تعداد نشریات | 49 |
تعداد شمارهها | 1,778 |
تعداد مقالات | 18,930 |
تعداد مشاهده مقاله | 7,814,290 |
تعداد دریافت فایل اصل مقاله | 5,124,730 |
ارزیابی تبخیر- تعرق ذرت و اجزای آن و ارتباط آنها با شاخص سطح برگ در سیستم آبیاری قطرهای سطحی و زیرسطحی | ||
آب و خاک | ||
مقاله 3، دوره 31، شماره 6 - شماره پیاپی 56، اسفند 1396، صفحه 1549-1560 اصل مقاله (1.07 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i6.64019 | ||
نویسندگان | ||
حسین دهقانی سانیج* 1؛ الهه کنعانی2؛ سمیرا اخوان3 | ||
1مؤسسه تحقیقات فنی و مهندسی کشاورزی کرج | ||
2دانشگاه بوعلی سینا | ||
3بوعلی سینا همدان | ||
چکیده | ||
جداسازی تبخیر- تعرق به منظور شناخت و تعیین دقیق سهم هر یک از اجزای تبخیر- تعرق دارای اهمیت زیادی است و اساس بسیاری از طرحهای مدیریت و برنامهریزی منابع آب میباشد. پژوهش حاضر به منظور مقایسه تبخیر- تعرق ذرت و اجزای آن تحت دو سیستم آبیاری قطرهای سطحی و زیرسطحی در مزرعه الگوی معاونت آب و خاک وزارت جهاد کشاورزی واقع در کرج اجرا شد. نتایج نشان داد که مقدار ETc ذرت در سیستم آبیاری قطرهای سطحی و زیرسطحی به ترتیب 09/377 و 92/371 میلیمتر بدست آمد که از این مقدار سهم اجزای تعرق گیاهی و تبخیر از سطح خاک در سیستم قطرهای سطحی به ترتیب 81/200 و 02/176 و در سیستم قطرهای زیرسطحی 04/213 و 81/158میلیمتر بدست آمد. همچنین مقدار تبخیر از سطح خاک در دورههای اولیه، توسعه و میانی به ترتیب برابر 65، 83/58 و 98/34 میلیمتر برای سیستم قطرهای زیرسطحی و 02/73، 73/65 32/37 میلیمتر برای سیستم قطرهای سطحی حاصل شد. کل مقدار تعرق گیاهی در دورههای اولیه، توسعه و میانی به ترتیب برابر 78/12، 31/81 و 95/118 میلیمتر برای سیستم قطرهای زیرسطحی و برای سیستم قطرهای سطحی 88/5، 82/76 و 21/118 میلیمتر بوده است. نتایج نشان داد که سیستم آبیاری قطرهای زیرسطحی نسبت به سیستم قطرهای سطحی دارای تلفات تبخیر از سطح خاک کمتر و همچنین دارای میزان تعرق گیاهی بیشتری در طول فصل رشد ذرت میباشد که این میتواند در افزایش عملکرد گیاه ذرت نقش مهمی را ایفا کند. در این پژوهش روش آبیاری قطرهای زیرسطحی ذرت به ترتیب با عملکرد خشک و تر 53/26 و 64/76 تن بر هکتار عملکرد بهتری را نسبت به سیستم قطرهای سطحی به خود اختصاص داد. | ||
کلیدواژهها | ||
تبخیر خاک؛ تعرق گیاهی؛ جداسازی، ذرت؛ میکرولایسیمتر | ||
مراجع | ||
1- Agam N., Evett S.R, Tolk J.A., Kustas W.P., Colaizzi P.D., Alfieri J.G., Mckee L.G., Copeland K.S., Howell T.A., and Chavez J.L. 2012. Evaporative loss from irrigatedinter rows in a highly advective semi-arid agricultural area. Advance in Water Resources, 50 :20–30.
2- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop Evapotranspiration – Guide-lines for Computing Crop Water Requirements. FAO, Rome.
3- Brun L. J., Kanemasu E. T., and Powers W. L. 1972. Evapotranspiration from soybean and sorghum fileds. Agronomy Journal, 64(2): 145-148.
4- Bufon V.B., Lascano R.J., Bednarz C., Booker J.D. and Gitz D.C. 2012. Soil water contenton drip irrigated cotton: comparison of measured and simulated values obtainedwith the Hydrus 2-D model. Irrigation Science, 30: 259–273.
5- Campbell G.S., Calissendorff C., and Williams J.H. 1991. Probe for measuring soil spe-cific heat using a heat-pulse method. Soil Science Society America Journal. 55: 291–293.
6- Chen S., Zhang X., Sun H., Ren T., and Wang Y. 2010. Effects of winter wheat rowspacing on evapotranpsiration, grain yield and water use efficiency. Agricultural water management, 97: 1126–1132.
7- Eberbach P.L., Humphreys E., and Kukal S.S. 2011. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agricultural water management, 98(12): 1847-185.
8- Esfandyari S. 2013. Evaluation of fertigation effect under drip irrigation systems (surface and subsurface) on root development, yield and corn evapotranspiration. Ph.D Dissertation of Irrigation and Drainage Engineering, Ferdowsi University of Mashhad. (in Persian with English abstract)
9- Fan Z., Chai Q., Huang G., Yu A., Huang P., Yang C., Tao Z., and Liu H. 2013. Yield andwater consumption characteristics of wheat/maize intercropping with reducedtillage in an oasis region. European Journal of Agronomy, 45: 52–58.
10- Ferreira M.I., Silvestre J., Conceic ão. N., and Malheiro A.C. 2012. Crop and stresscoefficients in rainfed and deficit irrigation vineyards using sap flow techniques.Irrigation Science, 30: 433–447.
11- Flumignan D.L., de Faria R.T., and Prete C.E.C. 2011. Evapotranspiration componentsand dual crop coefficients of coffee trees during crop production. Agricultural water management, 98: 791–800.
12- Ham J.M., Heilman J.L. and Lascano R.J. 1990. Determination of soil water evaporationand transpiration from energy balance and stem flow measurements. Agricultural Forest Meteorology, 52: 287–301.
13- Heitman J.L., Xiao X., Horton R. and Sauer T.J., 2008. Sensible heat measurementsindicating depth and magnitude of subsurface soil water evaporation. Water Resourse, Reserch, 44: 1–7.
14- Hillel D. 1998. Environmental Soil Physics. Academic Press, London, UK/San Diego,CA.
15- Kang S., Gu B., Du T. and Zhang, J. 2003. Crop coefficient and ratio of transpiration toevapotranspiration of winter wheat and maize in a semi-humid region. Agricultural water management. 59: 239–254.
16- Kosari H. 2009. Evaluation of Soil surface energy balance to estimation of evapotranspiration and its components in surface and sub-surface drip irrigation systems. Irrigation and Drainage Master's thesis, University of Tehran. (in Persian).
17- Kristensen K. J. 1974. Actual evapotranspiration in relation to leaf area. Hydrology Research, 5(3): 173-182.
18- Liu C., Zhang X., and Zhang Y. 2002. Determination of daily evaporation and evapo-transpiration of winter wheat and maize by large-scale weighing lysimeter andmicro-lysimeter. Agricultural Forest Meteorology, 111: 109–120.
19- Liu H., Wang X., Zhang X., Zhang L., Li Y., and Huang G. 2017. Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China. Agricultural Water Management, 179: 144-157.
20- Payero J. O., Tarkalson D. D., Irmak S., Davison D., and Petersen J. L. 2008. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agricultural water management, 95(8): 895-908.
21- Poblete-Echeverria C., Ortega-Farias S., Zu˜niga M., and Fuentes S. 2012. Evaluation ofcompensated heat-pulse velocity method to determine vine transpiration usingcombined measurements of eddy covariance system and microlysimeters. Agricultural Forest Meteorology, 109: 11–19.
22- Ritchie J. T., and Burnett E. 1971. Dryland evaporative flux in a subhumid climate: II. Plant influences. Agronomy Journal, 63(1): 56-62.
23- Zeggaf A.T., Takeuchi S., Dehghanisanij H., Anyoji H., and Yano T. 2008. A Bowen ratiotechnique for partitioning energy fluxes between maize transpiration and soilsurface evaporation. Agronomy Journal, 100: 988–996.
24- Zhang H., Xiong Y., Huang G., Xu X., and Huang Q. 2017. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agricultural Water Management, 179: 205-214. | ||
آمار تعداد مشاهده مقاله: 440 تعداد دریافت فایل اصل مقاله: 255 |