabbasi R., Jhajharia D., Zare Abianeh H., and Mostafaeipour A. 2014. Effect of short term and long-term persistence on identification of temporal trends. Journal of Hydrologic Engineering, 19.3: 617-625.
4. Favre A.C., El Adlouni S., Perreault L., Thiemonge N., and Bobee B. 2004. Multivariate hydrological frequency analysis using copulas. Water resources research, 40(1): 90-106.
5. Hosking J.R.M., and Wallis J.R. 1998. The effect of intersite dependence on regional flood frequency analysis. Journal of Water Resource Research, 24(4):59-71.
6. Joe H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall. 399 pp.
7. Kadri V.Y. 2005. Low flow hydrology: A review. Journal of Hydrology, 240(1): 147-186.
8. Khalili K., Tahroudi M.N., Mirabbasi R., Ahmadi F. 2015. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 1–17.
9. Madadgar S., and Moradkhani H. 2014. Improved Bayesian multimodeling: Integration of copulas and Bayesian model averaging. Water Resources Research, 50(12): 9586-9603.
10. Ming X., Xu W., Li Y., Du J., Liu B., and Shi P. 2015. Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period. Stochastic environmental research and risk assessment, 29(1), 35-44.
11. Mishra A.K., Singh V.P. 2010. A review of drought concepts. Journal of Hydrology, 391: 202-216.
12. Modarres R. 2008. Regional frequency distribution type of low flow in North of Iran by Lmoment. Journal. Water Resour Manage, 22: 823–841.
13. Nalbantis I., and Tsakiris, G. 2009. Assessment of hydrological drought revisited. Water Resources Management, 23(5): 881-897.
14. Nelsen R.B. 2006. An introduction to copulas. Springer, New York. 269p.
15. Saad C., El Adlouni S., St-Hilaire A. and Gachon P., 2015. A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Quebec, Canada) record flood. Stochastic Environmental Research and Risk Assessment, 29(1): 275-294.
16. Salvadori G., and De Michele C. 2007. On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4): 369–380.
17. Sandoval C.A. 2009. Mixed distribution in low flow Frequency Analysis. Journal of Hydrology, 58(1): 247-253.
18. Shi P., Chen X., Qu S.M., Zhang Z.C., and Ma J.L. 2010. Regional frequency analysis of low flow based on L moments: Case study in Karst area, Southwest China. Journal of Hydrologic Engineering, 15(5): 370-377.
19. Sklar A. 1959. Fonctions de Repartition and Dimensions et LeursMarges. Publications de L’Institute de Statistique, Universite’ de Paris, Paris. 8: 229–231.
20. Smith R.E., and Bosch J.M. 1989. A description of the Westfalia catchment experiment to determine the effect on water yield of clearing the riparian zone and converting an indigenous forest to a eucalyptus plantation. South African Forestry Journal, 151(1): 26–31.
21. Yue S., Ouarda T.B.M.J., Bobee B. 2001. A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246, 1–18.
22. Yue S., & Rasmussen P. 2002. Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14): 2881-2898.
23. Zhang L., and Singh V.P. 2006. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2): 150-164.
24. Zhang Q., Chen Y. D., Chen X., and Li J. 2011. Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering, 16(7): 598-607.